
CHAPTER VI
INTEGRATION OVER SMOOTH CURVES IN THE PLANE

C = 2πr

In this chapter we will define what we mean by a smooth curve in the plane and
what is meant by its arc length. These definitions are a good bit more tricky than
one might imagine. Indeed, it is the subtlety of the definition of arc length that
prevented us from defining the trigonometric functions in terms of wrapping the
real line around the circle, a definition frequently used in high school trigonometry
courses. Having made a proper definition of arc length, we will then be able to
establish the formula C = 2πr for the circumference of a circle of radius r.

By the “plane,” we will mean R2 ≡ C, and we will on occasion want to carefully
distinguish between these two notions of the plane, i.e., two real variables x and y
as opposed to one complex variable z = x+ iy. In various instances, for clarity, we
will use notations like x+ iy and (x, y), remembering that both of these represent
the same point in the plane. As x + iy, it is a single complex number, while as
(x, y) we may think of it as a vector in R2 having a magnitude and, if nonzero, a
direction.

We also will define in this chapter three different kinds of integrals over such
curves. The first kind, called “integration with respect to arc length,” will be
completely analogous to the integral defined in Chapter V for functions on a closed
and bounded interval, and it will only deal with functions whose domain is the set
consisting of the points on the curve. The second kind of integral, called a “contour
integral,” is similar to the first one, but it emphasizes in a critical way that we
are integrating a complex-valued function over a curve in the complex plane C and
not simply over a subset of R2. The applications of contour integrals is usually to
functions whose domains are open subsets of the plane that contain the curve as a
proper subset, i.e., whose domains are larger than just the curve. The third kind of
integral over a curve, called a “line integral,” is conceptually very different from the
first two. In fact, we won’t be integrating functions at all but rather a new notion
that we call “differential forms.” This is actually the beginnings of the subject
called differential geometry, whose intricacies and power are much more evident in
higher dimensions than 2.

The main points of this chapter include:

(1) The definition of a smooth curve, and the definition of its arc length,
(2) the derivation of the formula C = 2πr for the circumference of a circle of

radius r (Theorem 6.5),
(3) the definition of the integral with respect to arc length,
(4) the definition of a contour integral,
(5) the definition of a line integral, and
(6) Green’s Theorem (Theorem 6.14).

SMOOTH CURVES IN THE PLANE

Our first project is to make a satisfactory definition of a smooth curve in the
plane, for there is a good bit of subtlety to such a definition. In fact, the material
in this chapter is all surprisingly tricky, and the proofs are good solid analytical
arguments, with lots of ε’s and references to earlier theorems.
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162 VI. INTEGRATION OVER SMOOTH CURVES IN THE PLANE

Whatever definition we adopt for a curve, we certainly want straight lines, circles,
and other natural geometric objects to be covered by our definition. Our intuition
is that a curve in the plane should be a “1-dimensional” subset, whatever that may
mean. At this point, we have no definition of the dimension of a general set, so
this is probably not the way to think about curves. On the other hand, from the
point of view of a physicist, we might well define a curve as the trajectory followed
by a particle moving in the plane, whatever that may be. As it happens, we do
have some notion of how to describe mathematically the trajectory of a moving
particle. We suppose that a particle moving in the plane proceeds in a continuous
manner relative to time. That is, the position of the particle at time t is given by
a continuous function f(t) = x(t) + iy(t) ≡ (x(t), y(t)), as t ranges from time a to
time b. A good first guess at a definition of a curve joining two points z1 and z2

might well be that it is the range C of a continuous function f that is defined on
some closed bounded interval [a, b]. This would be a curve that joins the two points
z1 = f(a) and z2 = f(b) in the plane. Unfortunately, this is also not a satisfactory
definition of a curve, because of the following surprising and bizarre mathematical
example, first discovered by Guiseppe Peano in 1890.

THE PEANO CURVE. The so-called “Peano curve” is a continuous function
f defined on the interval [0, 1], whose range is the entire unit square [0, 1] × [0, 1]
in R2.

Be careful to realize that we’re talking about the “range” of f and not its graph.
The graph of a real-valued function could never be the entire square. This Peano
function is a complex-valued function of a real variable. Anyway, whatever defini-
tion we settle on for a curve, we do not want the entire unit square to be a curve,
so this first attempt at a definition is obviously not going to work.

Let’s go back to the particle tracing out a trajectory. The physicist would proba-
bly agree that the particle should have a continuously varying velocity at all times,
or at nearly all times, i.e., the function f should be continuously differentiable.
Recall that the velocity of the particle is defined to be the rate of change of the
position of the particle, and that’s just the derivative f ′ of f. We might also assume
that the particle is never at rest as it traces out the curve, i.e., the derivative f ′(t)
is never 0. As a final simplification, we could suppose that the curve never crosses
itself, i.e., the particle is never at the same position more than once during the
time interval from t = a to t = b. In fact, these considerations inspire the formal
definition of a curve that we will adopt below.

Recall that a function f that is continuous on a closed interval [a, b] and contin-
uously differentiable on the open interval (a, b) is called a smooth function on [a, b].
And, if there exists a partition {t0 < t1 < . . . < tn} of [a, b] such that f is smooth on
each subinterval [ti−1, ti], then f is called piecewise smooth on [a, b]. Although the
derivative of a smooth function is only defined and continuous on the open interval
(a, b), and hence possibly is unbounded, it follows from part (d) of Exercise 5.22
that this derivative is improperly-integrable on that open interval. We recall also
that just because a function is improperly-integrable on an open interval, its abso-
lute value may not be improperly-integrable. Before giving the formal definition of
a smooth curve, which apparently will be related to smooth or piecewise smooth
functions, it is prudent to present an approximation theorem about smooth func-
tions. Theorem 3.20 asserts that every continuous function on a closed bounded
interval is the uniform limit of a sequence of step functions. We give next a similar,
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but stronger, result about smooth functions. It asserts that a smooth function can
be approximated “almost uniformly” by piecewise linear functions.

THEOREM 6.1. Let f be a smooth function on a closed and bounded interval
[a, b], and assume that |f ′| is improperly-integrable on the open interval (a, b). Given
an ε > 0, there exists a piecewise linear function p for which

(1) |f(x)− p(x)| < ε for all x ∈ [a, b].
(2)

∫ b
a
|f ′(x)− p′(x)| dx < ε.

That is, the functions f and p are close everywhere, and their derivatives are close
on average in the sense that the integral of the absolute value of the difference of
the derivatives is small.

PROOF. Because f is continuous on the compact set [a, b], it is uniformly con-
tinuous. Hence, let δ > 0 be such that if x, y ∈ [a, b], and |x − y| < δ, then
|f(x)− f(y)| < ε/2.

Because |f ′| is improperly-integrable on the open interval (a, b), we may use part
(b) of Exercise 5.22 to find a δ′ > 0, which may also be chosen to be < δ, such that∫ a+δ′

a
|f ′|+

∫ b
b−δ′ |f

′| < ε/2, and we fix such a δ′.
Now, because f ′ is uniformly continuous on the compact set [a + δ′, b − δ′],

there exists an α > 0 such that |f ′(x) − f ′(y)| < ε/4(b − a) if x and y belong to
[a + δ′, b − δ′] and |x − y| < α. Choose a partition {x0 < x1 < . . . < xn} of [a, b]
such that x0 = a, x1 = a + δ′, xn−1 = b − δ′, xn = b, and xi − xi−1 < min(δ, α)
for 2 ≤ i ≤ n − 1. Define p to be the piecewise linear function on [a, b] whose
graph is the polygonal line joining the n + 1 points (a, f(x1)), {(xi, f(xi))} for
1 ≤ i ≤ n − 1, and (b, f(xn−1)). That is, p is constant on the outer subintervals
[a, x1] and [xn−1, b] determined by the partition, and its graph between x1 and
xn−1 is the polygonal line joining the points {(x1, f(x1)), . . . , (xn−1, f(xn−1))}.
For example, for 2 ≤ i ≤ n− 1, the function p has the form

p(x) = f(xi−1) +
f(xi)− f(xi−1)

xi − xi−1
(x− xi−1)

on the interval [xi−1, xi]. So, p(x) lies between the numbers f(xi−1) and f(xi) for
all i. Therefore,

|f(x)−p(x)| ≤ |f(x)−f(xi)|+ |f(xi)− l(x)| ≤ |f(x)−f(xi)|+ |f(xi)−f(xi−1)| < ε.

Since this inequality holds for all i, part (1) is proved.
Next, for 2 ≤ i ≤ n − 1, and for each x ∈ (xi−1, xi), we have p′(x) = (f(xi) −

f(xi−1))/(xi − xi−1), which, by the Mean Value Theorem, is equal to f ′(yi) for
some yi ∈ (xi−1, xi). So, for each such x ∈ (xi−1, xi), we have |f ′(x) − p′(x)| =
|f ′(x) − f ′(yi)|, and this is less than ε/4(b − a), because |x − yi| < α. On the two
outer intervals, p(x) is a constant, so that p′(x) = 0. Hence,∫ b

a

|f ′ − p′| =
n∑
i=1

∫ xi

xi−1

|f ′ − p′|

=
∫ x1

a

|f ′|+
n−1∑
i=2

|f ′ − p′|+
∫ b

xn−1

|f ′|

≤
∫ a+δ′

a

|f ′|+
∫ b

b−δ′
|f ′|+ ε

4(b− a)

∫ xn−1

x1

1

< ε.
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The proof is now complete.

REMARK. It should be evident that the preceding theorem can easily be general-
ized to a piecewise smooth function f, i.e., a function that is continuous on [a, b],
continuously differentiable on each subinterval (ti−1, ti) of a partition {t0 < t1 <
. . . < tn}, and whose derivative f ′ is absolutely integrable on (a, b). Indeed, just
apply the theorem to each of the subintervals (ti−1, ti), and then carefully piece
together the piecewise linear functions on those subintervals.

Now we are ready to define what a smooth curve is.

DEFINITION. By a smooth curve from a point z1 to a different point z2 in
the plane, we mean a set C ⊆ C that is the range of a 1-1, smooth, function
φ : [a, b] → C, where [a, b] is a bounded closed interval in R, where z1 = φ(a) and
z2 = φ(b), and satisfying φ′(t) 6= 0 for all t ∈ (a, b).

More generally, if φ : [a, b] → R
2 is 1-1 and piecewise smooth on [a, b], and if

{t0 < t1 < . . . < tn} is a partition of [a, b] such that φ′(t) 6= 0 for all t ∈ (ti−1, ti),
then the range C of φ is called a piecewise smooth curve from z1 = φ(a) to z2 = φ(b).

In either of these cases, φ is called a parameterization of the curve C.

Note that we do not assume that |φ′| is improperly-integrable, though the pre-
ceding theorem might have made you think we would.

REMARK. Throughout this chapter we will be continually faced with the fact that
a given curve can have many different parameterizations. Indeed, if φ1 : [a, b]→ C
is a parameterization, and if g : [c, d]→ [a, b] is a smooth function having a nonzero
derivative, then φ2(s) = φ1(g(s)) is another parameterization of C. Since our defi-
nitions and proofs about curves often involve a parametrization, we will frequently
need to prove that the results we obtain are independent of the parameterization.
The next theorem will help; it shows that any two parameterizations of C are
connected exactly as above, i.e., there always is such a function g relating φ1 and
φ2.

THEOREM 6.2. Let φ1 : [a, b]→ C and φ2 : [c, d]→ C be two parameterizations
of a piecewise smooth curve C joining z1 to z2. Then there exists a piecewise smooth
function g : [c, d]→ [a, b] such that φ2(s) = φ1(g(s)) for all s ∈ [c, d]. Moreover, the
derivative g′ of g is nonzero for all but a finite number of points in [c, d].

PROOF. Because both φ1 and φ2 are continuous and 1-1, it follows from Theorem
3.10 that the function g = φ−1

1 ◦ φ2 is continuous and 1-1 from [c, d] onto [a, b].
Moreover, from Theorem 3.11, it must also be that g is strictly increasing or strictly
decreasing. Write φ1(t) = u1(t) + iv1(t) ≡ (u1(t), v1(t)), and φ2(s) = u2(s) +
iv2(s) ≡ (u2(s), v2(s)). Let {x0 < x1 < . . . < xp} be a partition of [a, b] for which
φ′1 is continuous and nonzero on the subintervals (xj−1, xj), and let {y0 < y1 <
. . . < yq} be a partition of [c, d] for which φ′2 is continuous and nonzero on the
subintervals (yk−1, yk). Then let {s0 < s1 < . . . < sn} be the partition of [c, d]
determined by the finitely many points {yk} ∪ {g−1(xj)}. We will show that g is
continuously differentiable at each point s in the subintervals (si−1, si).

Fix an s in one of the intervals (si−1, si), and let t = φ−1
1 (φ2(s)) = g(s). Of

course this means that φ1(t) = φ2(s), or u1(t) = u2(s) and v1(t) = v2(s). Then t is
in some one of the intervals (xj−1, xj), so that we know that φ′1(t) 6= 0. Therefore,
we must have that at least one of u′1(t) or v′1(t) is nonzero. Suppose it is v′1(t)
that is nonzero. The argument, in case it is u′1(t) that is nonzero, is completely
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analogous. Now, because v′1 is continuous at t and v′1(t) 6= 0, it follows that v1

is strictly monotonic in some neighborhood (t − δ, t + δ) of t and therefore is 1-1
on that interval. Then v−1

1 is continuous by Theorem 3.10, and is differentiable at
the point v1(t) by the Inverse Function Theorem. We will show that on this small
interval g = v−1

1 ◦ v2, and this will prove that g is continuously differentiable at s.
Note first that if φ2(σ) = x+iy is a point on the curve C, then v2(φ−1

2 (x+iy)) =
y. Then, for any τ ∈ [a, b], we have

v−1
1 (v2(g−1(τ))) = v−1

1 (v2(φ−1
2 (φ1(τ))))

= v−1
1 (v2(φ−1

2 (u1(τ) + iv1(τ))))

= v−1
1 (v1(τ))

= τ,

showing that v−1
1 ◦ v2 = g−1−1 = g. Hence g is continuously differentiable at every

point s in the subintervals (si−1, si). Indeed g′(σ) = v−1
1

′
(v2(σ))v′2(σ) for all σ near

s, and hence g is piecewise smooth.
Obviously, φ2(s) = φ1(g(s)) for all s, implying that φ′2(s) = φ′1(g(s))g′(s). Since

φ′2(s) 6= 0 for all but a finite number of points s, it follows that g′(s) 6= 0 for all but
a finite number of points, and the theorem is proved.

COROLLARY. Let φ1 and φ2 be as in the theorem. Then, for all but a finite
number of points z = φ1(t) = φ2(s) on the curve C, we have

φ′1(t)
|φ′1(t)|

=
φ′2(s)
|φ′2(s)|

.

PROOF OF THE COROLLARY. From the theorem we have that

φ′2(s) = φ′1(g(s))g′(s) = φ′1(t)g′(s)

for all but a finite number of points s ∈ (c, d). Also, g is strictly increasing, so that
g′(s) ≥ 0 for all points s where g is differentiable. And in fact, g′(s) 6= 0 for all but
a finite number of s’s, because g′(s) is either (v−1

1 ◦ v2)′(s) or (u−1
1 ◦ u2)′(s), and

these are nonzero except for a finite number of points. Now the corollary follows
by direct substitution.

REMARK. If we think of φ′(t) = (x′(t), y′(t)) as a vector in the plane R2, then the
corollary asserts that the direction of this vector is independent of the parameteri-
zation, at least at all but a finite number of points. This direction vector will come
up again as the unit tangent of the curve.

The adjective “smooth” is meant to suggest that the curve is bending in some
reasonable way, and specifically it should mean that the curve has a tangent, or
tangential direction, at each point. We give the definition of tangential direction
below, but we note that in the context of a moving particle, the tangential direction
is that direction in which the particle would continue to move if the force that is
keeping it on the curve were totally removed. If the derivative φ′(t) 6= 0, then this
vector is the velocity vector, and its direction is exactly what we should mean by
the tangential direction.
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The adjective “piecewise” will allow us to consider curves that have a finite num-
ber of points where there is no tangential direction, e.g., where there are “corners.”

We are carefully orienting our curves at the moment. A curve C from z1 to z2 is
being distinguished from the same curve from z2 to z1, even though the set C is the
same in both instances. Which way we traverse a curve will be of great importance
at the end of this chapter, when we come to Green’s Theorem.

DEFINITION. Let C, the range of φ : [a, b] → C, be a piecewise smooth curve,
and let z = (x, y) = φ(c) be a point on the curve. We say that the curve C has a
tangential direction at z, relative to the parameterization φ, if the following limit
exists:

lim
t→c

φ(t)− z
|φ(t)− z|

= lim
t→c

φ(t)− φ(c)
|φ(t)− φ(c)|

.

If this limit exists, it is a vector of length 1 in R2, and this unit vector is called the
unit tangent (relative to the parameterization φ) to C at z.

The curve C has a unit tangent at the point z if there exists a parameterization
φ for which the unit tangent at z relative to φ exists.

Exercise 6.1. (a) Restate the definition of tangential direction and unit tangent
using the R2 version of the plane instead of the C version. That is, restate the
definition in terms of pairs (x, y) of real numbers instead of a complex number z.

(b) Suppose φ : [a, b]→ C is a parameterization of a piecewise smooth curve C,
and that t ∈ (a, b) is a point where φ is differentiable with φ′(t) 6= 0. Show that the
unit tangent (relative to the parameterization φ) to C at z = φ(t) exists and equals
φ′(t)/|φ′(t)|. Conclude that, except possibly for a finite number of points, the unit
tangent to C at z is independent of the parameterization.

(c) Let C be the graph of the function f(t) = |t| for t ∈ [−1, 1]. Is C a smooth
curve? Is it a piecewise smooth curve? Does C have a unit tangent at every point?

(d) Let C be the graph of the function f(t) = t2/3 = (t1/3)2 for t ∈ [−1, 1]. Is
C a smooth curve? Is it a piecewise smooth curve? Does C have a unit tangent at
every point?

(e) Consider the set C that is the right half of the unit circle in the plane. Let
φ1 : [−1, 1]→ C be defined by

φ1(t) = (cos(t
π

2
), sin(t

π

2
)),

and let φ2 : [−1, 1]→ C be defined by

φ2(t) = (cos(t3
π

2
), sin(t3

π

2
)).

Prove that φ1 and φ2 are both parameterizations of C.Discuss the existence of a unit
tangent at the point (1, 0) = φ1(0) = φ2(0) relative to these two parameterizations.

(f) Suppose φ : [a, b] → C is a parameterization of a curve C from z1 to z2.
Define ψ on [a, b] by ψ(t) = φ(a + b − t). Show that ψ is a parameterization of a
curve from z2 to z1.

Exercise 6.2. (a) Suppose f is a smooth, real-valued function defined on the
closed interval [a, b], and let C ⊆ R2 be the graph of f. Show that C is a smooth
curve, and find a “natural” parameterization φ : [a, b]→ C of C. What is the unit
tangent to C at the point (t, f(t))?



VI. INTEGRATION OVER SMOOTH CURVES IN THE PLANE 167

(b) Let z1 and z2 be two distinct points in C, and define φ : [0, 1] → by
φ(t) = (1− t)z1 + tz2. Show that φ is a parameterization of the straight line from
the point z1 to the point z2. Consequently, a straight line is a smooth curve. (Indeed,
what is the definition of a straight line?)

(c) Define a function φ : [−r, r] → R
2 by φ(t) = (t,

√
r2 − t2). Show that the

range C of φ is a smooth curve, and that φ is a parameterization of C.
(d) Define φ on [0, π/2) by φ(t) = eit. For what curve is φ a parametrization?
(e) Let z1, z2, . . . , zn be n distinct points in the plane, and suppose that the

polygonal line joing these points in order never crosses itself. Construct a parame-
terization of that polygonal line.

(f) Let S be a piecewise smooth geometric set determined by the interval [a, b]
and the two piecewise smooth bounding functions u and l. Suppose z1 and z2 are
two points in the interior S0 of S. Show that there exists a piecewise smooth curve
C joining z1 to z2, i.e., a piecewise smooth function φ : [â, b̂] → C with φ(â) = z1

and φ(̂b) = z2, that lies entirely in S0.
(g) Let C be a piecewise smooth curve, and suppose φ : [a, b] → C is a param-

eterization of C. Let [c, d] be a subinterval of [a, b]. Show that the range of the
restriction of φ to [c, d] is a smooth curve.
Exercise 6.3. Suppose C is a smooth curve, parameterized by φ = u+ iv : [a, b]→
C.

(a) Suppose that u′(t) 6= 0 for all t ∈ (a, b). Prove that there exists a smooth,
real-valued function f on some closed interval [a′, b′] such that C coincides with the
graph of f.
HINT: f should be something like v ◦ u−1.

(b) What if v′(t) 6= 0 for all t ∈ (a, b)?
Exercise 6.4. Let C be the curve that is the range of the function φ : [−1, 1]→ C,
where φ(t) = t3 + t6i).

(a) Is C a piecewise smooth curve? Is it a smooth curve? What points z1 and
z2 does it join?

(b) Is φ a parameterization of C?
(c) Find a parameterization for C by a function ψ : [3, 4]→ C.
(d) Find the unit tangent to C and the point 0 + 0i.

Exercise 6.5. Let C be the curve parameterized by φ : [−π, π − ε] → C defined
by φ(t) = eit = cos(t) + i sin(t).

(a) What curve does φ parameterize?
(b) Find another parameterization of this curve, but base on the interval [0, 1−ε].

ARC LENGTH

Suppose C is a piecewise smooth curve, parameterized by a function φ. Contin-
uing to think like a physicist, we might guess that the length of this curve could
be computed as follows. The particle is moving with velocity φ′(t). This velocity
is thought of as a vector in R2, and as such it has a direction and a magnitude or
speed. The speed is just the absolute value |φ′(t)| of the velocity vector φ′(t). Now
distance is speed multiplied by time, and so a good guess for the formula for the
length L of the curve C would be

(6.1) L =
∫ b

a

|φ′(t)| dt.
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Two questions immediately present themselves. First, and of primary interest, is
whether the function |φ′| is improperly-integrable on (a, b)? We know by Exercise
5.22 that φ′ itself is improperly-integrable, but we also know from Exercise 5.23 that
a function can be improperly-integrable on an open interval and yet its absolute
value is not. In fact, the answer to this first question is no (See Exercise 6.6.). We
know only that |φ′| exists and is continuous on the open subintervals of a partition
of [a, b].

The second question is more subtle. What if we parameterize a curve in two
different ways, i.e., with two different functions φ1 and φ2? How do we know that
the two integral formulas for the length have to agree? Of course, maybe most
important of all to us, we also must justify the physicist’s intuition. That is, we
must give a rigorous mathematical definition of the length of a smooth curve and
show that Formula (6.1) above does in fact give the length of the curve. First we
deal with the independence of parameterization question.

THEOREM 6.3. Let C be a smooth curve joining (distinct) points z1 to z2 in C,
and let φ1 : [a, b] → C and φ2 : [c, d] → C be two parameterizations of C. Suppose
|φ′2| is improperly-integrable on (c, d). Then |φ′1|is improperly-integrable on (a, b),
and ∫ b

a

‖φ′1(t)‖ dt =
∫ d

c

‖φ′2(s)‖ ds.

PROOF. We will use Theorem 6.2. Thus, let g = φ−1
1 ◦ φ2, and recall that g is

continuous on [c, d] and continuously differentiable on each open subinterval of a
certain partition of [c, d]. Therefore, by part (d) of Exercise 5.22, g′ is improperly-
integrable on (c, d).

Let {x0 < x1 < . . . < xp} be a partition of [a, b] for which φ′1 is continuous and
nonzero on the subintervals (xj−1, xj). To show that |φ′1| is improperly-integrable on
(a, b), it will suffice to show this integrability on each subinterval (xj−1, xj). Thus,
fix a closed interval [a′, b′] ⊂ (xj−1, xj), and let [c′, d′] be the closed subinterval of
[c, d] such that g maps [c′, d′] 1-1 and onto [a′, b′]. Hence, by part (e) of Exercise
5.22, we have ∫ b′

a′
|φ′1(t)| dt =

∫ d′

c′
|φ′1(g(s))|g′(s) ds

=
∫ d′

c′
|φ′1(g(s))||g′()s)| ds

=
∫ d′

c′
|φ′1(g(s))g′(s)| ds

=
∫ d′

c′
|(φ1 ◦ g)′(s)| ds

=
∫ d′

c′
|φ′2(s)| ds

≤
∫ d

c

|φ′2(s)| ds,

which, by taking limits as a′ goes to xj−1 and b′ goes to xj , shows that |φ′1| is
improperly-integrable over (xj−1, xj) for every j, and hence integrable over all of
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(a, b). Using part (e) of Exercise 5.22 again, and a calculation similar to the one
above, we deduce the equality ∫ b

a

|φ′1| =
∫ d

c

|φ′2|,

and the theorem is proved.

Exercise 6.6. (A curve of infinite length) Let φ : [0, 1] : R2 be defined by φ(0) =
(0, 0), and for t > 0, φ(t) = (t, t sin(1/t)). Let C be the smooth curve that is the
range of φ.

(a) Graph this curve.
(b) Show that

|φ′(t)| =
√

1 + sin2(1/t)− sin(2/t)
t

+
cos2(1/t)

t2

=
1
t

√
t2 + t2 sin2(1/t)− t sin(2/t) + cos2(1/t).

(c) Show that

∫ 1

δ

|φ′(t)| dt =
∫ 1/δ

1

1
t

√
1
t2

+
sin2(t)
t2

− sin(2t)
t

+ cos2(t) dt.

(d) Show that there exists an ε > 0 so that for each positive integer n we have
cos2(t)− sin(2t)/t > 1/2 for all t such that |t− nπ| < ε.

(e) Conclude that |φ′| is not improperly-integrable on (0, 1). Deduce that, if
Formula (6.1) is correct for the length of a curve, then this curve has infinite length.

Next we develop a definition of the length of a parameterized curve from a purely
mathematical or geometric point of view. Happily, it will turn out to coincide with
the physically intuitive definition discussed above.

Let C be a piecewise smooth curve joining the points z1 and z2, and let φ :
[a, b] → C be a parameterization of C. Let P = {a = t0 < t1 < . . . < tn = b} be a
partition of the interval [a, b]. For each 0 ≤ j ≤ n write zj = φ(tj), and think about
the polygonal trajectory joining these points {zj} in order. The length LφP of this
polygonal trajectory is given by the formula

LφP =
n∑
j=1

|zj − zj−1|,

and this length is evidently an approximation to the length of the curve C. Indeed,
since the straight line joining two points is the shortest curve joining those points,
these polygonal trajectories all should have a length smaller than or equal to the
length of the curve. These remarks motivate the following definition.

DEFINITION. Let φ : [a, b] → C be a parameterization of a piecewise smooth
curve C ⊂ C. By the length Lφ of C, relative to the parameterization φ, we mean
the number Lφ = supP L

φ
P , where the supremum is taken over all partitions P of

[a, b].
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REMARK. Of course, the supremum in the definition above could well equal in-
finity in some cases. Though it is possible for a curve to have an infinite length,
the ones we will study here will have finite lengths. This is another subtlety of this
subject. After all, every smooth curve is a compact subset of R2, since it is the
continuous image of a closed and bounded interval, and we think of compact sets as
being “finite” in various ways. However, this finiteness does not necessarily extend
to the length of a curve.

Exercise 6.7. Let φ : [a, b] → R
2 be a parameterization of a piecewise smooth

curve C, and let P and Q be two partitions of [a, b].
(a) If P is finer than Q, i.e., Q ⊆ P, show that LφQ ≤ L

φ
P .

(b) If φ(t) = u(t) + iv(t), express LφP in terms of the numbers u(tj) and v(tj).

Of course, we again face the annoying possibility that the definition of length
of a curve will depend on the parameterization we are using. However, the next
theorem, taken together with Theorem 6.3, will show that this is not the case.

THEOREM 6.4. If C is a piecewise smooth curve parameterized by φ : [a, b]→ C,
then

Lφ =
∫ b

a

|φ′(t)| dt,

specifically meaning that one of these quantities is infinite if and only if the other
one is infinite.

PROOF. We prove this theorem for the case when C is a smooth curve, leaving
the general argument for a piecewise smooth curve to the exercises. We also only
treat here the case when Lφ is finite, also leaving the argument for the infinite case
to the exercises. Hence, assume that φ = u+ iv is a smooth function on [a, b] and
that Lφ <∞.

Let ε > 0 be given. Choose a partition P = {t0 < t1 < . . . < tn} of [a, b] for
which

Lφ − LφP = Lφ −
n∑
j=1

|φ(tj)− φ(tj−1)| < ε.

Because φ is continuous, we may assume by making a finer partition if necessary
that the tj ’s are such that |φ(t1)−φ(t0)| < ε and |φ(tn)−φ(tn−1)| < ε. This means
that

Lφ −
n−1∑
j=2

|φ(tj)− φ(tj−1)| < 3ε.

The point of this step (trick) is that we know that φ′ is continuous on the open
interval (a, b), but we will use that it is uniformly continuous on the compact set
[t1, tn−1]. Of course that means that |φ′| is integrable on that closed interval, and
in fact one of the things we need to prove is that |φ′| is improperly-integrable on
the open interval (a, b).

Now, because φ′ is uniformly continuous on the closed interval [t1, tn−1], there
exists a δ > 0 such that |φ′(t) − φ′(s)| < ε if |t − s| < δ and t and s are in the
interval [t1, tn−1]. We may assume, again by taking a finer partition if necessary,
that the mesh size of P is less than this δ. Then, using part (f) of Exercise 5.9, we
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may also assume that the partition P is such that

|
∫ tn−1

t1

|φ′(t)| dt−
n−1∑
j=2

|φ′(sj)|(tj − tj−1)| < ε

no matter what points sj in the interval (tj−1, tj) are chosen. So, we have the
following calculation, in the middle of which we use the Mean Value Theorem on
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the two functions u and v.

0 ≤ |Lφ −
∫ tn−1

t1

|φ′(t)| dt|

≤ |Lφ −
n−1∑
j=2

|φ(tj)− φ(tj−1)|

+ |
n−1∑
j=2

|φ(tj)− φ(tj−1)| −
∫ tn−1

t1

|φ′(t)| dt|

≤ 3ε+ |
n−1∑
j=2

|φ(tj)− φ(tj−1)| −
∫ gn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

|u(tj)− u(tj−1) + i(v(tj)− v(tj−1)| −
∫ tn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

√
(u(tj)− u(tj−1))2 + (v(tj)− v(tj−1))2

−
∫ gn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

√
(u′(sj))2 + (v′(rj))2(tj − tj−1)

−
∫ tn−1

t1

|φ′(t)| dt|

≤ 3ε+ |
n−1∑
j=2

√
(u′(sj))2 + (v′(sj))2(tj − tj−1)

−
∫ tn−1

t1

|φ′(t)| dt|

+
n−1∑
j=2

|
√

(u(sj))2 + (v′(rj))2 −
√

(u(sj))2 + (v′(sj))2|(tj − tj−1)

= 3ε+ |
n−1∑
j=2

|φ′(sj)|(tj − tj−1)−
∫ tn−1

t1

|φ′(t)| dt|

+
n−1∑
j=2

|
√

(u(sj))2 + (v′(rj))2 −
√

(u(sj))2 + (v′(sj))2|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|(v′(rj))2 − (v′(sj))2|√
(u′(sj))2 + (v′(rj))2 +

√
(u′(sj))2 + (v′(sj))2

(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|v′(rj)− v′(sj)||v′(rj) + v′(sj)|
|v′(rj)|+ |v′(sj)|

(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|v′(rj)− v′(sj)|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|φ′(rj)− φ′(sj)|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

ε(tj − tj−1)

= 4ε+ ε(tn−1 − t1)

< ε(4 + b− a).
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This implies that

Lφ − ε(4 + b− a) ≤
∫ tn−1

t1

|φ′| ≤ Lφ + ε(4 + b− a).

If we now let t1 approach a and tn−1 approach b, we get

Lφ − ε(4 + b− a) ≤
∫ b

a

|φ′| ≤ Lφ + ε(4 + b− a),

which completes the proof, since ε is arbitrary.

Exercise 6.8. (a) Take care of the piecewise case in the preceding theorem.
(b) Take care of the case when Lφ is infinite in the preceding theorem.

We now have all the ingredients necessary to define the length of a smooth curve.

DEFINITION. Let C be a piecewise smooth curve in the plane. The length or
arc length L ≡ L(C) of C is defined by the formula

L(C) = Lφ = sup
P
LφP ,

where φ is any parameterization of C.
If z and w are two points on a piecewise smooth curve C, we will denote by

L(z, w) the arc length of the portion of the curve between z and w.

REMARK. According to Theorems 6.3 and 6.4, we have the following formula for
the length of a piecewise smooth curve:

L =
∫ b

a

|φ′(t)| dt,

where φ is any parameterization of C.
It should come as no surprise that the length of a curve C from z1 to z2 is

the same as the length of that same curve C, but thought of as joining z2 to
z1. Nevertheless, let us make the calculation to verify this. If φ : [a, b] → C is
a parameterization of this curve from z1 to z2, then we have seen in part (f) of
exercise 6.1 that ψ : [a, b]→ C, defined by ψ(t) = φ(a+b− t), is a parameterization
of C from z2 to z1. We just need to check that the two integrals giving the lengths
are equal. Thus,

∫ b

a

|ψ′(t)| dt =
∫ b

a

|φ′(a+ b− t)(−1)| dt =
∫ b

a

|φ′(a+ b− t)| dt =
∫ b

a

|φ′(s)| ds,

where the last equality follows by changing variables, i.e., setting t = a+ b− s.
We can now derive the formula for the circumference of a circle, which was one

of our main goals. TRUMPETS?
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THEOREM 6.5. Let C be a circle of radius r in the plane. Then the length of
C is 2πr.

PROOF. Let the center of the circle be denoted by (h, k). We can parameterize the
top half of the circle by the function φ on the interval [0, π] by φ(t) = h+ r cos(t) +
i(k + r sin(t)). So, the length of this half circle is given by

L =
∫ π

0

|φ′(t)| dt =
∫ π

0

| − r sin(t) + ir cos(t)| dt =
∫ π

0

r dt = πr.

The same kind of calculation would show that the lower half of the circle has length
πr, and hence the total length is 2πr.

The integral formula for the length of a curve is frequently not much help, espe-
cially if you really want to know how long a curve is. The integrals that show up
are frequently not easy to work out.
Exercise 6.9. (a) Let C be the portion of the graph of the function y = x2 between
x = 0 and x = 1. Let φ : [0, 1]→ C be the parameterization of this curve given by
φ(t) = t+ t2i. Find the length of this curve.

(b) Define φ : [−0, π] → C by φ(t) = a cos(t) + ib sin(t). What curve does φ
parameterize, and can you find its length?

INTEGRATION WITH RESPECT TO ARC LENGTH

We introduce next what would appear to be the best parameterization of a
piecewise smooth curve, i.e., a parameterization by arc length. We will then use
this parameterization to define the integral of a function whose domain is the curve.

THEOREM 6.6. Let C be a piecewise smooth curve of finite length L joining
two distinct points z1 to z2. Then there exists a parameterization γ : [0, L] → C
for which the arc length of the curve joining γ(t) to γ(u) is equal to |u − t| for all
t < u ∈ [0, L].

PROOF. Let φ : [a, b] → C be a parameterization of C. Define a function F :
[a, b]→ [0, L] by

F (t) =
∫ t

a

|φ′(s)| ds.

In other words, F (t) is the length of the portion of C that joins the points z1 = φ(a)
and φ(t). By the Fundamental Theorem of Calculus, we know that the function
F is continuous on the entire interval [a, b] and is continuously differentiable on
every subinterval (ti−1, ti) of the partition P determined by the piecewise smooth
parameterization φ. Moreover, F ′(t) = |φ′(t)| > 0 for all t ∈ (ti−1, ti), implying
that F is strictly increasing on these subintervals. Therefore, if we write si =
F (ti), then the si’s form a partition of the interval [0, L], and the function F :
(ti−1, ti)→ (si−1, si) is invertible, and its inverse F−1 is continuously differentiable.
It follows then that γ = φ ◦ F−1 : [0, L] → C is a parameterization of C. The arc
length between the points γ(t) and γ(u) is the arc length between φ(F−1(t)) and
φ(F−1(u)), and this is given by the formula∫ F−1(u)

F−1(t)

|φ′(s)| ds =
∫ F−1(u)

a

|φ′(s)| ds−
∫ F−1(t)

a

|φ′(s)| ds

= F (F−1(u))− F (F−1(t))

= u− t,
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which completes the proof.

COROLLARY. If γ is the parameterization by arc length of the preceding theo-
rem, then, for all t ∈ (si−1, si), we have |γ′(s)| = 1.

PROOF OF THE COROLLARY. We just compute

|γ′(s)| = |(φ ◦ F−1)′(s)|
= |φ′(F−1(s))(F−1)′(s)|

= |φ′(F−1(s)|| 1
F ′(F−1(s))

|

= |φ′(f−1(s))| 1
|φ′(f−1(s))|

= 1,

as desired.

We are now ready to make the first of our three definitions of integral over a
curve. This first one is pretty easy.

Suppose C is a piecewise smooth curve joining z1 to z2 of finite length L, pa-
rameterized by arc length. Recall that this means that there is a 1-1 function γ
from the interval [0, L] onto C that satisfies the condidition that the arc length be-
tweenthe two points γ(t) and γ(s) is exactly the distance between the points t and
s. We can just identify the curve C with the interval [0, L], and relative distances
will correspond perfectly. A partition of the curve C will correspond naturally to
a partition of the interval [0, L]. A step function on the dcurve will correspond in
an obvious way to a step function on the interval [0, L], and the formula for the
integral of a step function on the curve is analogous to what it is on the interval.
Here are the formal definitions:

DEFINITION. Let C be a piecewise smooth curve of finite length L joining
distinct points, and let γ : [0, L]→ C be a parameterization of C by arc length. By
a partition of C we mean a set {z0, z1, . . . , zn} of points on C such that zj = γ(tj)
for all j, where the points {t0 < t1 < . . . < tn} form a partition of the interval [0, L].
The portions of the curve between the points zj−1 and zj , i.e., the set γ(tj−1, tj),
are called the elements of the partition.

A step fucntion on C is a real-valued function h on C for which there exists a
partition {z0, z1, . . . , zn} of C such that h(z) is a constant aj on the portion of the
curve between zj−1 and zj .

Before defining the integral of a step function on a curve, we need to establish
the usual consistency result, encountered in the previous cases of integration on
intervals and integration over geometric sets, the proof of which this time we put
in an exercise.
Exercise 6.10. Suppose h is a function on a piecewise smooth curve of finite length
L, and assume that there exist two partitions {z0, z1, . . . , zn} and {w0, w1, . . . , wm}
of C such that h(z) is a constant ak on the portion of the curve between zk−1 and
zk, and h(z) is a constant bj on the portion of the curve between wj−1 and wj .
Show that

n∑
k=1

akL(zk−1, zk) =
m∑
j=1

bjL(wj−1, wj).



176 VI. INTEGRATION OVER SMOOTH CURVES IN THE PLANE

HINT: Make use of the fact that h ◦ γ is a step function on the interval [0, L].

Now we can make the definition of the integral of a step function on a curve.

DEFINITION. Let h be a step function on a piecewise smooth curve C of fi-
nite length L. The integral, with respect to arc length of h over C is denoted by∫
C
h(s) ds, and is defined by

∫
C

h(s) ds =
n∑
j=1

ajL(zj−1, zj),

where {z0, z1, . . . , zn} is a partition of C for which h(z) is the constant aj on the
portion of C between zj−1 and zj .

Of course, integrable functions on C with respect to arc length will be defined
to be functions that are uniform limits of step functions. Again, there is the con-
sistency issue in the definition of the integral of an integrable function.
Exercise 6.11. (a) Suppose {hn} is a sequence of step functiohns on a piecewise
smooth curve C of finite length, and assume that the sequence {hn} converges
uniformly to a function f. Prove that the sequence {

∫
C
hn(s) ds} is a convergent

sequence of real numbers.
(b) Suppose {hn} and {kn} are two sequences of step functions on a piecewise

smooth curve C of finite length l, and that both sequences converge uniformly to
the same function f. Prove that

lim
∫
C

hn(s) ds = lim
∫
C

kn(s) ds.

DEFINITION. Let C be a piecewise smooth curve of finite length L. A function
f with domain C is called integrable with respect to arc length on C if it is the
uniform limit of step functions on C.

The integral with respect to arc length of an integrable function f on C is again
denoted by

∫
C
f(s) ds, and is defined by∫

C

f(s) ds = lim
∫
C

hn(s) ds,

where {hn} is a sequence of step functions that converges uniformly to f on C.

In a sense, we are simply identifying the curve C with the interval [0, L] by means
of the 1-1 parameterizing function γ. The next theorem makes this quite plain.

THEOREM 6.7. Let C be a piecewise smooth curve of finite length L, and let γ
be a parameterization of C by arc length. If f is an integrable function on C, then∫

C

f(s) ds =
∫ L

0

f(γ(t)) dt.

PROOF. First, if h is a step function on C, let {zj} be a partition of C for which
h(z) is a constant aj on the portion of the curve between zj−1 and zj . Let {tj} be
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the partition of [0, L] for which zj = γ(tj) for every j. Note that h ◦ γ is a step
function on [0, L], and that h ◦ γ(t) = aj for all t ∈ (tj−1, tj). Then,

∫
C

h(s) ds =
N∑
j=1

ajL(zj−1, zj)

=
n∑
j=1

ajL(γ(tj−1), γ(tj))

=
n∑
j=1

aj(tj − tj−1)

=
∫ L

0

h ◦ γ(t) dt,

which proves the theorem for step functions.
Finally, if f = limhn is an integrable function on C, then the sequence {hn ◦ γ}

converges uniformly to f ◦ γ on [0, L], and so

∫
C

f(s) ds = lim
∫
C

hn(s) ds

= lim
∫ L

0

hn(γ(t)) dt

=
∫ l

0

f(γ(t)) dt,

where the final equality follows from Theorem 5.6. Hence, Theorem 6.7 is proved.

Although the basic definitions of integrable and integral, with respect to arc
length, are made in terms of the particular parameterization γ of the curve, for
computational purposes we need to know how to evaluate these integrals using
different parameterizations. Here is the result:

THEOREM 6.8. Let C be a piecewise smooth curve of finite length L, and let
φ : [a, b]→ C be a parameterization of C. If f is an integrable function on C. Then

∫
C

f(s) ds =
∫ b

a

f(φ(t))|φ′(t)| dt.

PROOF. Write γ : [0, L] → C for a parameterization of C by arc length. As in
the proof to Theorem 6.3, we write g : [a, b] → [0, L] for γ−1 ◦ φ. Just as in that
proof, we know that g is a piecewise smooth function on the interval [a, b]. Hence,
recalling that |γ′(t)| = 1 and g′(t) > 0 for all but a finite number of points, the
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following calculation is justified:

∫
C

f(s) ds =
∫ L

0

f(γ(t)) dt

=
∫ L

0

f(γ(t))|γ′(t)| dt

=
∫ b

a

f(γ(g(u)))|γ′(g(u))|g′(u) du

=
∫ b

a

f(γ(g(u)))|γ′(g(u))||g′(u)| du

=
∫ b

a

f(φ(u))|γ′(g(u))g′(u)| du

=
∫ b

a

f(φ(u))|(′gamma ◦ g)′(u)| du

=
∫ b

a

f(φ(u))|φ′(u)| du,

as desired.

Exercise 6.12. Let C be the straight line joining the points (0, 1) and (1, 2).
(a) Find the arc length parameterization γ : [0,

√
2]→ C.

(b) Let f be the function on this curve given by f(x, y) = x2y. Compute∫
C
f(s) ds.
(c) Let f be the function on this curve that is defined by f(x, y) is the distance

from (x, y) to the point (0, 3). Compute
∫
c
f(s) ds.

The final theorem of this section sums up the properties of integrals with respect
to arc length. There are no surprises here.

THEOREM 6.9. Let C be a piecewise smooth curve of finite length L, and write
I(C) for the set of all functions that are integrable with respect to arc length on C.
Then:

(1) I(C) is a vector space ovr the real numbers, and∫
C

(af(s) + bg(s)) ds = a

∫
C

f(s) ds+ b

∫
C

g(s) ds

for all f, g ∈ I(C) and all a, b ∈ R.
(2) (Positivity) If f(z) ≥ 0 for all z ∈ C, then

∫
C
f(s) ds ≥ 0.

(3) If f ∈ I(C), then so is |f |, and |
∫
C
f(s) ds| ≤

∫
C
|f(s)| ds.

(4) If f is the uniform limit of functions fn, each of which is in I(C), then
f ∈ I(C) and

∫
C
f(s) ds = lim

∫
C
fn(s) ds.

(5) Let {un} be a sequence of functions in I(C), and suppose that for each n
there is a number mn, for which |un(z)| ≤ mn for all z ∈ C, and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫
C

∑
un(s) ds =

∑∫
C
un(s) ds.
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Exercise 6.13. (a) Prove the preceding theorem. Everything is easy if we compose
all functions on C with the parameterization γ, obtaining functions on [0, L], and
then use Theorem 5.6.

(b) Suppose C is a piecewise smooth curve of finite length joining z1 and z2.
Show that the integral with respect to arc length of a function f over C is the same
whether we think of C as being a curve from z1 to z2 or, the other way around, a
curve from z2 to z1.

REMARK. Because of the result in part (b) of the preceding exercise, we speak of
“integrating over C” when we are integrating with respect to arc length. We do
not speak of “integrating from z1 to z2,” since the direction doesn’t matter. This
is in marked contrast to the next two kinds of integrals over curves that we will
discuss.

here is one final bit of notation. Often, the curves of interest to us are graphs
of real-valued functions. If g : [a, b] → R is a piecewise smooth function, then its
graph C is a piecewise smooth curve, and we write

∫
graph(g)

f(s) ds for the integral
with respect to arc length of f over C = graph(g).

CONTOUR INTEGRALS

We discuss next what appears to be a simpler notion of integral over a curve.
In this one, we really do regard the curve C as a subset of the complex plane
as opposed to two-dimensional real space; we will be integrating complex-valued
functions; and we explicitly think of the parameterizations of the curve as complex-
valued functions on an interval [a, b]. Also, in this definition, a curve C from z1 to
z2 will be distinguished from its reverse, i.e., the same set C thought of as a curve
from z2 to z1.

DEFINITION. Let C be a piecewise smooth curve from z1 to z2 in the plane C,
parameterized by a (complex-valued) function φ : [a, b] → C. If f is a continuous,
complex-valued function on C, The contour integral of f from z1 to z2 along C will
be denoted by

∫
C
f(ζ) dζ or more precisely by

∫
C

z2
z1
f(ζ) dζ, and is defindd by

∫
C

z2

z1

f(ζ) dζ =
∫ b

a

f(φ(t))φ′(t) dt.

REMARK. There is, as usual, the question about whether this definition depends
on the parameterization. Again, it does not. See the next exercise.

The definition of a contour integral looks very like a change of variables formula
for integrals. See Theorem 5.11 and part (e) of Exercise 5.22. This is an example
of how mathematicians often use a true formula from one context to make a new
definition in another context.

Notice that the only difference between the computation of a contour integral and
an integral with respect to arc length on the curve is the absence of the absolute
value bars around the factor φ′(t). This will make contour integrals more subtle
than integrals with respect to arc length, just as conditionally convergent infinite
series are more subtle than absolutely convergent ones.

Note also that there is no question about the integrability of f(φ(t))φ′(t), because
of Exercise 5.22. f is bounded, φ′ is improperly-integrable on (a, b), and therefore
so is their product.
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Exercise 6.14. (a) State and prove the “independence of parameterization” result
for contour integrals.

(b) Prove that ∫
C

z2

z1

f(ζ) dζ = −
∫
C

z1

z2

f(ζ) dζ.

Just remember how to parameterize the curve in the opposite direction.
(c) Establish the following relation between the absolute value of a contour in-

tegral and a corresponding integral with respect to arc length.

|
∫
C

f(ζ) dζ| ≤
∫
C

|f(s)| ds.

Not all the usual properties hold for contour integrals, e.g., like those in Theo-
rem 6.9 above. The functions here, and the values of their contour integrals, are
complex numbers, so all the properties of integrals having to do with positivity
and inequalities, except for the one in part (c) of Exercise 6.14, no longer make
any sense. However, we do have the following results for contour integrals, the
verification of which is just as it was for Theorem 6.9.

THEOREM 6.10. Let C be a piecewise smooth curve of finite length joining z1

to z2. Then the contour integrals of continuous functions on C have the following
properties.

(1) If f and g are any two continuous functions on C, and a and b are any two
complex numbers, then∫

C

(af(ζ) + bg(ζ)) dζ = a

∫
C

f(ζ) dζ + b

∫
C

g(ζ) dζ.

(2) If f is the uniform limit on C of a sequence {fn} of continuous functions,
then

∫
C
f(ζ) dζ = lim

∫
C
fn(ζ) dζ.

(3) Let {un} be a sequence of continuous functions on C, and suppose that
for each n there is a number mn, for which |un(z)| ≤ mn for all z ∈ C,
and such that the infinite series

∑
mn converges. Then the infinite series∑

un converges uniformly to a continuous function, and
∫
C

∑
un(ζ) dζ =∑∫

C
un(ζ) dζ.

In the next exercise, we give some important contour integrals, which will be
referred to several times in the sequel. Make sure you understand them.
Exercise 6.15. Let c be a point in the complex plane, and let r be a positive
number. Let C be the curve parameterized by φ : [−π, π − ε] : C defined by
φ(t) = c+reit = c+r cos(t)+ir sin(t). For each integer n ∈ Z, define fn(z) = (z−c)n.

(a) What two points z1 and z2 does C join, and what happens to z2 as ε ap-
proaches 0?

(b) Compute
∫
C
fn(ζ) dζ for all integers n, positive and negative.

(c) What happens to the integrals computed in part (b) when ε approaches 0?
(d) Set ε = π, and compute

∫
C
fn(ζ) dζ for all integers n.

(e) Again, set ε = π. Evaluate∫
C

cos(ζ − c)
ζ − c

dζ and
∫
C

sin(ζ − c)
ζ − c

dζ.
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HINT: Make use of the infinite series representations of the trigonometric functions.

VECTOR FIELDS, DIFFERENTIAL FORMS, AND LINE INTEGRALS

We motivate our third definition of an integral over a curve by returning to
physics. This definition is very much a real variable one, so that we think of the
plane as R2 instead of C. A connection between this real variable definition and the
complex variable definition of a contour integral will emerge later.

DEFINITION. By a vector field on an open subset U of R2, we mean nothing
more than a continuous function ~V (x, y) ≡ (P (x, y), Q(x, y)) from U into R2. The
functions P and Q are called the components of the vector field ~V .

We will also speak of smooth vector fields, by which we will mean vector fields
~V both of whose component functions P and Q have continuous partial derivatives

∂P

∂x
,
∂P

∂y
,
∂Q

∂x
textand

∂Q

∂y

on U.

REMARK. The idea from physics is to think of a vector field as a force field, i.e.,
something that exerts a force at the point (x, y) with magnitude |~V (x, y)| and acting
in the direction of the vector ~V (x, y). For a particle to move within a force field,
“work” must be done, that is energy must be provided to move the particle against
the force, or energy is given to the particle as it moves under the influence of the
force field. In either case, the basic definition of work is the product of force and
distance traveled. More precisely, if a particle is moving in a direction ~u within
a force field, then the work done on the particle is the product of the component
of the force field in the direction of ~u and the distance traveled by the particle
in that direction. That is, we must compute dot products of the vectors ~V (x, y)
and ~u(x, y). Therefore, if a particle is moving along a curve C, parameterized with
respect to arc length by γ : [0, L] → C, and we write γ(t) = (x(t), y(t)), then the
work W (z1, z2) done on the particle as it moves from z1 = γ(0) to z2 = γ(L) within
the force field ~V , should intuitively be given by the formula

W (z1, z2) =
∫ L

0

〈~V (γ(t)) | γ′(t)〉 dt

=
∫ L

0

P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t) dt

≡
∫
C

P dx+Qdy,

where the last expression is explicitly defining the shorthand notation we will be
using.

The preceding discussion leads us to a new notion of what kind of object should
be “integrated” over a curve.

DEFINITION. A differential form on a subset U of R2 is denoted by ω = Pdx+
Qdy, and is determined by two continuous real-valued functions P and Q on U.
We say that ω is bounded or uniformly continuous if the functions P and Q are
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bounded or uniformly continuous functions on U. We say that the differential form
ω is smooth of order k if the set U is open, and the functions P and Q have
continuous mixed partial derivatives of order k.

If ω = Pdx + Qdy is a differential form on a set U, and if C is any piecewise
smooth curve of finite length contained in U, then we define the line integral

∫
C
ω

of ω over C by∫
C

ω =
∫
C

P dx+Qdy =
∫ L

0

P (γ(t))x′(t) +Q(γ(t))y′(t) dt,

where γ(t) = (x(t), y(t)) is a parameterization of C by arc length.

REMARK. There is no doubt that the integral in this definition exists, because P
and Q are continuous functions on the compact set C, hence bounded, and γ′ is
integrable, implying that both x′ and y′ are integrable. Therefore P (γ(t))x′(t) +
Q(γ(t))y′(t) is integrable on (0, L).

These differential forms ω really should be called “differential 1-forms.” For
instance, an example of a differential 2-form would look like Rdxdy, and in higher
dimensions, we could introduce notions of differential forms of higher and higher
orders, e.g., in 3 dimension things like P dxdy +Qdzdy +Rdxdz. Because we will
always be dealing with R2, we will have no need for higher order differential forms,
but the study of such things is wonderful. Take a course in Differential Geometry!

Again, we must see how this quantity
∫
C
ω depends, if it does, on different

parameterizations. As usual, it does not.
Exercise 6.16. Suppose ω = Pdx + Qdy is a differential form on a subset U of
R

2.
(a) Let C be a piecewise smooth curve of finite length contained in U that joins

z1 to z2. Prove that∫
C

ω =
∫
C

P dx+Qdy =
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

for any parameterization φ : [a, b]→ C having components x(t) and y(t).
(b) Let C be as in part (a), and let Ĉ denote the reverse of C, i.e., the same set

C but thought of as a curve joining z2 to z1. Show that
∫
ĉ
ω = −

∫
C
ω.

(c) Let C be as in part (a). Prove that

|
∫
C

P dx+Qdy| ≤ (MP +MQ)L,

where MP and MQ are bounds for the continuous functions |P | and |Q| on the
compact set C, and where L is the length of C.

EXAMPLE. The simplest interesting example of a differential form is constructed
as follows. Suppose U is an open subset of R2, and let f : U → R be a differentiable
real-valued function of two real variables; i.e., both of its partial derivatives exist
at every point (x, y) ∈ U. (See the last section of Chapter IV.) Define a differential
form ω = df, called the differential of f, by

df =
∂f

∂x
dx+

∂f

∂y
dy,
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i.e., P = ∂f/∂x and Q = ∂f/∂y. These differential forms df are called exact
differential forms.

REMARK. Not every differential form ω is exact, i.e., of the form df. Indeed,
determining which ω’s are df ’s boils down to what may be the simplest possible
partial differential equation problem. If ω is given by two functions P and Q, then
saying that ω = df amounts to saying that f is a solution of the pair of simultaneous
partial differential equations

∂f

∂x
= P and

∂f

∂y
= Q.

See part (b) of the exercise below for an example of a nonexact differential form.
Of course if a real-valued function f has continuous partial derivatives of the

second order, then Theorem 4.22 tells us that the mixed partials fxy and fyx must
be equal. So, if ω = Pdx + Qdy = df for some such f, Then P and Q would
have to satisfy ∂P/∂y = ∂Q/∂x. Certainly not every P and Q would satisfy this
equation, so it is in fact trivial to find examples of differential forms that are not
differentials of functions. A good bit more subtle is the question of whether every
differential form Pdx+Qdy, for which ∂P/∂y = ∂Q/∂x, is equal to some df. Even
this is not true in general, as part (c) of the exercise below shows. The open subset
U on which the differential form is defined plays a significant role, and, in fact,
differential forms provide a way of studying topologically different kinds of open
sets.

In fact, although it may seem as if a differential form is really nothing more than a
pair of functions, the concept of a differential form is in part a way of organizing our
thoughts about partial differential equation problems into an abstract mathematical
context. This abstraction is a good bit more enlightening in higher dimensional
spaces, i.e., in connection with functions of more than two variables. Take a course
in Multivariable Analysis!
Exercise 6.17. (a) Solve the pair of simultaneous partial differential equations

∂f

∂x
= x+ y and

∂f

∂y
= x− y.

(b) Show that it is impossible to solve the pair of simultaneous partial differential
equations

∂f

∂x
= x+ y and

∂f

∂y
= y3.

Hence, conclude that the differential form ω = (x+y)dx+y3dy is not the differential
df of any real-valued function f.

(c) Let U be the open subset of R2 that is the complement of the single point
(0, 0). Let P (x, y) = −y/(x2 + y2) and Q(x, y) = x/(x2 + y2). Show that ∂P/∂y =
∂Q/∂x at every point of U, but that ω = Pdx + Qdy is not the differential df of
any smooth function f on U.
HINT: If P were fx, then f would have to be of the form f(x, y) = − tan−1(x/y) +
g(y), where g is some differentiable function of y. Show that if Q = fy then g(y) is
a constant c. Hence, f(x, y) must be − tan−1(x/y) + c. But this function f is not
continuous, let alone differentiable, at the point (1, 0). Consider lim f(1, 1/n) and
lim f(1,−1/n).
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The next thing we wish to investigate is the continuity of
∫
C
ω as a function of

the curve C. This brings out a significant difference in the concepts of line integrals
versis integrals with respect to arc length. For the latter, we typically think of a
fixed curve and varying functions, whereas with line integrals, we typically think
of a fixed differential form and variable curves. This is not universally true, but
should be kept in mind.

THEOREM 6.11. Let ω = Pdx+Qdy be a fixed, bounded, uniformly continuous
differential form on a set U in R2, and let C be a fixed piecewise smooth curve
of finite length L, parameterized by φ : [a, b] → C, that is contained in U. Then,
given an ε > 0 there exists a δ > 0 such that, for any curve Ĉ contained in U,

|
∫
C
ω −

∫
Ĉ
ω| < ε whenever the following conditions on the curve Ĉ hold:

(1) Ĉ is a piecewise smooth curve of finite length L̂ contained in U, parame-
terized by φ̂ : [a, b]→ Ĉ.

(2) |φ(t)− φ̂(t)| < δ for all t ∈ [a, b].
(3)

∫ b
a
|φ′(t)− φ̂′(t)| dt < δ.

PROOF. Let ε > 0 be given. Because both P and Q are bounded on U, let MP

and MQ be upper bounds for the functions |P | and |Q| respectively. Also, since
both P and Q are uniformly continuous on U, there exists a δ > 0 such that if
|(c, d) − (c′, d′)| < δ, then |P (c, d) − P (c′, d′)| < ε/4L and |Q(c, d) − Q(c′, d′)| <
ε/4L. We may also choose this δ to be less than both ε/4MP and ε/4MQ. Now,
suppose Ĉ is a curve of finite length L̂, parameterized by φ̂ : [a, b] → Ĉ, and
that |φ(t) − φ̂(t)| < δ for all t ∈ [a, b], and that

∫ b
a
|φ′(t) − φ̂′(t)| < δ. Writing
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φ(t) = (x(t), y(t)) and φ̂(t) = (x̂(t), ŷ(t)), we have

0 ≤ |
∫
C

P dx+Qdy −
∫
Ĉ

P dx+Qdy|

= |
∫ b

a

P (φ(t))x′(t)− P (φ̂(t))x̂′(t) +Q(φ(t))y′(t)−Q(φ̂(t))ŷ′(t) dt|

≤
∫ b

a

|P (φ(t))x′(t)− P (φ̂(t))x̂′(t)| dt+
∫ b

a

|Q(φ(t))y′(t)−Q(φ̂(t))ŷ′(t)| dt

≤
∫ b

a

|P (φ(t))− P (φ̂(t))||x′(t)| dt+
∫ b

a

|P (φ̂(t))||x′(t)− x̂′(t)| dt

+
∫ b

a

|Q(φ(t))−Q(φ̂(t))||y′(t)| dt+
∫ b

a

|Q(φ̂(t))||y′(t)− ŷ′(t)| dt

≤ ε

4L

∫ b

a

|x′(t)| dt+MP

∫ b

a

|x′(t)− x̂′(t)| dt

+
ε

4L

∫ b

a

|y′(t)| dt+MQ

∫ b

a

|y′(t)− ŷ′(t)| dt

≤ ε

4L

∫ b

a

|φ′(t)| dt+MP

∫ b

a

|φ′(t)− φ̂′(t)| dt

+
ε

4L

∫ b

a

|φ′(t)| dt+MQ

∫ b

a

|φ′(t)− φ̂′(t)| dt

<
ε

4
+
ε

4
+MP δ +MQδ

< ε,

as desired.

Again, we have a special notation when the curve C is a graph. If g : [a, b]→ R

is a piecewise smooth function, then its graph C is a piecewise smooth curve, and
we write

∫
graph(g)

P dx+Qdy for the line integral of the differential form Pdx+Qdy
over the curve C = graph(g).

As alluded to earlier, there is a connection between contour integrals and line
integrals. It is that a single contour integral can often be expressed in terms of two
line integrals. Here is the precise statement.

THEOREM 6.12. Suppose C is a piecewise curve of finite length, and that f =
u + iv is a complex-valued, continuous function on C. Let φ : [a, b] → C be a
parameterization of C, and write φ(t) = x(t) + iy(t). Then

∫
C

f(ζ) dζ =
∫
C

(U dx− v dy) +
∫
C

(v dx+ u dy).
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PROOF. We just compute:∫
C

f(ζ) dζ =
∫ b

a

f(φ(t))φ′(t) dt

=
∫ b

a

(u(φ(t)) + iv(φ(t)))(x′(t) + iy′(t)) dt

=
∫ b

a

(u(φ(t))x′(t)− v(φ(t))y′(t))

+ i(v(φ(t))x′(t) + u(φ(t))y′(t)) dt

=
∫ b

a

(u(φ(t))x′(t)− v(φ(t))y′(t)) dt

+ i

∫ b

a

(v(φ(t))x′(t) + u(φ(t))y′(t)) dt

=
∫
C

u dx− v dy + i

∫
C

v dx+ u dy,

as asserted.

INTEGRATION AROUND CLOSED CURVES, AND GREEN’S THEOREM

Thus far, we have discussed integration over curves joining two distinct points
z1 and z2. Very important in analysis is the concept of integrating around a closed
curve, i.e., one that starts and ends at the same point. There is nothing really
new here; the formulas for all three kinds of integrals we have defined will look the
same, in the sense that they all are described interms of some parameterization φ. A
parameterization φ : [a, b]→ C of a closed curve C is just like the parameterization
for a curve joining two points, except that the two points φ(a) and φ(b) are equal.

Two problems are immediately apparent concerning integrating around a closed
curve. First, where do we start on the curve, which point is the initial point? And
second, which way to we go around the curve? Recall tha if φ : [a, b] → C is a
parameterization of C, then ψ : [a, b] → C, defined by ψ(t) = φ(a + b − t), is a
parameterization of C that is the reverse of φ, i.e., it goes around the curve in
the other direction. If we are integrating with respect to arc length, this reverse
direction won’t make a difference, but, for contour integrals and line integrals,
integrating in the reverse direction will introduce a minus sign.

The first question mentioned above is not so difficult to handle. It doesn’t really
matter where we start on a closed curve; the parameterization can easily be shifted.
Exercise 6.18. Let φ[a, b]→ R

2 be a piecewise smooth function that is 1-1 except
that φ(a) = φ(b). For each 0 < c < b− a, define φ̂ : [a+ c, b+ c] : R2 by φ̂(t) = φ(t)
for a+ c ≤ t ≤ b, and φ̂(t) = φ(t− b+ a for b ≤ t ≤ b+ c.

(a) Show that φ̂ is a piecewise smooth function, and that the range C of φ
coincides with the range of φ̂.

(b) Let f be an integrable (with respect to arc length) function on C. Show that∫ b

a

f(φ(t))|φ′(t)| dt =
∫ b+c

a+c

f(φ̂(t))|φ̂′(t)| dt.
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That is, the integral
∫
C
f(s) ds of f with respect to arc length around the closed

curve C is independent of where we start.
(c) Let f be a continuous complex-valued function on C. Show that∫ b

a

f(φ(t))φ′(t) dt =
∫ b+c

a+c

f(φ̂(t))φ̂′(t) dt.

That is, the contour integral
∫
C
f(ζ) dζ of f around the closed curve C is indepen-

dent of where we start.
(d) Let ω = Pdx+Qdy be a differential form on C. Prove that∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt =
∫ b+c

a+c

P (φ̂(t))x̂′(t) +Q(φ̂(t))ŷ′(t) dt.

That is, the line integral
∫
C
ω of ω around C is independent of where we start.

The question of which way we proceed around a closed curve is one that leads to
quite intricate and difficult mathematics, at least when we consider totaly general
smooth curves. For our purposes it wil, suffice to study a special kind of closed
curve, i.e., curves that are the boundaries of piecewise smooth geometric sets. In-
deed, the intricate part of the general situation has a lot to do with determining
which is the “inside” of the closed curve and which is the “outside,” a question that
is easily settled in the case of a geometric set. Simple pictures make this general
question seem silly, but precise proofs that there is a definite inside and a definite
outside are difficult, and eluded mathematicians for centuries, culminating in the
famous Jordan Curve Theorem, which asserts exactly what our intuition predicts:

JORDAN CURVE THEOREM. The complement of a closed curve is the
union of two disjoint components, one bounded and one unbounded.

We define the bounded component to be the inside of the curve and the un-
bounded component to be the outside.

We adopt the following convention for how we integrate around the boundary
of a piecewise smooth geometric set S. That is, the curve CS will consist of four
parts: the lower boundary (graph of the lower bounding function l), the righthand
boundary (a portion of the vertical line x = b), the upper boundary (the graph
of the upper bounding function u), and finally the lefthand side (a portion of the
vertical line x = a). By integrating around such a curve CS , we will always mean
proceeding counterclockwise around the curves. Specifically, we move from left to
right along the lower boundary, from bottom to top along the righthand boundary,
from right to left across the upper boundary, and from top to bottom along the
lefthand boundary. Of course, as shown in the exercise above, it doesn’t matter
where we start.
Exercise 6.19. Let S be the closed piecewise smooth geometric set that is de-
termined by the interval [a, b] and the two piecewise smooth bounding functions u
and l. Assume that the boundary CS of S has finite length. Suppose the graph
of u intersects the lines x = a and x = b at the points (a, c) and (b, d), and sup-
pose that the graph of l intersects those lines at the points (a, e) and (b, f). Find a
parameterization φ : [a′, b′]→ CS of the curve CS .
HINT: Try using the interval [a, b+ d− f + b− a+ c− e] as the domain [a′, b′] of φ.
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The next theorem, though simple to state and use, contains in its proof a combi-
natorial idea that is truly central to all that follows in this chapter. In its simplest
form, it is just the realization that the line integral in one direction along a curve
is the negative of the line integral in the opposite direction.

THEOREM 6.13. Let S1, . . . , Sn be a collection of closed geometric sets that
constitute a partition of a geometric set S, and assume that the boundaries of all
the Si’s, as well as the boundary of S, have finite length. Suppose ω is a continuous
differential form on all the boundaries {CSk}. Then∫

CS

ω =
n∑
k=1

∫
CSk

ω.

PROOF. We give a careful proof for a special case, and then outline the general
argument. Suppose then that S is a piecewise smooth geometric set, determined
by the interval [a, b] and the two bounding functions u and l, and assume that the
boundary CS has finite length. Suppose m(x) is a piecewise smooth function on
[a, b], satisfying

∫ b
a
|m′| <∞, and assume that l(x) < m(x) < u(x) for all x ∈ (a, b).

Let S1 be the geometric set determined by the interval [a, b] and the two bounding
functions m and l, and let S2 be the geometric set determined by the interval [a, b]
and the two bounding functions u and m. We note first that the two geometric
sets S1 and S2 comprise a partition of the geometric set S, so that this is indeed a
pspecial case of the theorem.

Next, consider the following eight line integrals: First, integrate from left to
write along the graph of m, second, up the line x = b from (b,m(b)) to (b, u(b)),
third, integrate from right to left across the graph of u, fourth, integrate down
the line x = a from (a, u(a)) to (a,m(a)), fifth, continue down the line x = a
from (a,m(a)) to (a, l(a)), sixth, integrate from left to right across the graph of l,
seventh, integrate up the line x = b from (b, l(b)) to (b,m(b)), and finally, integfrate
from right to left across the graph of m.

The first four line integrals comprise the line integral around the geometric set
S2, and the last four comprise the line integral around the geometric set S1. On
the other hand, the first and eighth line integrals here cancel out, for one is just
the reverse of the other. Hence, the sum total of these eight line integrals, integrals
2–7, is just the line integral around the boundary CS of S. Therefore∫

CS

ω =
∫
CS1

ω +
∫
CS2

ω

as desired.
We give next an outline of the proof for a general partition S1, . . . , Sn of S.

Let Sk be determined by the interval [ak, bk] and the two bounding functions uk
and lk. Observe that, if the boundary CSk of Sk intersects the boundary CSj of Sj
in a curve C, then the line integral of ω along C, when it is computed as part of
integrating counterclockwise around Sk, is the negative of the line integral along
C, when it is computed as part of the line integral counterclockwise around Sj .
Indeed, the first line integral is the reverse of the second one. (A picture could be
helpful.) Consequently, when we compute the sum of the line integrals of ω around
the CSk ’s, All terms cancel out except those line integrals that ar computed along
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parts of the boundaries of the Sk’s that intersect no other Sj . But such parts of the
boundaries of the Sk’s must coincide with parts of the boundary of S. Therefore,
the sum of the line integrals of ω around the boundaries of the Sk’s equals the line
integral of ω around the boundary of S, and this is precisely what the theorem
asserts.

Exercise 6.20. Prove the analog of Theorem 6.13 for contour integrals: Let
S1, . . . , Sn be a collection of closed geometric sets that constitute a partition of
a geometric set S, and assume that the boundaries of all the Si’s, as well as the
boundary of S, have finite length. Suppose f is a continuous complex-valued func-
tion on all the boundaries {CSk} as well as on the boundary CS . Then

∫
CS

f(ζ) dζ =
n∑
k=1

∫
CSk

f(ζ) dζ.

We come now to the most remarkable theorem in the subject of integration over
curves, Green’s Theorem. Another fanfare, please!

THEOREM 6.14. (Green) Let S be a piecewise smooth, closed, geometric set,
let CS denote the closed curve that is the boundary of S, and assume that CS is of
finite length. Suppose ω = Pdx + Qdy is a continuous differential form on S that
is smooth on the interior S0 of S. Then∫

CS

ω =
∫
CS

P dx+Qdy =
∫
S

∂Q

∂x
− ∂P

∂y
.

REMARK. The first thing to notice about this theorem is that it connects an
integral around a (1-dimensional) curve with an integral over a (2-dimensional)
set, suggesting a kind of connection between a 1-dimensional process and a 2-
dimensional one. Such a connection seems to be unexpected, and it should therefore
have some important implications, as indeed Green’s Theorem does.

The second thing to think about is the case when ω is an exact differential df of
a smooth function f of two real variables. In that case, Green’s Theorem says∫

CS

∂f

∂x
dx+

∂f

∂y
dy =

∫
S

(fyx − fxy),

which would be equal to 0 if f ∈ C2(S), by Theorem 4.22. Hence, the integral of df
around any such curve would be 0. If U is an open subset of R2, there may or may
not be some other ω’s, called closed differential forms, having the property that
their integral around every piecewise smooth curve of finite length in U is 0, and
the study of these closed differential forms ω that are not exact differential forms
df has led to much interesting mathematics. It turns out that the structure of the
open set U, e.g., how many “holes” there are in it, is what’s important. Take a
course in Algebraic Topology!

The proof of Green’s Theorem is tough, and we break it into several steps.



190 VI. INTEGRATION OVER SMOOTH CURVES IN THE PLANE

LEMMA 1. Suppose S is the rectangle [a, b] × [c, d]. Then Green’s Theorem is
true.

PROOF OF LEMMA 1. We think of the closed curve CS bounding the rectangle
as the union of four straight lines, C1, C2, C3 and C4, and we parameterize them as
follows: Let φ : [a, b]→ C1 be defined by φ(t) = (t, c); let φ : [b, b+ d− c]→ C2 be
defined by φ(t) = (b, t− b+ c); let φ : [b+d− c, b+d− c+ b−a]→ C3 be defined by
φ(t) = (b+d−c+b− t, d); and let φ : [b+d−c+b−a, b+d−c+b−a+d−c]→ C4

be defined by φ(t) = (a, b+d− c+ b−a+d− t). One can check directly to see that
this φ parameterizes the boundary of the rectangle S = [a, b]× [c, d].

As usual, we write φ(t) = (x(t), y(t)). Now, we just compute, use the Funda-
mental Theorem of Calculus in the middle, and use part (d) of Exercise 5.30 at the
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end. ∫
CS

ω =
∫
C1

ω +
∫
C2

ω

+
∫
C3

ω +
∫
C4

ω

=
∫
C1

P dx+Qdy +
∫
C2

P dx+Qdy

+
∫
C3

P dx+Qdy +
∫
C4

P dx+Qdy

=
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c

b

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a

b+d−c
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a+d−c

b+d−c+b−a
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

=
∫ b

a

P (t, c) dt+
∫ b+d−c

b

Q(b, t− b+ c) dt

+
∫ b+d−c+b−a

b+d−c
P (b+ d− c+ b− t, d)(−1) dt

+
∫ b+d−c+b−a+d−c

b+d−c+b−a
Q(a, b+ d− c+ b− a+ d− t)(−1) dt

=
∫ b

a

P (t, c) dt+
∫ d

c

Q(b, t) dt

−
∫ b

a

P (t, d) dt−
∫ d

c

Q(a, t) dt

=
∫ d

c

(Q(b, t)−Q(a, t)) dt−
∫ b

a

(P (t, d)− P (t, c)) dt

=
∫ d

c

∫ b

a

∂Q

∂x
(s, t) dsdt

−
∫ b

a

∫ d

c

∂P

∂y
(t, s) dsdt

=
∫
S

(
∂Q

∂x
− ∂P

∂y
,

proving the lemma.

LEMMA 2. Suppose S is a right triangle whose vertices are of the form (a, c), (b, c)
and (b, d). Then Green’s Theorem is true.

PROOF OF LEMMA 2. We parameterize the boundary CS of this triangle as
follows: For t ∈ [a, b], set φ(t) = (t, c); for t ∈ [b, b+ d− c], set φ(t) = (b, t+ c− b);
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and for t ∈ [b+d− c, b+d− c+ b−a], set φ(t) = (b+d− c+ b− t, b+d− c+d− t).
Again, one can check that this φ parameterizes the boundary of the triangle S.

Write φ(t) = (x(t), y(t)). Again, using the Fundamental Theorem and Exercise
5.30, we have∫

CS

ω =
∫
CS

P dx+Qdy

=
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c

b

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a

b+d−c
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

=
∫ b

a

P (t, c) dt+
∫ b+d−c

b

Q(b, t+ c− b) dt

+
∫ b+d−c+b−a

b+d−c
P (b+ d− c+ b− t, b+ d− c+ d− t)(−1) dt

+
∫ b+d−c+b−a

b+d−c
Q(b+ d− c+ b− t, b+ d− c+ d− t)(−1) dt

=
∫ b

a

P (t, c) dt+
∫ d

c

Q(b, t) dt

−
∫ b

a

P (s, (d+
s− b
a− b

(c− d))) ds

−
∫ d

c

Q(b+
s− d
c− d

(a− b)), s) ds

=
∫ d

c

(Q(b, s)−Q((b+
s− d
c− d

(a− b)), s)) ds

−
∫ b

a

(P (s, (d+
s− b
a− b

(c− d)))− P (s, c)) ds

=
∫ d

c

∫ b

b+ s−d
c−d (a−b)

∂Q

∂x
(t, s) dtds

−
∫ b

a

∫ d+ s−b
a−b (c−d)

c

∂P

∂y
(s, t) dtds

=
∫
S

(
∂Q

∂x
− ∂P

∂y
,

which proves Lemma 2.

LEMMA 3. Suppose S1, . . . , Sn is a partition of the geometric set S, and that the
boundary CSk has finite length for all 1 ≤ k ≤ n. If Green’s Theorem holds for each
geometric set Sk, then it holds for S.

PROOF OF LEMMA 3. From Theorem 6.13 we have∫
CS

ω =
n∑
k=1

∫
CSk

ω,
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and from Theorem 5.24 we have∫
S

Qx − Py =
n∑
k=1

∫
Sk

Qx − Py.

Since Green’s Theorem holds for each k, we have that∫
CSk

ω =
∫
Sk

Qx − Py,

and therefore ∫
CS

ω =
∫
S

Qx − Py,

as desired.

Exercise 6.21. (a) Prove Green’s Theorem for a right triangle with vertices of the
form (a, c), (b, c), and (a, d).

(b) Prove Green’s Theorem for a trapezoid having vertices of the form (a, c), (b, c),
(b, d), and (a, e), where both d and e are greater than c.
HINT: Represent this trapezoid as the union of a rectangle and a right triangle that
share a border. Then use Lemma 3.

(c) Prove Green’s Theorem for S any quadrilateral that has two vertical sides.
(d) Prove Green’s Theorem for any geometric set S whose upper and lower

bounding functions are piecewise linear functions.
HINT: Show that S can be thought of as a finite union of quadrilaterals, like those in
part (c), each one sharing a vertical boundary with the next. Then, using induction
and the previous exercise finish the argument.

We need one final lemma before we can complete the general proof of Green’s
Theorem. This one is where the analysis shows up; there are carefully chosen ε’s
and δ’s.

LEMMA 4. Suppose S is contained in an open set U and that ω is smooth on all
of U. Then Green’s Theorem is true.

PROOF OF LEMMA 4. Let the piecewise smooth geometric set S be determined
by the interval [a, b] and the two bounding functions u and l. Using Theorem 2.11,
choose an r > 0 such that the neighborhood Nr(S) ⊆ U. Now let ε > 0 be given,
and choose delta to satisfy the following conditions:

(1) (a) δ < r/2, from which it follows that the open neighborhood Nδ(S) is a
subset of the compact set Nr/2(S). (See part (f) of Exercise 2.24.)

(2) (b) δ < ε/4M, where M is a common bound for all four continuous functions
|P |, |Q|, |Py|, and |Qx| on the compact set Nr/2(S).

(3) (c) δ < ε/4M(b− a).
(4) (d) δ satisfies the conditions of Theorem 6.11.

Next, using Theorem 6.1, choose two piecewise linear functions pu and pl so that
(1) |u(x)− pu(x)| < δ/2 for all x ∈ [a, b].
(2) |l(x)− pl(x)| < δ/2 for all x ∈ [a, b].
(3)

∫ b
a
|u′(x)− p′u(x)| dx < δ.

(4)
∫ b
a
|l′(x)− p′l(x)| dx < δ.
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Let Ŝ be the geometric set determined by the interval [a, b] and the two bounding
functions û and l̂, where û = pu + δ/2 and l̂ = pl− δ/2. We know that both û and l̂
are piecewise linear functions. We have to be a bit careful here, since for some x’s it
could be that pu(x) < pl(x). Hence, we could not simply use pu and pl themselves
as bounding functions for Ŝ. We do know from (1) and (2) that u(x) < û(x) and
l(x) > l̂(x), which implies that the geometric set S is contained in the geometric
set Ŝ. Also Ŝ is a subset of the neighborhood Nδ(s), which in turn is a subset of
the compact set Nr/2(S).

Now, by part (d) of the preceding exercise, we know that Green’s Theorem holds
for Ŝ. That is ∫

C
Ŝ

ω =
∫
Ŝ

(Qx − Py).

We will show that Green’s Theorem holds for S by showing two things: (i) |
∫
CS
ω−∫

C
Ŝ

ω| < 4ε, and (ii) |
∫
S

(Qx) − Py) −
∫
Ŝ

(Qx − Py)| < ε. We would then have, by
the usual adding and subtracting business, that

|
∫
CS

ω −
∫
S

(Qx − Py)| < 5ε,

and, since ε is an arbitrary positive number, we would obtain∫
CS

ω =
∫
S

(Qx − Py).

Let us estabish (i) first. We have from (1) above that |u(x) − û(x)| < δ for all
x ∈ [a, b], and from (3) that∫ b

a

|u′(x)− û′(x)| dx =
∫ b

a

|u′(x)− p′u(x)| dx < δ.

Hence, by Theorem 6.11, ∫
graph(u)

ω −
∫

graph(û)

ω| < ε.

Similarly, using (2) and (4) above, we have that

|
∫

graph(l)

ω −
∫

graph(l̂)

ω| < ε.

Also, the difference of the line integrals of ω along the righthand boundaries of S
and Ŝ is less than ε. Thus

|
∫
C

(b,u(b))

(b,l(b))

ω −
∫
C

(b,û(b))

(b,l̂(b))

ω| = |
∫ u(b)

l(b)

Q(b, t) dt−
∫ û(b)

l̂(b)

Q(b, t) dt|

≤ |
∫ û(b)

u(b)

Q(b, t) dt|+ |
∫ l(b)

l̂(b)

Q(b, t) dt|

≤M(|l(b)− l̂(b)|+ |u(b)− û(b)|)
≤M(δ + δ)

= 2Mδ

< ε.
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Of course, a similar calculation shows that

|
∫
C

(a,l(a))

(a,u(a))

ω −
∫
C

(a,l̂(a))

(a,û(a))

ω| < ε.

These four line integral inequalities combine to give us that

|
∫
CS

ω −
∫
C
Ŝ

ω| < 4ε,

establishing (i).
Finally, to see (ii), we just compute

0 ≤ |
∫
Ŝ

(Qy − Px)−
∫
S

(Qy − Px)|

= |
∫ b

a

∫ û(t)

l̂(t)

(Qx((t, s)− Py(t, s)) dsdt−
∫ b

a

∫ u(t)

l(t)

(Qx(t, s)− Py(t, s)) dsdt|

= |
∫ b

a

∫ l(t)

l̂(t)

(Qx(t, s)− Py(t, s)) dsdt+
∫ b

a

∫ û(t)

u(t)

(Qx(t, s)− Py(t, s)) dsdt|

≤ 2M(
∫ b

a

|l(t)− l̂(t)|+ |û(t)− u(t)| dt

≤ 4Mδ(b− a)

< ε.

This establishes (ii), and the proof is complete.

At last, we can finish the proof of this remarkable result.

PROOF OF GREEN’S THEOREM. As usual, let S be determined by the interval
[a, b] and the two bounding functions u and l. Recall that u(x) − l(x) > 0 for all
x ∈ (a, b). For each natural number n > 2, let Sn be the geometric set that is
determined by the interval [a + 1/n, b − 1/n] and the two bounding functions un
and ln, where un = u − (u − l)/n restricted to the interval [a + 1/n, b − 1/n], and
ln = l + (u − l)/n restricted to [a + 1/n, b − 1/n]. Then each Sn is a piecewise
smooth geometric set, whose boundary has finite length, and each Sn is contained
in the open set S0 where by hypothesis ω is smooth. Hence, by Lemma 4, Green’s
Theorem holds for each Sn. Now it should follow directly, by taking limits, that
Green’s Theorem holds for S. In fact, this is the case, and we leave the details to
the exercise that follows.

Exercise 6.22. Let S, ω, and the Sn’s be as in the preceding proof.
(a) Using Theorem 6.11, show that∫

CS

ω = lim
∫
CSn

ω.

(b) Let f be a bounded integrable function on the geometric set S. Prove that∫
S

f = lim
∫
Sn

f.
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(c) Complete the proof to Green’s Theorem; i.e., take limits.

REMARK. Green’s Theorem is primarily a theoretical result. It is rarely used
to “compute” a line integral around a curve or an integral of a function over a
geometric set. However, there is one amusing exception to this, and that is when
the differential form ω = x dy. For that kind of ω, Green’s Theorem says that the
area of the geometric set S can be computed as follows:

A(S) =
∫
S

1 =
∫
S

∂Q

∂x
=
∫
CS

x dy.

This is certainly a different way of computing areas of sets from the methods we
developed earlier. Try this way out on circles, ellipses, and the like.


