
CHAPTER III
FUNCTIONS AND CONTINUITY

DEFINITION OF THE NUMBER π.

The concept of a function is perhaps the most basic one in mathematical analysis.
The objects of interest in our subject can often be represented as functions, and
the “ unknowns” in our equations are frequently functions. Therefore, we will
spend some time developing and understanding various kinds of functions, including
functions defined by polynomials, by power series, and as limits of other functions.
In particular, we introduce in this chapter the elementary transcendental functions.
We begin with the familiar set theoretical notion of a function, and then move
quickly to their analytical properties, specifically that of continuity.

The main theorems of this chapter include:
(1) The Intermediate Value Theorem (Theorem 3.6),
(2) the theorem that asserts that a continuous real-valued function on a

compact set attains a maximum and minimum value (Theorem 3.8),
(3) A continuous function on a compact set is uniformly continuous

(Theorem 3.9),
(4) The Identity Theorem for Power Series Functions (Theorem 3.14),
(5) The definition of the real number π,
(6) The theorem that asserts that the uniform limit of a sequence of con-

tinuous functions is continuous (Theorem 3.17), and
(7) the Weierstrass M-Test (Theorem 3.18).

FUNCTIONS

DEFINITION. Let S and T be sets. A function from S into T (notation f :
S → T ) is a rule that assigns to each element x in S a unique element denoted by
f(x) in T.

It is useful to think of a function as a mechanism or black box. We use the
elements of S as inputs to the function, and the outputs are elements of the set T.

If f : S → T is a function, then S is called the domain of f, and the set T is
called the codomain of f. The range or image of f is the set of all elements y in the
codomain T for which there exists an x in the domain S such that y = f(x). We
denote the range by f(S). The codomain is the set of all potential outputs, while
the range is the set of actual outputs.

Suppose f is a function from a set S into a set T. If A ⊆ S, we write f(A) for the
subset of T containing all the elements t ∈ T for which there exists an s ∈ A such
that t = f(s). We call f(A) the image of A under f. Similarly, if B ⊆ T, we write
f−1(B) for the subset of S containing all the elements s ∈ S such that f(s) ∈ B,
and we call the set f−1(B) the inverse image or preimage of B. The symbol f−1(B)
is a little confusing, since it could be misinterpreted as the image of the set B under
a function called f−1. We will discuss inverse functions later on, but this notation
is not meant to imply that the function f has an inverse.

If f : S → T, then the graph of f is the subset G of the Cartesian product S×T
consisting of all the pairs of the form (x, f(x)).

If f : S → R is a function, then we call f a real-valued function, and if f : S → C,
then we call f a complex-valued function. If f : S → C is a complex-valued function,
then for each x ∈ S the complex number f(x) can be written as u(x)+ iv(x), where

53



54 III. FUNCTIONS AND CONTINUITY

u(x) and v(x) are the real and imaginary parts of the complex number f(x). The
two real-valued functions u : S → R and v : S → R are called respectively the real
and imaginary parts of the complex-valued function f.

If f : S → T and S ⊆ R, then f is called a function of a real variable, and if
S ⊆ C, then f is called a function of a complex variable.

If the range of f equals the codomain, then f is called onto.
The function f : S → T is called one-to-one if f(x1) = f(x2) implies that

x1 = x2.

The domain of f is the set of x’s for which f(x) is defined. If we are given
a function f : S → T, we are free to regard f as having a smaller domain, i.e., a
subset S′ of S. Although this restricted function is in reality a different function, we
usually continue to call it by the same name f. Enlarging the domain of a function,
in some consistent manner, is often impossible, but is nevertheless frequently of
great importance. The codomain of f is distinguished from the range of f, which is
frequently a proper subset of the codomain. For example, since every real number
is a complex number, any real-valued function f : S → R is also a (special kind of)
complex-valued function.

We consider in this book functions either of a real variable or of complex variable.
that is, the domains of functions here will be subsets either of R or of C. Frequently,
we will indicate what kind of variable we are thinking of by denoting real variables
with the letter x and complex variables with the letter z. Be careful about this, for
this distinction is not always made.

Many functions, though not all by any means, are defined by a single equation:

y = 3x− 7,

y = (x2 + x+ 1)2/3,

x2 + y2 = 4,

(How does this last equation define a function?)

(1− x7y11)2/3 = (x/(1− y))8/17.

(How does this equation determine a function?)
There are various types of functions, and they can be combined in a variety of

ways to produce other functions. It is necessary therefore to spend a fair amount
of time at the beginning of this chapter to present these definitions.

DEFINITION. If f and g are two complex-valued functions with the same do-
main S, i.e., f : S → C and g : S → C, and if c is a complex number, we define
f + g, fg, f/g (if g(x) is never 0), and cf by the familiar formulas:

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

(f/g)(x) = f(x)/g(x),

and
(cf)(x) = cf(x).
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If f and g are real-valued functions, we define functions max(f, g) and min(f, g)
by

[max(f, g)](x) = max(f(x), g(x))

(the maximum of the numbers f(x) and g(x)), and

[min(f, g)](x) = min(f(x), g(x)),

(the minimum of the two numbers f(x) and g(x)).
If f is either a real-valued or a complex-valued function on a domain S, then we

say that f is bounded if there exists a positive number M such that |f(x)| ≤ M
for all x ∈ S.

There are two special types of functions of a real or complex variable, the even
functions and the odd functions. In fact, every function that is defined on all of R
or C (or, more generally, any function whose domain S equals −S) can be written
uniquely as a sum of an even part and an odd part. This decomposition of a general
function into simpler parts is frequently helpful.

DEFINITION. A function f whose domain S equals −S, is called an even func-
tion if f(−z) = f(z) for all z in its domain. It is called an odd function if
f(−z) = −f(z) for all z in its domain.

We next give the definition for perhaps the most familiar kinds of functions.

DEFINITION. A nonzero polynomial or polynomial function is a complex-valued
function of a complex variable, p : C→ C, that is defined by a formula of the form

p(z) =
n∑
k=0

akz
k = a0 + a1z + a2z

2 + . . .+ anz
n,

where the ak’s are complex numbers and an 6= 0. The integer n is called the degree
of the polynomial p and is denoted by deg(p). The numbers a0, a1, . . . , an are called
the coefficients of the polynomial. The domain of a polynomial function is all of C;
i.e., p(z) is defined for every complex number z.

For technical reasons of consistency, the identically 0 function is called the zero
polynomial. All of its coefficients are 0 and its degree is defined to be −∞.

A rational function is a function r that is given by an equation of the form r(z) =
p(z)/q(z), where q is a nonzero polynomial and p is a (possibly zero) polynomial.
The domain of a rational function is the set S of all z ∈ C for which q(z) 6= 0, i.e.,
for which r(z) is defined.

Two other kinds of functions that are simple and important are step functions
and polygonal functions.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. By a
partition of [a, b] we mean a finite set P = {x0 < x1 < . . . < xn} of n + 1 points,
where x0 = a and xn = b.

The n intervals {[xi−1, xi]}, for 1 ≤ i ≤ n, are called the closed subintervals of
the partition P, and the n intervals {(xi−1, xi)} are called the open subintervals of
P.

We write ‖P‖ for the maximum of the numbers (lengths of the subintervals)
{xi − xi−1}, and call the number ‖P‖ the mesh size of the partition P.
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A function h : [a, b] → C is called a step function if there exists a partition
P = {x0 < x1 < . . . < xn} of [a, b] and n numbers {a1, a2, . . . , an} such that
h(x) = ai if xi−1 < x < xi. That is, h is a step function if it is a constant function
on each of the (open) subintervals (xi−1, xi) determined by a partition P. Note that
the values of a step function at the points {xi} of the partition are not restricted
in any way.

A function l : [a, b] → R is called a polygonal function, or a piecewise linear
function, if there exists a partition P = {x0 < x1 < . . . < xn} of [a, b] and n + 1
numbers {y0, y1, . . . , yn} such that for each x ∈ [xi−1, xi], l(x) is given by the linear
equation

l(x) = yi−1 +mi(x− xi−1),

where mi = (yi − yi1)/(xi − xi−1). That is, l is a polygonal function if it is a linear
function on each of the closed subintervals [xi−1, xi] determined by a partition P.
Note that the values of a piecewise linear function at the points {xi} of the partition
P are the same, whether we think of xi in the interval [xi−1, xi] or [xi, xi+1]. (Check
the two formulas for l(xi).)

The graph of a piecewise linear function is the polygonal line joining the n + 1
points {(xi, yi)}.

There is a natural generalization of the notion of a step function that works for
any domain S, e.g., a rectangle in the plane C. Thus, if S is a set, we define a
partition of S to be a finite collection {E1, E2, . . . , En} of subsets of S for which

(1) ∪ni=1Ei = S, and
(2) Ei ∩ Ej = ∅ if i 6= j.

Then, a step function on S would be a function h that is constant on each subset
Ei. We will encounter an even more elaborate generalized notion of a step function
in Chapter V, but for now we will restrict our attention to step functions defined
on intervals [a, b].

The set of polynomials and the set of step functions are both closed under addi-
tion and multiplication, and the set of rational functions is closed under addition,
multiplication, and division.

Exercise 3.1. (a) Prove that the sum and product of two polynomials is again a
polynomial. Show that deg(p + q) ≤ max(deg(p),deg(q)) and deg(pq) = deg(p) +
deg(q). Show that a constant function is a polynomial, and that the degree of a
nonzero constant function is 0.

(b) Show that the set of step functions is closed under addition and multiplica-
tion. Show also that the maximum and minimum of two step functions is again a
step function. (Be careful to note that different step functions may be determined
by different partitions. For instance, a partition determining the sum of two step
functions may be different from the partitions determining the two individual step
functions.) Note, in fact, that a step function can be determined by infinitely many
different partitions. Prove that the sum, the maximum, and the minimum of two
piecewise linear functions is again a piecewise linear function. Show by example
that the product of two piecewise linear functions need not be piecewise linear.

(c) Prove that the sum, product, and quotient of two rational functions is again
a rational function.

(d) Prove the Root Theorem: If p(z) =
∑n
k=0 akz

k is a nonzero polynomial
of degree n, and if c is a complex number for which p(c) = 0, then there exists a
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nonzero polynomial q(z) =
∑n−1
j=0 bjz

j of degree n− 1 such that p(z) = (z − c)q(z)
for all z. That is, if c is a “root” of p, then z− c is a factor of p. Show also that the
leading coefficient bn−1 of q equals the leading coefficient an of p.
HINT: Write

p(z) = p(z)− p(c) =
n∑
k=0

ak(zk − ck) = . . . .

(e) Let f be a function whose domain S equals −S. Define functions fe and fo
by the formulas

fe(z) =
f(z) + f(−z)

2
and fo(z) =

f(z)− f(−z)
2

.

Show that fe is an even function, that fo is an odd function, and that f = fe + fo.
Show also that, if f = g+ h, where g is an even function and h is an odd function,
then g = fe and h = fo. That is, there is only one way to write f as the sum of an
even function and an odd function.

(f) Use part (e) to show that a polynomial p is an even function if and only if its
only nonzero coefficients are even ones, i.e., the a2k’s. Show also that a polynomial
is an odd function if and only if its only nonzero coefficients are odd ones, i.e., the
a2k+1’s.

(g) Suppose p(z) =
∑n
k=0 a2kz

2k is a polynomial that is an even function. Show
that

p(iz) =
n∑
k=0

(−1)ka2kz
2k = pa(z),

where pa is the polynomial obtained from p by alternating the signs of its nonzero
coefficients.

(h) If q(z) =
∑n
k=0 a2k+1z

2k+1 is a polynomial that is an odd function, show
that

q(iz) = i
n∑
k=0

(−1)ka2k+1z
2k+1 = iqa(z),

where again qa is the polynomial obtained from q by alternating the signs of its
nonzero coefficients.

(i) If p is any polynomial, show that

p(iz) = pe(iz) + po(iz) = pae(z) + ipao(z),

and hence that pe(iz) = pae(z) and po(iz) = ipao(z).

POLYNOMIAL FUNCTIONS

If p(z) =
∑n
k=0 akz

k and q(z) =
∑m
j=0 bjz

j are two polynomials, it certainly
seems clear that they determine the same function only if they have identical coef-
ficients. This is true, but by no means an obvious fact. Also, it seems clear that,
as |z| gets larger and larger, a polynomial function is more and more comparable
to its leading term anz

n. We collect in the next theorem some elementary proper-
ties of polynomial functions, and in particular we verify the above “uniqueness of
coefficients” result and the “behavior at infinity” result.
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THEOREM 3.1.
(1) Suppose p(z) =

∑n
k=0 akz

k is a nonconstant polynomial of degree n > 0.
Then p(z) = 0 for at most n distinct complex numbers.

(2) If r is a polynomial for which r(z) = 0 for an infinite number of distinct
points, then r is the zero polynomial. That is, all of its coefficients are 0.

(3) Suppose p and q are nonzero polynomials, and assume that p(z) = q(z) for
an infinite number of distinct points. Then p(z) = q(z) for all z, and p and
q have the same coefficients. That is, they are the same polynomial.

(4) Let p(z) =
∑n
j=0 cjz

j be a polynomial of degree n > 0. Then there exist
positive constants m and B such that

|cn|
2
|z|n ≤ |p(z)| ≤M |z|n

for all complex numbers z for which |z| ≥ B. That is, For all complex
numbers z with |z| ≥ B, the numbers |p(z)| and |z|n are “comparable.”

(5) If f : [0,∞) → C is defined by f(x) =
√
x, then there is no polynomial p

for which f(x) = p(x) for all x ≥ 0. That is, the square root function does
not agree with any polynomial function.

PROOF. We prove part (1) using an argument by contradiction. Thus, suppose
there does exist a counterexample to the claim, i.e., a nonzero polynomial p of
degree n and n + 1 distinct points {c1, c2, . . . , cn+1} for which p(cj) = 0 for all
1 ≤ j ≤ n + 1. From the set of all such counterexamples, let p0 be one with
minimum degree n0. That is, the claim in part (1) is true for any polynomial whose
degree is smaller than n0. We write

p0(z) =
n0∑
k=0

akz
k,

and we suppose that p0(cj) = 0 for j = 1 to n0 + 1, where these ck’s are distinct
complex numbers. We use next the Root Theorem (part (d) of Exercise 3.1) to write
p0(z) = (z− cn0+1)q(z), where q(z) =

∑n0−1
k=0 bkz

k. We have that q is a polynomial
of degree n0 − 1 and the leading coefficient an0 of p0 equals the leading coefficient
bn0−1 of q. Note that for 1 ≤ j ≤ n0 we have

0 = p0(cj) = (cj − cn0+1)q(cj),

which implies that q(cj) = 0 for 1 ≤ j ≤ n0, since cj − cn0+1 6= 0. But, since
deg(q) < n0, the nonzero polynomial q can not be a counterexample to part (1),
implying that q(z) = 0 for at most n0 − 1 distinct points. We have arrived at a
contradiction, and part (1) is proved.

Next, let r be a polynomial for which r(z) = 0 for an infinite number of distinct
points. It follows from part (1) that r cannot be a nonzero polynomial, for in that
case it would have a degree n ≥ 0 and could be 0 for at most n distinct points.
Hence, r is the zero polynomial, and part (2) is proved.

Now, to see part (3), set r = p − q. Then r is a polynomial for which r(z) = 0
for infinitely many z’s. By part (2), it follows then that r(z) = 0 for all z, whence
p(z) = q(z) for all z. Moreover, p−q is the zero polynomial, all of whose coefficients
are 0, and this implies that the coefficients for p and q are identical.
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To prove the first inequality in part (4), suppose that |z| > 1, and from the
backwards triangle inequality, note that

|p(z)| = |
n∑
k=0

ckz
k|

= |z|n|
n∑
k=0

ck
zn−k

|

= |z|n|(
n−1∑
k=0

ck
zn−k

) + cn|

≥ |z|n(|cn| − |
n−1∑
k=0

ck
zn−k

|)

≥ |z|n(|cn| −
n−1∑
k=0

|ck|
|z|n−k

)

≥ |z|n(|cn| −
n−1∑
k=0

|ck|
|z|

)

≥ |z|n(|cn| −
1
|z|

n−1∑
k=0

|ck|).

Set B equal to the constant (2/|cn|)
∑n−1
j=0 |cj |. Then, replacing the 1/|z| in the

preceding calculation by 1/B, we obtain

|p(z)| ≥ m|z|n

for every z for which |z| ≥ B. This proves the first half of part (4).
To get the other half of part (4), suppose again that |z| > 1. We have

|p(z)| ≤
n∑
k=0

|ck||z|k ≤
n∑
k=0

|ck||z|n,

so that we get the other half of part (4) by setting M =
∑n
k=0 |ck|.

Finally, to see part (5), suppose that there does exist a polynomial p of degree
n such that

√
x = p(x) for all x ≥ 0. Then x = (p(x))2 for all x ≥ 0. Now p2 is

a polynomial of degree 2n. By part (2), the two polynomials q(x) = x and (p(x))2

must be the same, implying that they have the same degree. However, the degree
of q is 1, which is odd, and the degree of p2 is 2n, which is even. Hence, we have
arrived at a contradiction.

Exercise 3.2. (a) Let r(z) = p(z)/q(z) and r′(z) = p′(z)/q′(z) be two rational
functions. Suppose r(z) = r′(z) for infinitely many z’s. Prove that r(z) = r′(z) for
all z in the intersection of their domains. Is it true that p = p′ and q = q′?

(b) Let p and q be polynomials of degree n and m respectively, and define a
rational function r by r = p/q. Prove that there exist positive constants C and B
such that |r(z)| < C|z|n−m for all complex numbers z for which |z| > B.
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(c) Define f : [0,∞)→ R by f(x) =
√
x. Show that there is no rational function

r such that f(x) = r(x) for all x ≥ 0. That is, the square root function does not
agree with a rational function.

(d) Define the real-valued function r on R by r(x) = 1/(1+x2). Prove that there
is no polynomial p such that p(x) = r(x) for infinitely many real numbers x.

(e) If f is the real-valued function of a real variable given by f(x) = |x|, show
that f is not a rational function.
HINT: Suppose |x| = p(x)/q(x). Then |x|q(x) = p(x) implying that |x|q(x) is a
polynomial s(x). Now use Theorem 3.1 to conclude that p(x) = xq(x) for all x and
that p(x) = −xq(x) for all x.

(f) Let f be any complex-valued function of a complex variable, and let c1, . . . , cn
be n distinct complex numbers that belong to the domain of f. Show that there
does exist a polynomial p of degree n such that p(cj) = f(cj) for all 1 ≤ j ≤ n.
HINT: Describe p in factored form.

(g) Give examples to show that the maximum and minimum of two polynomials
need not be a polynomial or even a rational function.

Very important is the definition of the composition g ◦ f of two functions f and
g.

DEFINITION. Let f : S → T and g : T → U be functions. We define a function
g ◦ f, with domain S and codomain U, by (g ◦ f)(x) = g(f(x)).

If f : S → T, g : T → S, and g ◦ f(x) = x for all x ∈ S, then g is called a left
inverse of f. If f ◦ g(y) = y for all y ∈ T, then g is called a right inverse for f. If
g is both a left inverse and a right inverse, then g is called an inverse for f, f is
called invertible, and we denote g by f−1.

Exercise 3.3. (a) Suppose f : S → T has a left inverse. Prove that f is 1-1.
(b) Suppose f : S → T has a right inverse. Prove that f is onto.
(c) Show that the composition of two polynomials is a polynomial and that the

composition of two rational functions is a rational function.
HINT: If p is a polynomial, show by induction that pn is a polynomial. Now use
Exercise 3.1.

(d) Find formulas for g ◦ f and f ◦ g for the following. What are the domains of
these compositions?

(1) (i) f(x) = 1 + x2 and g(x) = 1/(1 + x)1/2.
(2) (ii) f(x) = x/(x+ 1) and g(x) = x/(1− x).
(3) (iii) f(x) = ax+ b and g(x) = cx+ d.

CONTINUITY

Next, we come to the definition of continuity. Unlike the preceding discussion,
which can be viewed as being related primarily to the algebraic properties of func-
tions, this one is an analytic notion.

DEFINITION. Let S and T be sets of complex numbers, and let f : S → T.
Then f is said to be continuous at a point c of S if for every positive ε, there exists
a positive δ such that if x ∈ S satisfies |x − c| < δ, then |f(x) − f(c)| < ε. The
function f is called continuous on S if it is continuous at every point c of S.

If the domain S of f consists of real numbers, then the function f is called right
continuous at c if for every ε > 0 there exists a δ > 0 such that |f(x) − f(c)| < ε
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whenever x ∈ S and 0 ≤ x−c < δ, and is called left continuous at c if for every ε > 0
there exists a δ > 0 such that |f(x)−f(c)| < ε whenever x ∈ S and 0 ≥ x−c > −δ.

REMARK. If f is continuous at a point c, then the positive number δ of the
preceding definition is not unique (any smaller number would work as well), but
it does depend both on the number ε and on the point c. Sometimes we will write
δ(ε, c) to make this dependence explicit. Later, we will introduce a notion of uniform
continuity in which δ only depends on the number ε and not on the particular point
c.

The next theorem indicates the interaction between the algebraic properties of
functions and continuity.

THEOREM 3.2. Let S and T be subsets of C, let f and g be functions from S
into T, and suppose that f and g are both continuous at a point c of S. Then

(1) There exists a δ > 0 and a positive number M such that if |y − c| < δ and
y ∈ S then |f(y)| ≤ M. That is, if f is continuous at c, then it is bounded
near c.

(2) f + g is continuous at c.
(3) fg is continuous at c.
(4) |f | is continuous at c.
(5) If g(c) 6= 0, then f/g is continuous at c.
(6) If f is a complex-valued function, and u and v are the real and imaginary

parts of f, then f is continuous at c if and only if u and v are continuous
at c.

PROOF. We prove parts (1) and (5), and leave the remaining parts to the exercise
that follows.

To see part (1), let ε = 1. Then, since f is continuous at c, there exists a δ > 0
such that if |y − c| < δ and y ∈ S then |f(y)− f(c)| < 1. Since |z −w| ≥ ||z| − |w||
for any two complex numbers z and w (backwards Triangle Inequality), it then
follows that ||f(y)| − |f(c)|| < 1, from which it follows that if |y − c| < δ then
|f(y)| < |f(c)| + 1. Hence, setting M = |f(c)| + 1, we have that if |y − c| < δ and
y ∈ S, then |f(y)| ≤M as desired.

To prove part (5), we first make use of part 1. Let δ1,M1 and δ2,M2 be chosen
so that if |y − c| < δ1 and y ∈ S then

(3.1) |f(y)| < M1

and if |y − c| < δ2 and y ∈ S then

(3.2). |g(y)| < M2

Next, let ε′ be the positive number |g(c)|/2. Then, there exists a δ′ > 0 such that
if |y − c| < δ′ and y ∈ S then |g(y)− g(c)| < ε′ = |g(c)|/2. It then follows from the
backwards triangle inequality that

(3.3). |g(y)| > ε′ = |g(c)|/2 so that |1/g(y)| < 2/|g(c)|

Now, to finish the proof of part (5), let ε > 0 be given. If |y− c| < min(δ1, δ2, δ′)
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and y ∈ S, then from Inequalities (3.1), (3.2), and (3.3) we obtain

|f(y)
g(y)

− f(c)
g(c)
| = |f(y)g(c)− f(c)g(y)|

|g(y)g(c)|

=
|f(y)g(c)− f(c)g(c) + f(c)g(c)− f(c)g(y)|

|g(y)||g(c)|

≤ |f(y)− f(c)||g(c)|+ |f(c)||g(c)− g(y)|
|g(y)||g(c)|

< (|f(y)− f(c)|M2 +M1|g(c)− g(y)|)× 2
|g(c)|2

.

Finally, using the continuity of both f and g applied to the positive numbers ε1 =
ε/(4M2|g(c)|2) and ε2 = ε/(4M1|g(c)|2), choose δ > 0, with δ < min(δ1, δ2, δ′), and
such that if |y−c| < δ and y ∈ S then |f(y)−f(c)| < ε

4M2/|g(c)|2 and |g(c)−g(y)| <
ε

4M1/|g(c)|2 . Then, if |y − c| < δ and y ∈ S we have that

|f(y)
g(y)

− f(c)
g(c)
| < ε

as desired.

Exercise 3.4. (a) Prove part (2) of the preceding theorem. (It’s an ε/2 argument.)
(b) Prove part (3) of the preceding theorem. (It’s similar to the proof of part

(5) only easier.)
(c) Prove part (4) of the preceding theorem.
(d) Prove part (6) of the preceding theorem.
(e) Suppose S is a subset of R. Verify the above theorem replacing “ continuity”

with left continuity and right continuity.
(f) If S is a subset of R, show that f is continuous at a point c ∈ S if and only

if it is both right continuous and left continuous at c.

THEOREM 3.3. (The composition of continuous functions is continuous.) Let
S, T, and U be subsets of C, and let f : S → T and g : T → U be functions.
Suppose f is continuous at a point c ∈ S and that g is continuous at the point
f(c) ∈ T. Then the composition g ◦ f is continuous at c.

PROOF. Let ε > 0 be given. Because g is continuous at the point f(c), there
exists an α > 0 such that |g(t) − g(f(c))| < ε if |t − f(c)| < α. Now, using this
positive number α, and using the fact that f is continuous at the point c, there
exists a δ > 0 so that |f(s)− f(c)| < α if |s− c| < δ. Therefore, if |s− c| < δ, then
|f(s) − f(c)| < α, and hence |g(f(s)) − g(f(c))| = |g ◦ f(s) − g ◦ f(c)| < ε, which
completes the proof.

Exercise 3.5. (a) If f : C → C is the function defined by f(z) = z, prove that f
is continuous at each point of C.

(b) Use part (a) and Theorem 3.2 to conclude that every rational function is
continuous on its domain.

(c) Prove that a step function h : [a, b] → C is continuous everywhere on [a, b]
except possibly at the points of the partition P that determines h.
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Exercise 3.6. (a) Let S be the set of nonnegative real numbers, and define f :
S → S by f(x) =

√
x. Prove that f is continuous at each point of S.

HINT: For c = 0, use δ = ε2. For c 6= 0, use the identity

√
y −
√
c = (

√
y −
√
c)
√
y +
√
c

√
y +
√
c

=
y − c
√
y +
√
c
≤ y − c√

c
.

(b) If f : C→ R is the function defined by f(z) = |z|, show that f is continuous
at every point of its domain.

Exercise 3.7. Using the previous theorems and exercises, explain why the following
functions f are continuous on their domains. Describe the domains as well.

(a) f(z) = (1− z2)/(1 + z2).
(b) f(z) = |1 + z + z2 + z3 − (1/z)|.
(c) f(z) =

√
1 +

√
1− |z|2.

Exercise 3.8. (a) If c and d are real numbers, show that max(c, d) = (c+ d)/2 +
|c− d|/2.

(b) If f and g are functions from S into R, show that max(f, g) = (f + g)/2 +
|f − g|/2.

(c) If f and g are real-valued functions that are both continuous at a point c,
show that max(f, g) and min(f, g) are both continuous at c.

Exercise 3.9. Let N be the set of natural numbers, let P be the set of positive
real numbers, and define f : N→ P by f(n) =

√
1 + n. Prove that f is continuous

at each point of N. Show in fact that every function f : N → C is continuous on
this domain N.
HINT: Show that for any ε > 0, the choice of δ = 1 will work.

Exercise 3.10. (Negations)
(a) Negate the statement: “For every ε > 0, |x| < ε.′′

(b) Negate the statement: “For every ε > 0, there exists an x for which |x| < ε.′′

(c) Negate the statement that “ f is continuous at c.′′

The next result establishes an equivalence between the basic ε, δ definition of
continuity and a sequential formulation. In many cases, maybe most, this sequential
version of continuity is easier to work with than the ε, δ version.

THEOREM 3.4. Let f : S → C be a complex-valued function on S, and let c be
a point in S. Then f is continuous at c if and only if the following condition holds:
For every sequence {xn} of elements of S that converges to c, the sequence {f(xn)}
converges to f(c). Or, said a different way, if {xn} converges to c, then {f(xn)}
converges to f(c). And, said yet a third (somewhat less precise) way, the function
f converts convergent sequences to convergent sequences.

PROOF. Suppose first that f is continuous at c, and let {xn} be a sequence of
elements of S that converges to c. Let ε > 0 be given. We must find a natural
number N such that if n ≥ N then |f(xn) − f(c)| < ε. First, choose δ > 0 so
that |f(y) − f(c)| < ε whenever y ∈ S and |y − c| < δ. Now, choose N so that
|xn − c| < δ whenever n ≥ N. Then if n ≥ N, we have that |xn − c| < δ, whence
|f(xn) − f(c)| < ε. This shows that the sequence {f(xn)} converges to f(c), as
desired.
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We prove the converse by proving the contrapositive statement; i.e., we will show
that if f is not continuous at c, then there does exist a sequence {xn} that converges
to c but for which the sequence {f(xn)} does not converge to f(c). Thus, suppose f
is not continuous at c. Then there exists an ε0 > 0 such that for every δ > 0 there
is a y ∈ S such that |y − c| < δ but |f(y) − f(c)| ≥ ε0. To obtain a sequence, we
apply this statement to δ’s of the form δ = 1/n. Hence, for every natural number
n there exists a point xn ∈ S such that |xn − c| < 1/n but |f(xn) − f(c)| ≥ ε0.
Clearly, the sequence {xn} converges to c since |xn − c| < 1/n. On the other hand,
the sequence {f(xn)} cannot be converging to f(c), because |f(xn)−f(c)| is always
≥ ε0.

This completes the proof of the theorem.

CONTINUITY AND TOPOLOGY

Let f : S → T be a function, and let A be a subset of the codomain T. Recall
that f−1(A) denotes the subset of the domain S consisting of all those x ∈ S for
which f(x) ∈ A.

Our original definition of continuity was in terms of ε’s and δ’s. Theorem 3.4
established an equivalent form of continuity, often called “sequential continuity,”
that involves convergence of sequences. The next result shows a connection between
continuity and topology, i.e., open and closed sets.

THEOREM 3.5. (1) Suppose S is a closed subset of C and that f : S → C is
a complex-valued function on S. Then f is continuous on S if and only if f−1(A)
is a closed set whenever A is a closed subset of C. That is, f is continuous on a
closed set S if and only if the inverse image of every closed set is closed.

(2) Suppose U is an open subset of C and that f : U → C is a complex-valued
function on U. Then f is continuous on U if and only if f−1(A) is an open set
whenever A is an open subset of C. That is, f is continuous on an open set U if
and only if the inverse image of every open set is open.

PROOF. Suppose first that f is continuous on a closed set S and that A is a closed
subset of C. We wish to show that f−1(A) is closed. Thus, let {xn} be a sequence of
points in f−1(A) that converges to a point c. Because S is a closed set, we know that
c ∈ S, but in order to see that f−1(A) is closed, we need to show that c ∈ f−1(A).
That is, we need to show that f(c) ∈ A. Now, f(xn) ∈ A for every n, and, because
f is continuous at c, we have by Theorem 3.4 that f(c) = lim f(xn). Hence, f(c) is a
limit point of A, and so f(c) ∈ A because A is a closed set. Therefore, c ∈ f−1(A),
and f−1(A) is closed.

Conversely, still supposing that S is a closed set, suppose f is not continuous on
S, and let c be a point of S at which f fails to be continuous. Then, there exists
an ε > 0 and a sequence {xn} of elements of S such that c = limxn but such that
|f(c) − f(xn)| ≥ ε for all n. (Why? See the proof of Theorem 3.4.) Let A be the
complement of the open disk Bε(f(c)). Then A is a closed subset of C. We have
that f(xn) ∈ A for all n, but f(c) is not in A. So, xn ∈ f−1(A) for all n, but
c = limxn is not in f−1(A). Hence, f−1(A) does not contain all of its limit points,
and so f−1(A) is not closed. Hence, if f is not continuous on S, then there exists a
closed set A such that f−1(A) is not closed. This completes the proof of the second
half of part (1).
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Next, suppose U is an open set, and assume that f is continuous on U. Let A be
an open set in C, and let c be an element of f−1(A). In order to prove thatf−1(A)
is open, we need to show that c belongs to the interior of f−1(A). Now, f(c) ∈ A, A
is open, and so there exists an ε > 0 such that the entire disk Bε(f(c)) ⊆ A. Then,
because f is continuous at the point c, there exists a δ > 0 such that if |x− c| < δ
then |f(x)−f(c)| < ε. In other words, if x ∈ Bδ(c), then f(x) ∈ Bε(f(c)) ⊆ A. This
means that Bδ(c) is contained in f−1(A), and hence c belongs to the interior of
f−1(A). Hence, if f is continuous on an open set U, then f−1(A) is open whenever
A is open. This proves half of part (2).

Finally, still assuming that U is open, suppose f−1(A) is open whenever A is
open, let c be a point of S, and let us prove that f is continuous at c. Thus, let
ε > 0 be given, and let A be the open set A = Bε(f(c)). Then, by our assumption,
f−1(A) is an open set. Also, c belongs to this open set f−1(A), and hence c
belongs to the interior of f−1(A). Therefore, there exists a δ > 0 such that the
entire disk bδ(c) ⊆ f−1(A). But this means that if ∈ S satisfies |x − c| < δ, then
x ∈ Bδ(c) ⊆ f−1(A), and so f(x) ∈ A = Bε(f(c)). Therefore, if |x − c| < δ,
then |f(x)− f(c)| < ε, which proves that f is continuous at c, and the theorem is
completely proved.

DEEPER ANALYTIC PROPERTIES OF CONTINUOUS FUNCTIONS

We collect here some theorems that show some of the consequences of continuity.
Some of the theorems apply to functions either of a real variable or of a complex
variable, while others apply only to functions of a real variable. We begin with
what may be the most famous such result, and this one is about functions of a real
variable.

THEOREM 3.6. (Intermediate Value Theorem) If f : [a, b]→ R is a real-valued
function that is continuous at each point of the closed interval [a, b], and if v is
a number (value) between the numbers f(a) and f(b), then there exists a point c
between a and b such that f(c) = v.

PROOF. If v = f(a) or f(b), we are done. Suppose then, without loss of generality,
that f(a) < v < f(b). Let S be the set of all x ∈ [a, b] such that f(x) ≤ v, and note
that S is nonempty and bounded above. (a ∈ S, and b is an upper bound for S.)
Let c = supS. Then there exists a sequence {xn} of elements of S that converges
to c. (See Exercise 2.20.) So, f(c) = lim f(xn) by Theorem 3.4. Hence, f(c) ≤ v.
(Why?)

Now, arguing by contradiction, if f(c) < v, let ε be the positive number v−f(c).
Because f is continuous at c, there must exist a δ > 0 such that |f(y) − f(c)| < ε
whenever |y− c| < δ and y ∈ [a, b]. Since any smaller δ satisfies the same condition,
we may also assume that δ < b−c. Consider y = c+δ/2. Then y ∈ [a, b], |y−c| < δ,
and so |f(y)− f(c)| < ε. Hence f(y) < f(c) + ε = v, which implies that y ∈ S. But,
since c = supS, c must satisfy c ≥ y = c+ δ/2. This is a contradiction, so f(c) = v,
and the theorem is proved.

The Intermediate Value Theorem tells us something qualitative about the range
of a continuous function on an interval [a, b]. It tells us that the range is “connected;”
i.e., if the range contains two points c and d, then the range contains all the points
between c and d. It is difficult to think what the analogous assertion would be for
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functions of a complex variable, since “between” doesn’t mean anything for complex
numbers. We will eventually prove something called the Open Mapping Theorem
in Chapter VII that could be regarded as the complex analog of the Intermediate
Value Theorem.

The next theorem is about functions of either a real or a complex variable.

THEOREM 3.7. Let f : S → C be a continuous function, and let C be a compact
(closed and bounded) subset of S. Then the image f(C) of C is also compact. That
is, the continuous image of a compact set is compact.

PROOF. First, suppose f(C) is not bounded. Thus, let {xn} be a sequence of
elements of C such that, for each n, |f(xn)| > n. By the Bolzano-Weierstrass
Theorem, the sequence {xn} has a convergent subsequence {xnk}. Let x = limxnk .
Then x ∈ C because Cis a closed subset of C. Co, f(x) = lim f(xnk) by Theorem
3.4. But since |f(xnk)| > nk, the sequence {f(xnk)} is not bounded, so cannot be
convergent. Hence, we have arrived at a contradiction, and the set f(C) must be
bounded.

Now, we must show that the image f(C) is closed. Thus, let y be a limit point
of the image f(C) of C, and let y = lim yn where each yn ∈ f(C). For each n,
let xn ∈ C satisfy f(xn) = yn. Again, using the Bolzano-Weierstrass Theorem,
let {xnk} be a convergent subsequence of the bounded sequence {xn}, and write
x = limxnk . Then x ∈ C, since C is closed, and from Theorem 3.4

y = lim f(xn) = lim f(xnk) = f(x),

showing that y ∈ f(C), implying that f(C) is closed.

This theorem tells us something about the range of a continuous function of
a real or complex variable. It says that if a subset of the domain is closed and
bounded, so is the image of that subset.

The next theorem is about continuous real-valued functions of a complex vari-
able, and it is one of the theorems to remember.

THEOREM 3.8. Let f be a continuous real-valued function on a compact subset
S of C. Then f attains both a maximum and a minimum value on S. That is, there
exist points z1 and z2 in S such that f(z1) ≤ f(z) ≤ f(z2) for all z ∈ S.

PROOF. We prove that f attains a maximum value, leaving the fact that f attains
a minimum value to the exercise that follows. Let M0 be the supremum of the set
of all numbers f(x) for x ∈ S. (How do we know that this supremum exists?) We
will show that there exists an z2 ∈ S such that f(z2) = M0. This will finish the
proof, since we would then have f(z2) = M0 ≥ f(z) for all z ∈ S. Thus, let {yn}
be a sequence of elements in the range of f for which the sequence {yn} converges
to M0. (This is Exercise 2.20 again.) For each n, let xn be an element of S such
that yn = f(xn). Then the sequence {f(xn)} converges to M0. Let {xnk} be a
convergent subsequence of {xn}. (How?) Let z2 = limxnk . Then z2 ∈ S, because S
is closed, and f(z2) = lim f(xnk), because f is continuous. Hence, f(z2) = M0, as
desired.

Exercise 3.11. (a) Prove that the f of the preceding theorem attains a minimum
value on S.
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(b) Give an alternate proof of Theorem 3.8 by using Theorem 3.7, and then
proving that a closed and bounded subset of R contains both its supremum and its
infimum.

(c) Let S be a compact subset of C, and let c be a point of C that is not in S.
Prove that there is a closest point to c in S. That is, show that there exists a point
w ∈ S such that |w − c| ≤ |z − c| for all points z ∈ S.
HINT: The function z → |z − c| is continuous on the set S.
Exercise 3.12. Let f : [a, b] → R be a real-valued function that is continuous at
each point of [a, b].

(a) Prove that the range of f is a closed interval [a′, b′]. Show by example that
the four numbers f(a), f(b), a′ and b′ can be distinct.

(b) Suppose f is 1-1. Show that, if c is in the open interval (a, b), then f(c) is
in the open interval (a′, b′).

We introduce next a different kind of continuity called uniform continuity. The
difference between regular continuity and uniform continuity is a bit subtle, and
well worth some thought.

DEFINITION. A function f : S → C is called uniformly continuous on S if for
each positive number ε, there exists a positive number δ such that |f(x)−f(y)| < ε
for all x, y ∈ S satisfying |x− y| < δ.

Basically, the difference between regular continuity and uniform conintuity is
that the same δ works for all points in S.

Here is another theorem worth remembering.

THEOREM 3.9. A continuous complex-valued function on a compact subset S
of C is uniformly continuous.

PROOF. We argue by contradiction. Thus, suppose f is continuous on S but not
uniformly continuous. Then, there exists an ε > 0 for which no positive number δ
satisfies the uniform continuity definition. Therefore, thinking of the δ’s as ranging
through the numbers 1/n, we know that for each positive integer n, there exist two
points xn and yn in S so that

(1) |yn − xn| < 1/n, and
(2) |f(yn)− f(xn)| ≥ ε.

Otherwise, some 1/n would suffice for a δ. Let {xnk} be a convergent subsequence
of {xn} with limit x. By (1) and the triangle inequality, we deduce that x is also the
limit of the corresponding subsequence {ynk} of {yn}. But then f(x) = lim f(xnk) =
lim f(ynk), implying that 0 = lim |f(ynk) − f(xnk)|, which implies that |f(ynk) −
f(xnk)| < ε for all large enough k. But that contradicts (2), and this completes the
proof.

Continuous functions whose domains are not compact sets may or may not be
uniformly continuous, as the next exercise shows.
Exercise 3.13. (a) Let f : (0, 1) → R be defined by f(x) = 1/x. Prove that f is
continuous at each x in its domain but that f is not uniformly continuous there.
HINT: Set ε = 1, and consider the pairs of points xn = 1/n and yn = 1/(n+ 1).

(b) Let f : [1,∞) → [1,∞) be defined by f(x) =
√
x. Prove that f is not

bounded, but is nevertheless uniformly continuous on its domain.
HINT: Take δ = ε.
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THEOREM 3.10. Let f : S → T be a continuous 1-1 function from a compact
(closed and bounded) subset of C onto the (compact) set T. Let g : T → S denote
the inverse function f−1 of f. Then g is continuous. The inverse of a continuous
function, that has a compact domain, is also continuous.

PROOF. We prove that g is continuous by using Theorem 3.5; i.e., we will show
that g−1(A) is closed whenever A is a closed subset of C. But this is easy, since
g−1(A) = g−1(A∩ S) = f(A∩ S), and this is a closed set by Theorem 3.7, because
A ∩ S is compact. See part (e) of Exercise 2.24.

REMARK. Using the preceding theorem, and the exercise below, we will show
that taking nth roots is a continuous function. that is, the function f defined by
f(x) = x1/n is continuous.
Exercise 3.14. Use the preceding theorem to show the continuity of the following
functions.

(a) Show that if n is an odd positive integer, then there exists a continuous
function g defined on all of R such that g(x) is an nth root of x for all real numbers
x. That is, (g(x))n = x for all real x. (The function f(x) = xn is 1-1 and continuous.)

(b) Show that if n is any positive integer then there exists a unique continuous
function g defined on [0,∞) such that g(x) is an nth root of x for all nonnegative
x.

(c) Let r = p/q be a rational number. Prove that there exists a continuous
function g : [0,∞) → [0,∞) such that g(x)q = xp for all x ≥ 0; i.e., g(x) = xr for
all x ≥ 0.

THEOREM 3.11. Let f be a continuous 1-1 function from the interval [a, b]
onto the interval [c, d]. Then f must be strictly monotonic, i.e., strictly increasing
everywhere or strictly decreasing everywhere.

PROOF. Since f is 1-1, we clearly have that f(a) 6= f(b), and, without loss of
generality, let us assume that c = f(a) < f(b) = d. It will suffice to show that if
α and β belong to the open interval (a, b), and α < β, then f(α) ≤ f(β). (Why
will this suffice?) Suppose by way of contradiction that there exists α < β in
(a, b) for which f(α) > f(β). We use the intermediate value theorem to derive a
contradiction. Consider the four points a < α < β < b. Either f(a) < f(α) or
f(β) < f(b). (Why?) In the first case (f(a) < f(α)), f([a, α]) contains every value
between f(a) and f(α). And, f([α, β]) contains every value between f(α) and f(β).
So, let v be a number such that f(a) < v, f(β) < v, and v < f(α) (why does such
a number v exist?). By the Intermediate Value Theorem, there exists x1 ∈ (a, α)
such that v = f(x1), and there exists an x2 ∈ (α, β) such that v = f(x2). But this
contradicts the hypothesis that f is 1-1, since x1 6= x2. A similar argument leads to
a contradiction in the second case f(β) < f(b). (See the following exercise.) Hence,
there can exist no such α and β, implying that f is strictly increasing on [a, b].

Exercise 3.15. Derive a contradiction from the assumption that f(β) < f(b) in
the preceding proof.

POWER SERIES FUNCTIONS

The class of functions that we know are continuous includes, among others, the
polynomials, the rational functions, and the nth root functions. We can combine
these functions in various ways, e.g., sums, products, quotients, and so on. We also
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can combine continuous functions using composition, so that we know that nth
roots of rational functions are also continuous. The set of all functions obtained
in this manner is called the class of “algebraic functions.” Now that we also have
developed a notion of limit, or infinite sum, we can construct other continuous
functions.

We introduce next a new kind of function. It is a natural generalization of
a polynomial function. Among these will be the exponential function and the
trigonometric functions. We begin by discussing functions of a complex varible,
although totally analogous definitions and theorems hold for functions of a real
variable.

DEFINITION. Let {an}∞0 be a sequence of real or complex numbers. By the
power series function f(z) =

∑∞
n=0 anz

n we mean the function f : S → C where
the domain S is the set of all z ∈ C for which the infinite series

∑
anz

n converges,
and where f is the rule that assigns to such a z ∈ S the sum of the series.

The numbers {an} defining a power series function are called the coefficients of
the function.

We associate to a power series function f(z) =
∑∞
n=0 anz

n its sequence {SN} of
partial sums. We write

SN (z) =
N∑
n=0

anz
n.

Notice that polynomial functions are very special cases of power series functions.
They are the power series functions for which the coefficients {an} are all 0 beyond
some point. Note also that each partial sum SN for any power series function is
itself a polynomial function of degree less than or equal to N. Moreover, if f is a
power series function, then for each z in its domain we have f(z) = limN SN (z).
Evidently, every power series function is a “limit” of a sequence of polynomials.

Obviously, the domain S ≡ Sf of a power series function f depends on the
coefficients {an} determining the function. Our first goal is to describe this domain.

THEOREM 3.12. Let f be a power series function: f(z) =
∑∞
n=0 anz

n with
domain S. Then:

(1) 0 belongs to S.
(2) If a number t belongs to S, then every number u, for which |u| < |t|, also

belongs to S.
(3) S is a disk of radius r around 0 in C (possibly open, possibly closed, possibly

neither, possibly infinite). That is, S consists of the disk Br(0) = {z : |z| <
r} possibly together with some of the points z for which |z| = r.

(4) The radius r of the disk in part (3) is given by the Cauchy-Hadamard for-
mula:

r =
1

lim sup |an|1/n
,

which we interpret to imply that r = 0 if and only if the limsup on the right
is infinite, and r =∞ if and only if that limsup is 0.

PROOF. Part (1) is clear.
To see part 2, assume that t belongs to S and that |u| < |t|. We wish to show that

the infinites series
∑
anu

n converges. In fact, we will show that
∑
|anun| is conver-

gent, i.e., that
∑
anu

n is absolutely convergent. We are given that the infinite series
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ant

n converges, which implies that the terms antn tend to 0. Hence, let B be a
number such that |anzn| ≤ B for all n, and set α = |u|/|t|. Then α < 1, and there-
fore the infinite series

∑
Bαn is convergent. Finally, |anun| = |antn|αn ≤ Bαn,

which, by the Comparison Test, implies that
∑
|anun| is convergent, as desired.

Part (3) follows, with just a little thought, from part 2.
To prove part (4), note that lim sup |an|1/n either is finite or it is infinite. assume

first that the sequence {|an|1/n} is not bounded; i.e., that lim sup |an|1/n = ∞.
Then, given any number p, there are infinitely many terms |an|1/n that are larger
than p. So, for any z 6= 0, there exist infinitely many terms |an|1/n that are larger
than 1/|z|. But then |anzn| > 1 for all such terms. Therefore the infinite series∑
anz

n is not convergent, since lim anz
n is not zero. So no such z is in the domain

S. This shows that if lim sup |an|1/n =∞, then r = 0 = 1/ lim sup |an|1/n.
Now, suppose the sequence {|an|1/n} is bounded, and let L denote its limsup.

We must show that 1/r = L. We will show the following two claims: (a) if 1/|z| > L,
then z ∈ S, and (b) if 1/|z| < L, then z /∈ S. (Why will these two claims complete the
proof?) Thus, suppose that 1/|z| > L. Let β be a number satisfying L < β < 1/|z|,
and let α = β|z|. Then 0 < α < 1. Now there exists a natural number N so that
|an|1/n < β for all n ≥ N, or equivalently |an| ≤ βn for all n ≥ N. (See part (a) of
Exercise 2.17. ) This means that for all n ≥ N we have |anzn| = |an/βn||βz|n ≤ αn.
This implies by the Comparison Test that the power series

∑
anz

n is absolutely
convergent, whence convergent. Hence, z ∈ S, and this proves claim (a) above.
Incidentally, note also that if L = 0, this argument shows that r =∞, as desired.

To verify claim (b), suppose that 1/|z| < L. Then there are infinitely many terms
of the sequence {|an|1/n} that are greater than 1/|z|. (Why?) For each such term,
we would then have |anzn| ≥ 1. This means that the infinite series

∑
anz

n is not
convergent and z /∈ S, which shows claim b.

Hence, in all cases, we have that r = 1/ lim sup |an|1/n, as desired.

DEFINITION. If f is a power series function, the number r of the preceding
theorem is called the radius of convergence of the power series. The disk S of
radius r around 0, denoted by Br(0), is called the disk of convergence.

Exercise 3.16. Compute directly the radii of convergence for the following power
series functions, i.e., without using the Cauchy-Hadamard formula. Then, when
possible, verify that the Cauchy-Hadamard formula agrees with your computation.

(a) f(z) =
∑
zn.

(b) f(z) =
∑
n2zn.

(c) f(z) =
∑

(−1)n(1/(n+ 1))zn.
(d) f(z) =

∑
(1/(n+ 1))z3n+1.

(e) f(z) =
∑∞
n=0 z

n/n!.

Exercise 3.17. (a) Use part (e) of Exercise 3.1 to show that a power series function
p is an even function if and only if its only nonzero coefficients are even ones, i.e.,
the a2k’s. Show also that a power series function is an odd function if and only if
its only nonzero coefficients are odd ones, i.e., the a2k+1’s.

(b) Suppose f(z) =
∑∞
k=0 a2kz

2k is a power series function that is an even
function. Show that

f(iz) =
∞∑
k=0

(−1)ka2kz
2k = fa(z),
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where fa is the power series function obtained from f by alternating the signs of
its coefficients. We call this function fa the alternating version of f.

(c) If g(z) =
∑∞
k=0 a2k+1z

2k+1 is a power series function that is an odd function,
show that

g(iz) = i
∞∑
k=0

(−1)ka2k+1z
2k+1 = iga(z),

where again ga is the power series function obtained from g by alternating the signs
of its coefficients.

(d) If f is any power series function, show that

f(iz) = fe(iz) + fo(iz) = fae (z) + ifao (z),

and hence that fe(iz) = fae (z) and fo(iz) = ipao(z).

The next theorem will not come as a shock, but its proof is not so simple.

THEOREM 3.13. Let f(z) =
∑
anz

n be a power series function with radius of
convergence r. Then f is continuous at each point in the open disk Br(0), i.e., at
each point z for which |z| < r.

PROOF. Let z ∈ Br(0) be given. We must make some auxiliary constructions be-
fore we can show that f is continuous at z. First, choose a z′ such that |z| < |z′| < r.
Next, set bn = |nan|, and define g(z) =

∑
bnz

n. By the Cauchy-Hadamard for-
mula, we see that the power series function g has the same radius of conver-
gence as the power series function f. Indeed, lim sup |bn|1/n = lim supn1/n|an| =
limn1/n lim sup |an|. Therefore, z′ belongs to the domain of g. Let M be a number
such that each partial sum of the series g(z′) =

∑N
n=0 bnz

′n is bounded by M.
Now, let ε > 0 be given, and choose δ to be the minimum of the two positive

numbers ε|z′|/M and |z′| − |z|. We consider any y for which |y − z| < δ. Then
y ∈ Br(0), |y| < |z′|, and

|f(y)− f(z)| = lim |SN (y)− SN (z)|

= lim |
N∑
n=0

an(yn − zn)|

≤ lim
N

N∑
n=0

|an||yn − zn|

= lim
N

N∑
n=1

|an||y − z|
n−1∑
j=0

|yj ||zn−1−j |

≤ lim
N

N∑
n=1

|an||y − z|
n−1∑
j=0

|z′|n−1

≤ lim
N
|y − z|(1/|z′|)

N∑
n=0

n|an||z′|n

≤ |y − z| lim
N

M

|z′|

< δ lim
N

M

|z′|
≤ ε.
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This completes the proof.

Exercise 3.18. (a) Let f(z) =
∑∞
n=0 anz

n be a power series function, and let
p(z) =

∑m
k=0 bkz

k be a polynomial function. Prove that f + p and fp are both
power series functions. Express the coefficients for f + p and fp in terms of the
an’s and bk’s.

(b) Suppose f and g are power series functions. Prove that f + g is a power
series function. What is its radius of convergence? What about cf? What about
fg? What about f/g? What about |f |?

Exercise 3.19. (a) Prove that every polynomial is a power series function with
infinite radius of convergence.

(b) Prove that 1/z and (1/(z − 1)(z + 2)) are not power series functions. (Their
domains aren’t right.)

(c) Define f(z) =
∑∞
n=0(−1)nz2n+1. Prove that the radius of convergence of this

power series function is 1, and that f(z) = z
1+z2 for all z ∈ B1(0). Conclude that

the rational function z/(1 + z2) agrees with a power series function on the disk
B1(0). But, they are not the same function.
HINT: Use the infinite geometric series.

Theorem 3.13 and Exercises 3.18 and 3.19 raise a very interesting and subtle
point. Suppose f(z) =

∑
anz

n is a power series function having finite radius of
convergence r > 0. Theorem 3.13 says that f is continuous on the open disk, but it
does not say anything about the continuity of f at points on the boundary of this
disk that are in the domain of f, i,e., at points z0 for which |z0| = r. and

∑
anz

n
0

converges. Suppose g(z) is a continuous function whose domain contains the open
disk Br(0) and also a point z0, and assume that f(z) = g(z) for all z ∈ Br(0). Does
f(z0) have to agree with g(z0)? It’s worth some thought to understand just what
this question means. It amounts to a question of the equality of two different kinds
of limits. f(z0) is the sum of an infinite series, the limit of a sequence of partial
sums, while, because g is continuous at z0, g(z0 = limz→z0 g(z). At the end of this
chapter, we include a theorem of Abel that answers this question.

The next theorem is the analog for power series functions of part (2) of Theorem
3.1 for polynomials. We call it the “Identity Theorem,” but it equally well could
be known as the “Uniqueness of Coefficients Theorem,” for it implies that different
coefficients mean different functions.

THEOREM 3.14. (Identity Theorem) Let f(z) =
∑
anz

n be a power series
function with positive radius of convergence r. Suppose {zk} is a sequence of nonzero
distinct numbers in the domain of f such that:

(1) lim zk = 0.
(2) f(zk) = 0 for all k.

Then f is identically 0 (f(z) ≡ 0 for all z ∈ S). Moreover, each coefficient an of f
equals 0.

PROOF. Arguing by induction on n, let us prove that all the coefficients an are
0. First, since f is continuous at 0, and since lim zk = 0, we have that a0, which
equals f(0), = lim f(zk) = 0.
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Assume then that a0 = a1 = . . . = an−1 = 0. Then

f(z) = anz
n + an+1z

n+1 + . . .

= zn
∞∑
j=0

bjz
j ,

where bj = an+j . If g is the power series function defined by g(z) =
∑
bjz

j , then,
by the Cauchy-Hadamard Formula, we have that the radius of convergence for g is
the same as that for f. (Why does lim sup |bj |1/j = lim sup |ak|1/k?) We have that
f(z) = zng(z) for all z in the common disk of convergence of these functions f and
g. Since, for each k, zk 6= 0 and f(zk) = znk g(zk) = 0, it follows that g(zk) = 0
for every k. Since g is continuous at 0, it then follows as in the argument above
that g(0) = 0. But, g(0) = b0 = an. Hence an = 0, and so by induction all the
coefficients of the power series function f are 0. Clearly this implies that f(z) is
identically 0.

COROLLARY. Suppose f and g are two power series functions, that {zk} is a
sequence of nonzero points that converges to 0, and that f(zk) = g(zk) for all k.
Then f and g have the same coefficients, the same radius of convergence, and hence
f(z) = g(z) for all z in their common domain.

Exercise 3.20. (a) Prove the preceding corollary. (Compare with the proof of
Theorem 3.1.)

(b) Use the corollary, and the power series function g(z) = z, to prove that
f(z) = |z| is not a power series function.

(c) Show that there are power series functions that are not polynomial functions.
(d) Let f(z) =

∑
anz

n be a power series function with infinite radius of conver-
gence, all of whose coefficients are positive. Show that there is no rational function
r = p/q for which f(z) = r(z) for all complex numbers z. Conclude that the collec-
tion of power series functions provides some new functions.
HINT: Use the fact that for any n we have that f(x) > anx

n for all positive x.
Then, by choosing n appropriately, derive a contradiction to the resulting fact that
|p(x)/q(x)| > anx

n for all positive x. See part (b) of Exercise 3.2.

THE ELEMENTARY TRANSCENDENTAL FUNCTIONS

Having introduced a class of new functions (power series functions), we might
well expect that some of these will have interesting and unexpected properties. So,
which sets of coefficients might give us an exotic new function? Unfortunately, at
this point in our development, we haven’t much insight into this question. It is true,
see Exercise 3.16, that most power series functions that we naturally write down
have finite radii of convergence. Such functions may well be new and fascinating,
but as a first example, we would prefer to consider a power series function that is
defined everywhere, i.e., one with an infinite radius of convergence. Again revisiting
Exercise 3.16, let us consider the coefficients an = 1/n!. This may seem a bit ad
hoc, but let’s have a look.

DEFINITION. Define a power series function, denoted by exp, as follows:

exp(z) =
∞∑
n=0

zn

n!
.
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We will call this function, with 20-20 hindsight, the exponential function.

What do we know about this function, apart from the fact that it is defined for
all complex numbers? We certainly do not know that it has anything to do with
the function ez; that will come in the next chapter. We do know what the number
e is, but we do not know how to raise that number to a complex exponent.

All of the exponential function’s coefficients are positive, and so by part (d) of
Exercise 3.20 exp is not a rational function; it really is something new. It is natural
to consider the even and odd parts expe and expo of this new function. And then,
considering the constructions in Exercise 3.17, to introduce the alternating versions
expae and expao of them.

DEFINITION. Define two power series functions cosh (hyperbolic cosine) and
sinh (hyperbolic sine) by

cosh(z) =
exp(z) + exp(−z)

2
and sinh(z) =

exp(z)− exp(z)
2

,

and two other power series functions cos (cosine) and sin (sine) by

cos(z) = cosh(iz) =
exp(iz) + exp(−iz)

2

and

sin(z) = −i sinh(iz) =
exp(iz)− exp(−iz)

2i
.

The five functions just defined are called the elementary transcendental func-
tions, the sinh and cosh functions are called the basic hyperbolic functions, and
the sine and cosine functions are called the basic trigonometric or circular func-
tions. The connections between the hyperbolic functions and hyperbolic geometry,
and the connection between the trigonometric functions and circles and triangles,
will only emerge in the next chapter. From the very definitions, however, we can
see a connection between the hyperbolic functions and the trigonometric functions.
It’s something like interchanging the roles of the real and imaginary axes. This is
probably worth some more thought.

Exercise 3.21. (a) Verify the following equations:

exp(z) =
∞∑
n=0

zn

n!

= 1 + z +
z2

2!
+
z3

3!
+ . . .+

zk

k!
+ . . . ,

= cosh(z) + sinh(z).

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+ . . .+ (−1)k

z2k+1

(2k + 1)!
+ . . .

=
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,
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cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+ . . .+ (−1)k

z2k

(2k)!
+ . . .

=
∞∑
k=0

(−1)k
z2k

(2k)!
,

sinh(z) =
∞∑
k=0

z2k+1

(2k + 1)!
,

and

cosh(z) =
∞∑
k=0

z2k

(2k)!
.

(These expressions for the elementary transcendental functions are perhaps the
more familiar ones from a calculus course.)

(b) Compute the radii of convergence for the elementary transcendental func-
tions.
HINT: Do not use the Cauchy-Hadamard formula. Just figure out for which z’s the
functions are defined.

(c) Verify that exp(0) = 1, sin(0) = sinh(0) = 0, and cos(0) = cosh(0) = 1.
(d) Prove that all five of the elementary transcendental functions are not rational

functions.
(e) Can you explain why sin2(z) + cos2(z) ≡ 1? What about the “ Addition

Formula”
sin(z + w) = sin(z) cos(w) + cos(z) sin(w).

Exercise 3.22. (a) Show that the elementary transcendental functions map real
numbers to real numbers. That is, as functions of a real variable, they are real-
valued functions.

(b) Show that the exponential function exp is not bounded above. Show in fact
that, for each nonnegative integer n, exp(x)/xn is unbounded. Can you show that
exp(x) = ex? What, in fact, does ex mean if x is an irrational or complex number?

At this point, we probably need a little fanfare!

THEOREM 3.14159. (Definition of π) There exists a smallest positive number
x for which sin(x) = 0. We will denote this distinguished number x by the symbol
π.

PROOF. First we observe that sin(1) is positive. Indeed, the infinite series for
sin(1) is alternating. It follows from the alternating series test (Theorem 2.18) that
sin(1) > 1− 1/6 = 5/6.

Next, again using the alternating series test, we observe that sin(4) < 0. Indeed,

sin(4) < 4− 43

3!
+

45

5!
− 47

7!
+

49

9!
≈ −0.4553 < 0.

Hence, by the intermediate value theorem, there must exist a number c between
1 and 4 such that sin(c) = 0. So, there is at least one positive number x such
that sin(x) = 0. However, we must show that there is a smallest positive number
satisfying this equation.
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Let A be the set of all x > 0 for which sin(x) = 0. Then A is a nonempty set
of real numbers that is bounded below. Define π = inf A. We need to prove that
sin(π) = 0, and that π > 0. Clearly then it will be the smallest positive number x
for which sin(x) = 0.

By Exercise 2.20, there exists a sequence {xk} of elements of A such that π =
limxk. Since sin is continuous at π, it follows that sin(π) = lim sin(xk) = lim 0 = 0.
Finally, if π were equal to 0, then by the Identity Theorem, Theorem 3.14, we would
have that sinx = 0 for all x. Since this is clearly not the case, we must have that
π > 0.

Hence, π is the smallest (minimum) positive number x for which sin(x) = 0.

As hinted at earlier, the connection between this number π and circles is not at
all evident at the moment. For instance, you probably will not be able to answer
the questions in the next exercise.
Exercise 3.23. (a) Can you see why sin(x + 2π) ≡ sin(x)? That is, is it obvious
that sin is a periodic function?

(b) Can you prove that cos(π) = −1?

REMARK. Defining π to be the smallest positive zero of the sine function may
strike many people as very much “out of the blue.” However, the zeroes of a
function are often important numbers. For instance, a zero of the function x2 − 2
is a square root of 2, and that number we know was exztremely important to the
Greeks as they began the study of what real numbers are. A zero of the function
z2 + 1 is something whose square is -1, i.e., negative. The idea of a square being
negative was implausible at first, but is fundamental now, so that the zero of this
particular function is critical for our understanding to numbers. Very likely, then,
the zeroes of any “new” function will be worth studying. For instance, we will soon
see that, perhaps disappointingly, there are no zeroes for the exponential function:
exp(z) is never 0. Maybe it’s even more interesting then that there are zeroes of
the sine function.

The next theorem establishes some familiar facts about the trigonometric func-
tions.

THEOREM 3.15.
(1) exp(iz) = cos(z) + i sin(z) for all z ∈ C.
(2) Let {zk} be a sequence of complex numbers that converges to 0. Then

lim
sin(zk)
zk

= 0.

(3) Let {zk} be a sequence of complex numbers that converges to 0. Then

lim
1− cos(zk)

z2
k

=
1
2
.

Exercise 3.24. Prove Theorem 3.15.
HINT: For parts (2) and (3), use Theorem 3.13.

ANALYTIC FUNCTIONS AND TAYLOR SERIES
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DEFINITION. Let S be a subset of C, let f : S → C be a complex-valued
function, and let c be a point of S. Then f is said to be expandable in a Taylor
series around c with radius of convergence r if there exists an r > 0 such that
Br(c) ⊆ S, and f(z) is given by the formula

f(z) =
∞∑
n=0

an(z − c)n

for all z ∈ Br(c).
Let S be a subset of R, let f : S → R be a real-valued function on S, and let c be

a point of S. Then f is said to be expandable in a Taylor series around c with radius
of convergence r if there exists an r > 0 such that the interval (c − r, c + r) ⊆ S,
and f(x) is given by the formula

f(x) =
∞∑
n=0

an(x− c)n

for all x ∈ (c− r, c+ r).
Suppose S is an open subset of C. A function f : S → C is called analytic on S

if it is expandable in a Taylor series around every point c of S.
Suppose S is an open subset of R. A function f : S → C is called real analytic

on S if it is expandable in a Taylor series around every point c of S.

THEOREM 3.16. Suppose S is a subset of C, that f : S → C is a complex-valued
function and that c belongs to S. Assume that f is expandable in a Taylor series
around c with radius of convergence r. Then f is continuous at each z ∈ Br(c).

Suppose S is a subset of R, that f : S → R is a real-valued function and that c
belongs to S. Assume that f is expandable in a Taylor series around c with radius
of convergence r. Then f is continuous at each x ∈ (c− r, c+ r).

PROOF. If we let g be the power series function given by g(z) =
∑
anz

n, and T
be the function defined by T (z) = z − c, then f(z) = g(T (z)), and this theorem is
a consequence of Theorems 3.3 and 3.13.

Exercise 3.25. Prove that f(z) = 1/z is analytic on its domain.
HINT: Use r = |c|, and then use the infinite geometric series.

Exercise 3.26. State and prove an Identity Theorem, analogous to Theorem 3.14,
for functions that are expandable in a Taylor series around a point c.

Exercise 3.27. (a) Prove that every polynomial is expandable in a Taylor series
around every point c.
HINT: Use the binomial theorem.

(b) Is the exponential function expandable in a Taylor series around the number
−1?

UNIFORM CONVERGENCE

We introduce now two different notions of the limit of a sequence of functions.
Let S be a set of complex numbers, and let {fn} be a sequence of complex-valued
functions each having domain S.
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DEFINITION. We say that the sequence {fn} converges or converges pointwise
to a function f : S → C if for every x ∈ S and every ε > 0 there exists a natural
number N, depending on x and ε, such that for every n ≥ N, |fn(x) − f(x)| < ε.
That is, equivalently, {fn} converges pointwise to f if for every x ∈ S the sequence
{fn(x)} of numbers converges to the number f(x).

We say that the sequence {fn} converges uniformly to a function f if for every
ε > 0, there exists an N, depending only on ε, such that for every n ≥ N and every
x ∈ S, |fn(x)− f(x)| < ε.

If {un} is a sequence of functions defined on S, we say that the infinite series
∑
un

converges uniformly if the sequence {SN =
∑N
n=0 un} of partial sums converges

uniformly.

These two definitions of convergence of a sequence of functions differ in subtle
ways. Study the word order in the definitions.

Exercise 3.28. (a) Prove that if a sequence {fn} of functions converges uniformly
on a set S to a function f then it converges pointwise to f.

(b) Let S = (0, 1), and for each n define fn(x) = xn. Prove that {fn} con-
verges pointwise to the zero function, but that {fn} does not converge uniformly
to the zero function. Conclude that pointwise convergence does not imply uniform
convergence.
HINT: Suppose the sequence does converge uniformly. Take ε = 1/2, let N be a
corresponding integer, and consider x’s of the form x = 1− h for tiny h’s.

(c) Suppose the sequence {fn} converges uniformly to f on S, and the sequence
{gn} converges uniformly to g on S. Prove that the sequence {fn + gn} converges
uniformly to f + g on S.

(d) Suppose {fn} converges uniformly to f on S, and let c be a constant. Show
that {cfn} converges uniformly to cf on S.

(e) Let S = R, and set fn(x) = x + (1/n). Does {fn} converge uniformly on
S? Does {f2

n} converge uniformly on S? What does this say about the limit of a
product of uniformly convergent sequences versus the product of the limits?

(f) Suppose a and b are nonnegative real numbers and that |a − b| < ε2. Prove
that |

√
a−
√
b| < 2ε.

HINT: Break this into cases, the first one being when both
√
a and

√
b are less than

ε.

(g) Suppose {fn} is a sequence of nonnegative real-valued functions that con-
verges uniformly to f on S. Use part (f) to prove that the sequence {

√
fn} converges

uniformly to
√
f.

(h) For each positive integer n, define fn on (−1, 1) by fn(x) = |x|1+1/n. Prove
that the sequence {fn} converges uniformly on (−1, 1) to the function f(x) = |x|.
HINT: Let ε > 0 be given. Consider |x|’s that are < ε and |x|’s that are ≥ ε.
For |x| < ε, show that |fn(x) − f(x)| < ε for all n. For |x| ≥ ε, choose N so that
|ε1/n − 1| < ε. How?

Exercise 3.29. Let {fn} be a sequence of functions on a set S, let f be a function
on S, and suppose that for each n we have |f(x)−fn(x)| < 1/n for all x ∈ S. Prove
that the sequence {fn} converges uniformly to f.

We give next four important theorems concerning uniform convergence. The first
of these theorems is frequently used to prove that a given function is continuous.
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The theorem asserts that if f is the uniform limit of a sequence of continuous
functions, then f is itself continuous.

THEOREM 3.17. (The uniform limit of continuous functions is continuous.)
Suppose {fn} is a sequence of continuous functions on a set S ⊆ C, and assume
that the sequence {fn} converges uniformly to a function f. Then f is continuous
on S.

PROOF. This proof is an example of what is called by mathematicians a “3ε ar-
gument.”

Fix an x ∈ S and an ε > 0. We wish to find a δ > 0 such that if y ∈ S and
|y − x| < δ then |f(y)− f(x)| < ε.

We use first the hypothesis that the sequence converges uniformly. Thus, given
this ε > 0, there exists a natural number N such that if n ≥ N then |f(z)−fn(z)| <
ε/3 for all z ∈ S. Now, because fN is continuous at x, there exists a δ > 0 such that
if y ∈ S and |y − x| < δ then |fN (y) − fN (x)| < ε/3. So, if y ∈ S and |y − x| < δ,
then

|f(y)− f(x)| = |f(y)− fN (y) + fN (y)− fN (x) + fN (x)− f(x)|
≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof.

REMARK. Many properties of functions are preserved under the taking of uniform
limits, e.g., continuity, as we have just seen. However, not all properties are pre-
served under this limit process. Differentiability is not, integrability is sometimes,
being a power series function is, and so on. We must be alert to be aware of when
it works and when it does not.

THEOREM 3.18. (Weierstrass M-Test) Let {un} be a sequence of complex-
valued functions defined on a set S ⊆ C. Write SN for the partial sum SN (x) =∑N
n=0 un(x). Suppose that, for each n, there exists an Mn > 0 for which |un(x)| ≤

Mn for all x ∈ S. Then

(1) If
∑
Mn converges, then the sequence {SN} converges uniformly to a func-

tion S. That is, the infinite series
∑
un converges uniformly.

(2) If each function un is continuous, and
∑
Mn converges, then the function

S of part (1) is continuous.

PROOF. Because
∑
Mn is convergent, it follows from the Comparison Test that

for each x ∈ S the infinite series
∑∞
n=0 un(x) is absolutely convergent, hence con-

vergent. Define a function S by S(x) =
∑∞
n=0 un(x) = limSN (x).

To show that {SN} converges uniformly to S, let ε > 0 be given, and choose a
natural number N such that

∑∞
n=N+1Mn < ε. This can be done because

∑
Mn



80 III. FUNCTIONS AND CONTINUITY

converges. Now, for any x ∈ S and any m ≥ N, we have

|S(x)− Sm(x)| = | lim
k→∞

Sk(x)− Sm(x)|

= | lim
k→∞

(Sk(x)− Sm(x))|

= lim
k→∞

|Sk(x)− Sm(x)|

= lim
k→∞

|
k∑

n=m+1

un(x)|

≤ lim
k→∞

k∑
n=m+1

|un(x)|

≤ lim
k→∞

k∑
n=m+1

Mn

=
∞∑

n=m+1

Mn

≤
∞∑
n=N

Mn

< ε.

This proves part (1).
Part (2) now follows from part (1) and Theorem 3.17, since the SN ’s are contin-

uous.

THEOREM 3.19. Let f(z) =
∑∞
n=0 anz

n be a power series function with radius
of convergence r > 0, and let {SN (z)} denote the sequence of partial sums of this
series:

SN (z) =
N∑
n=0

anz
n.

If 0 < r′ < r, then the sequence {SN} converges uniformly to f on the diskBr′(0).

PROOF. Define a power series function g by g(z) =
∑∞
n=0 |an|zn, and note that

the radius of convergence for g is the same as that for f, i.e., r. Choose t so that
r′ < t < r. Then, since t belongs to the disk of convergence of the power series
function g, we know that

∑∞
n=0 |an|tn converges. Set mn = |an|tn, and note that∑

mn converges. Now, for each z ∈ Br′(0), we have that

|anzn| ≤ |an|r′
n ≤ |an|tn = mn,

so that the infinite series
∑
anz

n converges uniformly on Br′(0) by the Weierstrass
M-Test.

Exercise 3.30. Let f(z) =
∑∞
n=0 z

n. Recall that the radius of convergence for f
is 1. Verify that the sequence {SN} of partial sums of this power series function
fails to converge uniformly on the full open disk of convergence B1(0), so that the
requirement that r′ < r is necessary in the preceding theorem.
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The next theorem shows that continuous, real-valued functions on closed bounded
intervals are uniform limits of step functions. Step functions have not been men-
tioned lately, since they aren’t continuous functions, but this next theorem will be
crucial for us when we study integration in Chapter V.

THEOREM 3.20. Let f be a continuous real-valued function on the closed and
bounded interval [a, b]. Then there exists a sequence {hn} of step functions on [a, b]
that converges uniformly to f.

PROOF. We use the fact that a continuous function on a compact set is uniformly
continuous (Theorem 3.9).

For each positive integer n, let δn be a positive number satisfying |f(x)−f(y)| <
1/n if |x − y| < δn. Such a δn exists by the uniform continuity of f on [a, b]. Let
Pn = {x0 < x1 < . . . < xmn} be a partition of [a, b] for which xi − xi−1 < δn for
all 1 ≤ i ≤ mn. Define a step function hn on [a, b] as follows: If xi−1 ≤ x < xi,
then hn(x) = f(xi−1). This defines hn(x) for every x ∈ [a, b), and we complete the
definition of hn by setting hn(b) = f(b). It follows immediately that hn is a step
function.

Now, we claim that |f(x)−hn(x)| < 1/n for all x ∈ [a, b]. This is clearly the case
for x = b, since f(b) = hn(b) for all n. For any other x, let i be the unique index
such that xi−1 ≤ x < xi. Then

|f(x)− hn(x)| = |f(x)− f(xi−1)| < 1/n

because |x− xi−1| < δn.

So, we have defined a sequence {hn} of step functions, and the sequence {hn}
converges uniformly to f by Exercise 3.29.

We close this chapter with a famous theorem of Abel concerning the behavior
of a power series function on the boundary of its disk of convergence. See the
comments following Exercise 3.19.

THEOREM 3.21. (Abel) Suppose f(z) =
∑∞
n=0 anz

n is a power series function
having finite radius of convergence r > 0, and suppose there exists a point z0 on
the boundary of Br(0) that is in the domain of f ; i.e.,

∑
anz

n
0 converges to f(z0).

Suppose g is a continuous function whose domain contains the open disk Br(0) as
well as the point z0, and assume that f(z) = g(z) for all z in the open disk Br(0).
Then f(z0) must equal g(z0).

PROOF. For simplicity, assume that r = 1 and that z0 = 1. See the exercise that
follows this proof. Write Sn for the partial sum of the an’s: Sn =

∑n
n=0 an. In the

following computation, we will use the Abel Summation Formula in the form

N∑
n=0

anz
n = SNz

N +
N−1∑
n=0

Sn(zn − zn+1).

See Exercise 2.30. Let ε be a positive number. Then, for any 0 < t < 1 and any
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positive integer N, we have

|g(1)− f(1)| = |g(1)− f(t) + f(t)−
N∑
n=0

ant
n +

N∑
n=0

ant
n − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|+ |

N∑
n=0

ant
n − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |SN tN +
N−1∑
n=0

Sn(tn − tn+1)− f(1)|

= |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n

+ |SN tN +
N−1∑
n=0

(Sn − SN )(tn − tn+1) + SN

N−1∑
n=0

(tn − tn+1)− f(1)|

= |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n

+ |
N−1∑
n=0

(Sn − SN )(tn − tn+1) + SN (tN +
N−1∑
n=0

(tn − tn+1))− f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
N−1∑
n=0

(Sn − SN )(tn − tn+1)|+ |SN − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
P∑
n=0

(Sn − SN )(tn − tn+1)|+ |
N−1∑
n=P+1

(Sn − SN )(tn − tn+1)|+ |SN − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
P∑
n=0

(Sn − SN )(tn − tn+1)|+
N−1∑
n=P+1

|Sn − SN |(tn − tn+1) + |SN − f(1)|

= t1 + t2 + t3 + t4 + t5.

First, choose an integer M1 so that if P and N are both larger than M1, then
t4 < ε. (The sequence {Sk} is a Cauchy sequence, and

∑
(tk − tk+1 is telescoping.)

Fix such a P > M1. Then choose a δ > 0 so that if 1 > t > 1− δ, then both t1
and t3 < ε. How?



III. FUNCTIONS AND CONTINUITY 83

Fix such a t. Finally, choose a N, greater than M1, and also large enough so that
both t2 and t5 are less than ε. (How?)

Now, |g(1) − f(1)| < 5ε. Since this is true for every ε > 0, it follows that
f(1) = g(1), and the theorem is proved.

Exercise 3.31. Let f, g, r, and z0 be as in the statement of the preceding theorem.
Define f̂(z) = f(z0z) and ĝ(z) = g(z0z).

(a) Prove that f̂ is a power series function f̂(z) =
∑∞
n=0 bnz

n, with radius of
convergence equal to 1, and such that

∑∞
n=0 bn converges to f̂(1); i.e., 1 is in the

domain of f̂ .
(b) Show that ĝ is a continuous function whose domain contains the open disk

B1(0) and the point z = 1.
(c) Show that, if f̂(1) = ĝ(1), then f(z0) = g(z0). Deduce that the simplification

in the preceding proof is justified.
(d) State and prove the generalization of Abel’s Theorem to a function f that is

expandable in a Taylor series around a point c.


