
MATH 4330/5330, Fourier Analysis
Section 12, Abstract Fourier Theory

DEFINITION. Let V be a vector space over the field of complex numbers. By
an inner product on V we mean a complex-valued function on V × V, denoted by
〈x | y〉, that satisfies the following conditions:

(1) For each fixed vector y ∈ V, we have

〈x+ x′ | y〉 = 〈x | y〉+ 〈x′ | y〉

and
〈cx | y〉 = c〈x | y〉;

i.e., The function that sends x to 〈x | y〉 is a linear functional on V.

(2) 〈x | y〉 = 〈y | x〉. That is, interchanging the order of the two variables in
the inner product changes the value into its complex conjugate.

(3) If x 6= 0, then 〈x | x〉 > 0.
If a vector space V has an inner product defined on it, then we call the vectors

space V an inner product space.

EXAMPLE 1. Let V be the vector space of all continuous, periodic, complex-
valued functions on the real line. For f and g in V, define

〈f | g〉 =
∫ 1

0

f(t)g(t) dt.

EXAMPLE 2. Let V = l2 be the vector space of all square-summable sequences
{cn}∞−∞. If x = {cn} and y = {dn} are two elements of l2, define

〈x | y〉 =
∞∑

n=−∞
cndn.

EXERCISE 12.1. (a) Verify that the definition of the inner product in Example 1
satisfies the three required conditions.

(b) Verify that the inner product defined in Example 2 satisfies the required
three conditions. By the way, is it clear that the infinite series defining this inner
product actually converges?

(c) Suppose V is an inner product space. Prove that 〈0 | y〉 = 0 for all y. Show
also that

〈x | y + y′〉 = 〈x | y〉+ 〈x | y′〉

What about 〈x | cy〉? Is it equal to c〈x | y〉? Is the assignment y → 〈x | y〉 a linear
functional?

DEFINITION. Let V be an inner product space. We say that two vectors x
and y in V are orthogonal or perpendicular if their inner product 〈x | y〉 is 0. A
collection x1, x2, . . . is called an orthogonal set if any two distinct elements of this
set are orthogonal. That is, if xi and xj are two different elements of this set, then
〈xi | xj〉 = 0.
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EXERCISE 12.2. (a) Prove that the functions {φn(x)} ≡ {e2πinx} form an orthog-
onal set in the inner product space of example 1 above.

(b) Let {cn} be the element of the inner product space of Example 2 above
defined by c0 = 0, and, for n 6= 0, cn = 1/n. Let {dn} be the element defined by
d0 = 2π, and for n 6= 0, dn = 1/|n|. Prove that these are orthogonal vectors.

(c) Let f be the element of the inner product space of Example 1 defined by
f(x) = 1/2 − x. Show that f is orthogonal to the constant function 1. Next, find
a nonzero quadratic function ax2 + bx + c that is orthogonal to both f and the
constant function 1.

DEFINITION. Let V be an inner product space. If v ∈ V, define the norm ‖v‖
of v by

‖v‖ =
√
〈v | v〉.

We will show that this definition of the norm of a vector makes sense, and we
will use it to have a notion of convergence in the inner product space. What is
necessary to make this definition of the norm intuitive is to show that it satisfies
the triangle inequality. This is not easy, and we will only be able to prove it after
another important inequality is established.

THEOREM 12.1. (Cauchy-Schwarz Inequality) Let V be an inner product space,
and let v and w be two elements of V. Then

|〈v | w〉| ≤ ‖v‖‖w‖.

PROOF. Note first that this inequality is definitely satisfied if w = 0. In fact, both
sides of the inequality are 0 in that case. Hence, assume that w is not 0.

Next, note that, for any complex number c, we have the following calculation.

0 ≤ ‖v + cw‖2

= 〈v + cw | v + cw〉
= 〈v | v + cw〉+ 〈cw | v + cw〉
= 〈v | v〉+ 〈v | cw〉+ 〈cw | v〉+ 〈cw | cw〉
= ‖v‖2 + c〈v | w〉+ c〈w | v〉+ |c|2‖w‖w2.

Here comes the trick. Since this inequality is true for any choice of complex number
c, let’s plug in c = −〈v | w〉/‖w‖2. We get

0 ≤ ‖v‖2 +
−〈v | w〉
‖w‖2

〈v | w〉+
−〈v | w〉
‖w‖2

〈w | v〉+
|〈v | w〉|2

‖w‖4
‖w‖2

= ‖v‖2 − |〈v | w〉|
2

‖w‖2
− |〈v | w〉|

2

‖w‖2
+
|〈v | w〉|2

‖w‖2

= ‖v‖2 − |〈v | w〉|
2

‖w‖2
,

from which it follows that
|〈v | w〉| ≤ ‖v‖‖w‖,
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as desired.

REMARK. Notice that the only place in the calculations above where an ac-
tual inequality could occur is in the very first step 0 ≤ ‖v + cw‖2. Hence, the
Cauchy-Schwarz Inequality is actually a strict inequality unless there is some com-
plex number c such that v + cw = 0, i.e., v is a multiple of w. Another way of
putting this is as follows: If the Cauchy-Schwarz Inequality is actually an equality,
|〈v | w〉| = ‖v‖‖w‖, then one of the two vectors must be a multiple of the other
one.

EXERCISE 12.3. (a) Write out explicitly what the norm is for Example 1. Then
write out explicitly what the Cauchy-Schwarz Inequality looks like.

(b) Repeat part (a) for the inner product space of Example 2.

THEOREM 12.2. (Triangle Inequality for the Norm) Suppose V is an inner
product space, and let v and w be two elements of V. Then

‖v + w‖ ≤ ‖v‖+ ‖w‖.

PROOF. We will use the Cauchy-Schwarz Inequality in the middle of this compu-
tation, and we will also use the triangle inequality for complex numbers |z + z′| ≤
|z|+ |z′|.

‖v + w‖2 = 〈v + w | v + w〉
= 〈v | v〉+ 〈v | w〉+ 〈w | v〉+ 〈w | w〉
= ‖v‖2 + 〈v | w〉+ 〈w | v〉+ ‖w‖2.

So,
‖v + w‖2 = |‖v + w‖2|

= |‖v‖2 + 〈v | w〉+ 〈w | v〉+ ‖w‖2|
≤ |‖v‖2|+ |〈v | w〉|+ |〈w | v〉|+ |‖w‖2|
≤ ‖v‖2 + ‖v‖‖w‖+ ‖w‖‖v‖+ ‖w‖2

= (‖v‖+ ‖w‖)2,

and the Triangle Inequality follows by taking square roots of this inequality.

DEFINITION. A collection {x1, x2, . . . } of vectors in an inner product space is
called an orthonormal set if it is an orthogonal set, and each vector xi has norm
equal to 1.

REMARK. The functions {φn(x)} ≡ {e2πinx} form what is probably the most
famous orthonormal set. Make sure you can prove this (well, not the most famous
part). In fact, as we will see, every orthonormal set behaves pretty much exactly
like the φn’s.

EXERCISE 12.4. Let {v1, v2, . . . , vN} be an orthonormal set in an inner product
space V. Suppose x is a linear combination of the vi’s: x =

∑N
n=1 cnvn. Show that

‖x‖2 =
N∑
n=1

|cn|2.

Compare with part (4) of Proposition 7.2.
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THEOREM 12.3. (Bessel’s Inequality) Let v1, . . . , vN be an orthonormal set in
an inner product space V, and let x be an element of V. Then

N∑
n=1

|〈x | vn〉|2 ≤ ‖x‖2.

EXERCISE 12.5. Prove the preceding theorem. Remember that it begins with the
obviously correct inequality

0 ≤ ‖x−
N∑
n=1

〈x | vn〉vn‖2.

Compare with Theorem 7.3.

REMARK. Given an (possibly infinite) orthonormal set {vn} in an inner product
space V, we can define a kind of generalized Fourier transform on V. Namely, if
x ∈ V, let x̂ be the function given by

x̂(n) = 〈x | vn〉.

According to Bessel’s Inequality above, the numbers {x̂(n)} are square-summable,
and more over ∑

n

|x̂(n)|2 =
∑
n

|〈x | vn〉|2 ≤ ‖x‖2.

The set of φn’s in the classical Fourier series case were sufficiently rich, so that the
transform in that case was 1-1 and had a nice expression for its inverse. In a general
inner product space, what does “rich” mean?

DEFINITION. A set {vn} of orthonormal vectors in an inner product space V
is called maximal if there is no nonzero vector v ∈ V for which 〈v | vn〉 = 0 for all
n. The idea is that, if there were such a nonzero vector v, then a larger collection of
orthonormal vectors could be made by using the vn’s together with the additional
vector (1/‖v‖)v.

THEOREM 12.4. Suppose {vn} is a maximal collection of orthonormal vectors
in an inner product space V. Then the generalized Fourier transform on V that is
determined by this set of orthonormal vectors is 1-1. That is, if x and y are two
elements of V for which x̂ = ŷ, then x must equal y.

PROOF. The generalized Fourier transform on V determined by the orthonormal
set {vN} is given by

x̂(n) = 〈x | vn〉.

Suppose x̂ = ŷ. We must show that x = y.
Let z = x− y. Then

〈z | vn〉 = 〈x− y | vn〉
= 〈x | vn〉 − 〈y | vn〉
= x̂(n)− ŷ(n)

= 0.
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Because the set {vn} is a maximal set of orthonormal vectors, it must be that z is
0. But that means that x = y.

REMARK. So, a maximal set of orthonormal vectors gives us a generalized Fourier
transform that is 1-1. What about the nice expression for its inverse? For that, we
need something else.

DEFINITION. An inner product space H is called a Hilbert space if there exists
a maximal orthonormal set {vn} in H that has the following property: If {cn} is any
square-summable sequence of complex numbers, then the infinite series

∑
n cnvn is

summable in the norm on H. This means that there exists an element y ∈ H such
that

lim
N→∞

‖y − SN‖ = 0,

where

SN =
N∑
n=1

cnvn.

Any such maximal set of orthonormal vectors is called an orthonormal basis for H.

EXERCISE 12.6. (a) Prove that the set of periodic, square-integrable functions is a
Hilbert space. In fact, show that the collection {φn} is an orthonormal basis. (This
just amounts to quoting the appropriate theorems to show that these functions
satisfy the requirements.)

(b) In the inner product space of Example 2, let vn be the sequence that is 1 at
the nth coordinate and 0 at all other coordinates. Prove that these vectors {vn}
form an orthonormal basis.

THEOREM 12.5. Let H be a Hilbert space and let {vn} be an orthonormal basis
for H. Then the generalized Fourier transform on H determined by the vn’s has an
inverse given by

x =
∑
n

x̂(n)vn.

That is, there is an explicit formula for recovering x from its transform x̂.

EXERCISE 12.7. (a) Prove Theorem 12.5. Adapt the argument given in the proof
of Theorem 7.1.

(b) Prove the general Parseval Equality. That is, if {vn} is an orthonormal basis
in a Hilbert space H, and if x is any vector in H, then

‖x‖2 =
∑
n

|x̂(n)|2 =
∑
n

|〈x | vn〉|2.


