We imagine we have an infinitely long rod and that we have fixed a point on the rod that we call 0 . We suppose that a function u of two variables t and x is such that the value $u(t, x)$ is the temperature at the point x on the rod at time t. We would like to be able to predict how this temperature function changes with time. That is, we consider the following so-called "initial value problem."

We suppose that we know the values $u(0, x) \equiv f(x)$ for all points x. These are the initial values (temperatures). Is that enough information for us to be able to figure out the values $u(t, x)$ for a later time t ? That is, is the evolution of the temperature function uniquely determined by what it is at a starting time? Can we find out what the temperature was at an earlier time, given what it is now? Is there an explicit formula for $u(t, x)$ in terms of this initial function f ? Moreover, can we see what happens as time tends to infinity, i.e., the long-term behavior? Or, can we determine what happened at $t=-\infty$? That is, can we analyze backwards to figure out what the temperature was at the very beginning of time?

REMARK. Physicists think that the temperature at a point on the rod is proportional to the velocity of the molecule at that point in the rod. Since the square of the velocity V^{2} is proportional to the kinetic energy $m V^{2} / 2$, we presume that the function $|u(t, x)|^{2}$ is proportional to the "instantaneous" energy at the point x, and so $\int_{-\infty}^{\infty}|u(t, x)|^{2} d x$ should represent the total energy at time t. This leads us to our first discovery about the function $u(t, x)$. It must satisfy $\int_{-\infty}^{\infty}|u(t, x)|^{2} d x<\infty$ for every time t. The total energy must be finite at any given time.

Mathematicians say that these functions of x belong to L^{2}.
Said precisely, a function ϕ is said to belong to L^{p} if $\int_{-\infty}^{\infty}|\phi(x)|^{p} d x<\infty$.
Physicists also believe that this temperature function u must satisfy the following partial differential equation, called the heat equation.

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)
$$

EXERCISE 1.1. Can you think of any solutions to this partial differential equation? How about $u(t, x)=0$ or $u(t, x)=1$, or $u(t, x)=2 t+x^{2}$? How about $u(t, x)=$ $e^{k^{2} t} \times e^{k x}$? Do any of these functions satisfy the finite energy $\left(L^{2}\right)$ requirement? Can you think of any other solutions of the heat equation?

EXAMPLE 1.1. For all real numbers x and all positive t, define

$$
k(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

EXERCISE 1.2. Verify that this function k satisfies the heat equation. Notice that this function is not defined for $t=0$. Can you figure out what happens to $k(t, x)$ as t approaches 0 ?
DEFINITION. The function $k(t, x)$ is called the fundamental solution of the heat equation on the line, and it is also frequently referred to as the heat kernel.

EXERCISE 1.3. Let $f(x)=e^{-\pi x^{2}}$, and let $C=\int_{-\infty}^{\infty} f(x) d x$. Justify the following computations

$$
\begin{aligned}
C^{2} & =C \int_{-\infty}^{\infty} f(x) d x \\
& =\int_{-\infty}^{\infty} C f(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y) d y f(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi y^{2}} d y f(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) e^{-\pi y^{2}} d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi x^{2}} e^{-\pi y^{2}} d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi\left(x^{2}+y^{2}\right)} d y d x \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\pi r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} \frac{-1}{2 \pi} \int_{0}^{\infty} e^{-\pi r^{2}}(-2 \pi r) d r d \theta \\
& =\frac{-1}{2 \pi} \int_{0}^{2 \pi} e^{-\pi r^{2}}\left[\begin{array}{l}
\infty \\
0
\end{array} d \theta\right. \\
& =\frac{-1}{2 \pi} \int_{0}^{2 \pi}(0-1) d \theta \\
& =1
\end{aligned}
$$

Conclude that

$$
\int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=1
$$

EXERCISE 1.4. (a) For any positive number a, compute $\int_{-\infty}^{\infty} e^{-a x^{2}} d x$. (Use Exercise 1.3, and make a change of variables.)
(b) Let $k(t, x)$ be the function in Example 1.1 above. Compute $\int_{-\infty}^{\infty}|k(t, x)| d x$ and $\int_{-\infty}^{\infty}|k(t, x)|^{2} d x$, and investigate what happens to this total energy as t tends to infinity. Also, what happens to this energy as t approaches 0 ?
(c) For any real number b, compute $\int_{-\infty}^{\infty} e^{-(x+b)^{2}} d x$.
(d) For a, b, and c real numbers, with $a>0$, compute $\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x$.

HINT: Complete the square and use earlier parts of this exercise.
One of our main goals is to figure out where this funny function $k(t, x)$ comes from. You surely couldn't have guessed that this would be a solution to the heat equation. It may not be any good anyhow, because it doesn't really fit our initial value problem. Why do we even consider this function?

