
MATH 4330/5330, Fourier Analysis
Section 11, The Discrete Fourier Transform

Now, instead of considering functions defined on a continuous domain, like the
interval [0, 1) or the whole real line R, we wish to study functions defined on a
discrete set of points. This is of course how engineers actually use Fourier analysis.
We begin with the discrete set (group) Z of all integers. This is certainly a group
with respect to the binary operation of +. What should be the definition of the
Fourier transform f̂ of a function f on this set? To begin with, what should the
domain of the function f̂ be? By analogy with what we did earlier, let us determine
the set of homomorphisms of the group Z into the circle group T. Remember, this
is the way we decided what the domain of the Fourier transform on the real line
should be.

THEOREM 11.1. Let φ be a function on Z that maps into the circle group T
and satisfies the law of exponents φ(k + l) = φ(k)φ(l). (φ is a homomorphism of
the additive group Z into the multiplicative group T.) Then there exists a unique
element x ∈ [0, 1) such that

φ(k) = e2πikx

for all integers k.

PROOF. Notice first that φ(0) = φ(0 + 0) = φ(0)φ(0) = φ(0)2, so that φ(0) must
be equal to 1. (Why couldn’t φ(0) be 0?)

Now let λ be the element of T for which λ = φ(1), and let x be the unique point
in the interval [0, 1) such that λ = e2πix. (Why is there only one such number x?)
We have then that φ(1) = λ = e2πix. Then,

φ(2) = φ(1 + 1) = φ(1)× φ(1) = λ2 = e2πi2x,

φ(3) = λ3 = e2πi3x, φ(4) = λ4 = e2πi4x, . . . .

That is, for any 0 ≤ k, we must have φ(k) = λk = e2πikx. Now, for −k < 0, we
know that

1 = φ(0) = φ(k − k) = φ(k)φ(−k) = λkφ(−k),

showing that

φ(−k) =
1
λk

= λ−k = e2πi(−k)x.

This proves the theorem.

The preceding theorem shows that the set of homomorphisms of the group Z into
the circle BbbT are parameterized by the numbers x in the interval [0, 1). That
is, for each element x ∈ [0, 1), there is a homomorphism φx of Z into T defined by
φx(k) = e2πikx, and these are all the homomorphisms of Z into T. In other words,
the set of homomorphisms of the group Z into the group T is parameterized by the
points in the interval [0, 1). So, following our earlier development, we should define
the Fourier transform of a function f on Z to be the function f̂ on [0, 1) given by

f̂(x) =
∞∑

k=−∞

f(k)φx(k) =
∞∑

k=−∞

f(k)e−2πikx.
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REMARK. Notice that, just as in the case of the real line, we are only able to
define the Fourier transform of a function f on Z if it is absolutely summable. that
is, only if

∑∞
k=−∞ |f(k)| <∞.

EXERCISE 11.1. (a) Let f be the function on Z given by f(k) = 0 unless k = ±1,
and f(1) = f(−1) = 1. What is the Fourier transform of f?

(b) Fix a positive integer N, and let f be the function on Z given by f(k) = 1 if
−N ≤ k ≤ N and 0 otherwise. Find the Fourier transform of f.

What should Fourier’s Theorem be in this case? that is, how can we recover the
function f on Z from the function f̂ on [0, 1). Before giving the answer, we make
the following observations:

EXERCISE 11.2. Let f be an absolutely summable function on the group Z of
integers, and write f̂ for the function on [0, 1) defined by

f̂(x) =
∞∑

k=−∞

f(k)e−2πikx.

(a) Use the Weierstrass M -Test to show that f̂ is a continuous function on [0, 1).
The Weierstrass M -Test says the following: Suppose {uk} is an infinite sequence
of continuous functions, and suppose that {mk} is a corresponding sequence of
nonnegative numbers for which |uk(x)| ≤ mk for all x, and for which the infinite
series

∑
mk converges. Then the infinite series

∑
uk(x) converges to a continuous

function.
(b) Conclude that f̂ is a square-integrable function on [0, 1).

Here is Fourier’s Theorem in this context:

THEOREM 11.2. Let f be an absolutely summable function on Z. Then, for
each integer n, we have

f(n) =
∫ 1

0

f̂(x)e2πinx dx.

PROOF. ∫ 1

0

f̂(x)e2πinx dx =
∫ 1

0

∞∑
k=−∞

f(k)e−2πikxe2πinx dx

=
∞∑

k=−∞

∫ 1

0

f(k)e2πi(n−k)x dx

=
∞∑

k=−∞

f(k)
∫ 1

0

e2πi(n−k)x dx

=
∞∑
−∞

f(k)δn,k

= f(n),

which proves the theorem.

REMARK. This whole thing looks awfully familiar. It surely must be related to the
Fourier transform on the circle. Indeed, is this just the inverse of that transform?
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EXERCISE 11.3. (a) If f is a square-integrable function on [0, 1), what is the
formula for its Fourier transform, and what is the formula for the inverse transform?

(b) If g is a function on Z, what is the formula for its Fourier transform, and
what is the formula for the inverse transform?

(c) Exactly how are parts (a) and (b) related?

Of course, we could now try to do all the same kinds of things we did with the
other Fourier transforms. It may be a little less interesting this time, primarily
because functions on the discrete set Z are not continuous, and they don’t have
derivatives. The kinds of problems one encounters with these functions are not
differential equations. Perhaps we could work on “difference equations.”

One thing that can be defined in this case is convolution.

DEFINITION. Let f and g be two absolutely summable functions on Z. Define
the convolution f ∗ g of f and g to be the function on Z given by

f ∗ g(n) =
∞∑

k=−∞

f(n− k)g(k).

EXERCISE 11.4. (a) Show that, if f and g are absolutely summable, then so is
f ∗ g.

(b) Prove the convolution theorem in this case:

f̂ ∗ g(x) = f̂(x)ĝ(x).

(c) Show that, in this case, there is an identity for convolution. That is, there is
a function e on Z for which f = f ∗ e for every f.

(d) Show that
f ∗ g(n) =

∑
k,l:k+l=n

f(k)g(l).

The Finite Fourier Transform

Fix a positive integer N, and let G be the finite set 0, 1, 2, . . . , N − 1. The set G
is a group (actually a ring), where addition and multiplication are computed mod
N. It is frequently denoted by ZN .

EXERCISE 11.5. Let N = 64.
(a) Compute 41 + 52 in this group Z64.
(b) Compute 32× 56 in this ring.

We wish to define a Fourier transform on this group. We follow our standard
procedure.

THEOREM 11.3. Let φ be a function on G = ZN that maps into the circle group
T and satisfies the law of exponents φ(k + l) = φ(k)φ(l). (φ is a homomorphism of
the additive group ZN into the multiplicative group T.) Then there exists a unique
integer 0 ≤ j ≤ N − 1 such that

φ(k) = e2πi jkN
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for all k ∈ G. That is, these homomorphisms are parameterized by the numbers
j = 0, 1, 2, . . . , N − 1.

PROOF. Notice first that φ(0) = φ(0 + 0) = φ(0)2, so that φ(0) must be equal to
1.

Now, let z = φ(1). Then,

φ(2) = φ(1 + 1) = φ(1)× φ(1) = z2,

φ(3) = z3, φ(4) = z4, . . . .

That is, for any 0 ≤ k ≤ N − 1 < we must have φ(k) = zk. Now, because N is the
same as 0 in the group G, we must have that zN = φ(N) = φ(0) = 1. That is, zN

must equal 1. Write z = e2πix for some x ∈ [0, 1). We must have that

e2πiNx = (e2πix)N = φ(1)N = φ(N) = 1,

implying that xN is equal to some integer j between 0 and N − 1. (Why?)
Hence, x = j/N, and φ(k) = zk = e2πixk for all k ∈ G, as desired.

EXERCISE 11.6. For each integer 0 ≤ j ≤ N − 1, define a function φj on G = ZN

by
φj(k) = e2πi jkN .

Prove that φj is a homomorphism of the group G into the circle group T, and use
Theorem 11.3 to conclude that these are all such homomorphisms of G.

Now we proceed just as we did in the case of Z. Having determined the set of
homomorphisms of our group into the circle group T, and having seen that they
are parameterized by the numbers 0 ≤ j ≤ N − 1, we define the Fourier transform
of a function on ZN . This is a finite set, so we won’t need any kind of absolute
summability assumption. We can define the Fourier transform for any function on
this group.

DEFINITION. Let V be the set (vector space) of all complex-valued functions
defined on the set G = ZN . If f is an element of the vector space V, we define
the finite Fourier transform f̂ of f to be the function, also defined on the set
0, 1, 2, . . . , N − 1, by

f̂(j) =
N−1∑
k=0

f(k)φj(k)

=
N−1∑
k=0

f(k)e−2πi jkN .

EXERCISE 11.7. (a) Let f be define on G by f(k) = 1/2 − k. Find the finite
Fourier transform f̂ of f. Is this anything like the Fourier transform of the function
1/2 − x on the circle?

(b) Suppose N > 8, and let f(k) = 1 for 0 ≤ k ≤ 7, and f(k) = 0 otherwise.
Find f̂ .
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EXERCISE 11.8. For f and g in V, define

〈f | g〉 =
N−1∑
k=0

f(k)g(k).

(a) Prove that V is a complex inner product space with respect to the above
definition. That is, show that

(1) 〈c1f1 + c2f2 | g〉 = c1〈f1 | g〉 + c2〈f2 | g〉 for all elements f, g ∈ V and all
complex numbers c1 and c2.

(2) 〈f | g〉 = 〈g | f〉 for all f, g ∈ V.
(3) 〈f | f〉 ≥ 0 for all f ∈ V, and 〈f | f〉 = 0 if and only if f is the 0 element

of V.
(b) Let f0, f1, . . . , fN−1 be the functions in V defined as follows: fn(k) = δn,k.

That is, fn is the function that equals 1 on the integer n and equals 0 on all other
integers k. Prove that the collection f0, . . . , fN−1 is an orthonormal set in V. That
is, show that 〈fn | fk〉 = δn,k.

(c) Prove that the functions f0, . . . , fN−1 is a basis for the vector space V. That
is, show that each f ∈ V can be written in a unique way as a linear combination
of the vectors (functions) fn. Conclude then that f0, . . . , fN−1 is an orthonormal
basis for V.

(d) If T is a linear transformation of V into itself, recall from Linear Algebra
that the entries of the matrix A that represents the transformation T with respect
to this orthonormal basis are given by

Aj,k = 〈T (fk) | fj〉,

where both k and j run from 0 to N − 1.

THEOREM 11.4. The Fourier transform on V is a linear transformation from
the N -dimensional vector space V into itself. If f0, . . . , fN−1 is the orthonormal
basis of the preceding exercise, then the entries of the matrix A that represents the
Fourier transform with respect to this basis are given by

Aj,k = e−2πi jkN ,

j and k both running from 0 to N − 1.

EXERCISE 11.9. (a) Use Exercise 11.8 to prove this theorem. Of course, you will
need to compute the Fourier transforms of the functions f0, . . . , fN−1.

(b) Suppose f is a function (thought of as a column vector) in the vector space
V. Verify that the jth component of the column vector A×f is given by the formula

(A× f)j = f̂(j).

Here is Fourier’s Theorem in this case. It should be easier than the other cases,
for this time the Fourier transform is a linear transformation of a finite dimensional
vector space into itself. If it is 1-1, there should be an inverse given by the inverse
of the matrix A.
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THEOREM 11.5. The finite Fourier transform on V is invertible, and in fact
we can recover f from f̂ as follows:

f(k) =
1
N

N−1∑
j=0

f̂(j)e2πi jkN .

PROOF. Let B be the N ×N matrix whose entries are given by

Bl,m =
1
N
e2πi lmN .

We claim that B is the inverse of the matrix A that represents the finite Fourier
transform on V. Thus let us show that BA is the identity matrix. If j = k, then

(AB)j,j =
N−1∑
m=0

Aj,mBm,j

=
1
N

N−1∑
m=0

e−2πi jmN e2πi jmN

=
1
N

N−1∑
m=0

1

= 1.

Therefore, down the diagonal of AB we have 1’s.
Now, if j 6= k, we have

(AB)j,k =
N−1∑
m=0

Aj,mBm,k

=
1
N

N−1∑
m=0

e−2πi jmN e2πimkN

=
1
N

N−1∑
m=0

e2πi
m(k−j)
N

=
1
N

N−1∑
m=0

(e2πi k−jN )m

=
1
N

1− e2πi
(k−j)N
N

1− e2πi k−jN

= 0,

where we have used the formula for the sum of a geometric series at the end of this
calculation. Hence, AB has 0’s off the diagonal, and so AB is the identity matrix,
and B is A−1.
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Therefore, f = B(A(f), or

f(k) = (B ×A× f)k

=
1
N

N−1∑
j=0

e2πi jkN (A× f)j

=
1
N

N−1∑
j=0

e2πi jkN f̂(j),

as claimed.

EXERCISE 11.10. Let f be a function in V.
(a) Suppose N is even, say N = 2M. Show that

f(k) = a0 +
M∑
j=1

(aj cos(2π
jk

N
) + bj sin(2π

jk

N
)),

where
a0 =

1
2M

(f̂(0)− f̂(M)),

and for 1 ≤ j ≤M,

aj =
1

2M
(f̂(j) + f̂(N − j))

and
bj =

i

2M
(f̂(j)− f̂(N − j))).

(b) Deduce that, from the point of view of frequency analysis, the highest fre-
quencies present in a signal (function) f on a finite set of N = 2M elements is
M − 1.

Just as in the other cases we have studied, there is a notion of convolution on
the space V.

DEFINITION. If f and g are functions in V, define a function f ∗ g on G by

f ∗ g(k) =
N−1∑
l=0

f(l)g(k − l).

THEOREM 11.6. Let f and g be elements of V. Then

f̂ ∗ g(j) = f̂(j)ĝ(j)

for all 0 ≤ j ≤ N − 1.

EXERCISE 11.11. Prove the preceding theorem

The Fast Fourier Transform
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Computer designers tell us that all a computer really does is binary additions.
Multiplications are just enormous addition calculations. Therefore, when estimat-
ing the cost of any computer computation, the designers count the number of
multiplications and ignore any simple additions. If f is an element of V, how many
multiplications must be carried out to compute the finite Fourier transform f̂ , i.e.,
f̂(j) for all 0 ≤ j ≤ N − 1? The formula for f̂(j) is

f̂(j) =
N−1∑
k=0

f(k)e−2πi jkN .

So, for each j, we must compute N products. Hence, to compute the entire trans-
form f̂ it appears that we must compute N ×N = N2 products.

Remarkably, and marvelously, this number N2 multiplications can be reduced
to N logN multiplications if we choose N to be a power of 2. (Here, the logarithm
is meant to be taken with respect to the base 2.) This reduction is enormous if N
is large. For example if N = 1024 = 210, then N2 is on the order of 106, a million,
while N logN is on the order of 104.

THEOREM 11.7. Suppose N = 2p. Then the finite Fourier transform of any
element f in V can be computed using at most N logN = p2p multiplications.

PROOF. We must compute all products of the form

f(k)e−2πi jk2p

for both j and k ranging from 0 to 2p− 1. The trick is that some of these products
are automatically equal to others, so that a single multiplication can suffice to
compute two different products, thereby cutting our work roughly in half. Let’s
explore this more carefully. Note the following two things:

1. If k is an even integer, say k = 2l, then

e−2πi
(j+2p−1)k

2p = e−2πi
(jk+2P l

2p = e−2πi jk2p ,

so that

f(k)e−2πi jk2p = f(k)e−2πi
(j+2p−1)k

2p ,

and therefore, for even numbers k, we need only compute the product f(k)e−2πi jk2p

for 0 ≤ j ≤ 2p−1 − 1, i.e., for approximately half the j’s. Each of the remaining
products equals one of these.

Next, if k is odd, say k = 2l + 1, then

e−2πi
(j+2p−1)k

2p = e−2πi jk2p e−2πi
2p−1�(2l+1)

2p = e−2πi jk2p e−πi = −e−2πi jk2p ,

so that, if k = 2l + 1 is an odd number, again we need only compute the product
f(k)e−2πi jk2p for 0 ≤ j ≤ 2p−1 − 1. The remaining half of the products are just the
negatives of these, and the computer guys tell us that it costs nothing to change
the sign of a number.
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Moreover, for even numbers k = 2l, the sums of products we must compute to
find the finite Fourier transform of f are of the form

2p−1−1∑
l=0

f(2l)e−2πi 2lj
2p =

2p−1−1∑
l=0

f(2l)e−2πi jl

2p−1 ,

so that if a function g is defined on the set 0, 1, . . . , 2p−1 − 1 by g(l) = f(2l), then
computing the part of f̂ having to do with even numbers k = 2l is exactly the same
as if we were computing the discrete Fourier transform on the set 0, 1, 2, . . . , 2p−1−1
of g. (You can probably see a mathematical induction argument coming up here.)

In the case when k is odd, the sums of products we must compute look like

2p−1−1∑
l=0

f(2l + 1)e−2πi
j(2l+1)

2p =
2p−1−1∑
l=0

f(2l + 1)e−2πi jl

2p−1 e−2πi j2p

= (
2p−1−1∑
l=0

f(2l + 1)e−2πi jl

2p−1 )e−2πi j2p ,

and, unlike the case when k was even, this is a bit more complicated than just
computing the discrete Fourier transform of a function on the set 0, 1, . . . , 2p−1−1.
We again could let h be the function on the set 0, 1, 2, . . . , 2p−1 − 1 defined by
h(l) = f(2l+1). What we are doing first is computing the discrete Fourier transform
of the function h, and then we are multiplying each value ĥ(j) by the number
e−2πi j2p , which would be an additional 2p−1 multiplications.

Finally, let Mp be the number of multiplications required to compute the discrete
Fourier transform when N = 2p. The theorem asserts that Mp ≤ p2p. We have seen
above that

Mp = Mp−1 +Mp−1 + 2p−1.

So, by mathematical induction, if we assume that Mp−1 ≤ 2p−1 × (p− 1), then

Mp ≤ mp−1 +mp−1 + 2p−1

≤ (p− 1)2p−1 + (p− 1)2p−1 + 2p−1

= (2p− 2 + 1)2p−1

< 2p2p−1

= p2p,

as desired.


