MATH4330/5330, Fourier Analysis Section 3 COMPLEX NUMBERS, TRIGONOMETRY, AND EULER'S THEOREM

DEFINITION. Let *i* denote a "number" satisfying $I^2 = -1$. By the complex numbers we mean the set \mathbb{C} of all objects of the form a + bi, where a and b are real numbers. Two complex numbers a + bi and a' + b'i are equal if and only if a = a'and b = b'.

We add and multiply complex numbers according to the following formulas:

(1) (a+bi) + (c+di) = a + c + (b+d)i, and

(2) $(a+bi) \times (c+di) = ac+bic+adi+bidi = ac-bd+(ad+bc)i.$

We write 0 for the complex number 0 + 0i and 1 for the complex number 1 + 0i. Complex numbers of the form a + 0i are called *real* numbers, and those of the form 0 + bi purely imaginary numbers. If z = a + bi is a complex number, we say that the real part of z is a, and the imaginary part of z is b. Denote the real part of z by the symbol $\Re(z)$ and the imaginary part by the symbol $\Im(z)$.

If z = a + bi is a complex number, define the conjugate of z, which we denote by \overline{z} , by $\overline{z} = a - bi$.

Define the absolute value of the complex number z = a + bi by $|z| = \sqrt{a^2 + b^2}$.

Note that (prove that) 0 + z = z for all complex numbers z, and $1 \times z = z$ for all complex numbers.

THEOREM 3.1. The set \mathbb{C} , equipped with the operations of addition and multiplication defined above, is a field. That is, both addition and multiplication are commutative and associative, multiplication is distributive over addition, and every nonzero element in \mathbb{C} has a multiplicative inverse; i.e., if $z \neq 0$ then there exists a w such that zw = 1.

EXERCISE 3.1. (a) If z = a + bi is not the 0 element in \mathbb{C} , show that the multiplicative inverse of z is given by

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i.$$

(b) Prove that $z = (-1/2) + (\sqrt{3}/2)i$ is a cube root of 1; i.e., that $z^3 = 1$.

(c) Show that \mathbb{C} can be identified with the Cartesian plane \mathbb{R}^2 by corresponding the complex number x + yi with the ordered pair (x, y). Show that under this identification the real numbers are along the x-axis and the purely imaginary complex numbers are along the y-axis.

EXERCISE 3.2. (a) Show that $\overline{z} \times z$ is always ≥ 0 , and in fact equals $|z|^2$.

- (b) Prove that $\overline{z+w} = \overline{z} + \overline{w}$, and $\overline{zw} = \overline{z}$, \overline{w} . (Just do the algebra.)
- (c) Show that |ℜ(z)| ≤ |z| and |ℑ(z)| ≤ |z|.
 (d) Show that ℜ(z) = ^{z+z̄}/₂ and ℑ(z) = ^{z-z̄}/₂. Conclude that zw̄ + zw̄ = 2ℜ(zw̄).
 (e) Show that the absolute value satisfies the triangle inequality:

$$|z+w| \le |z| + |w|.$$

(f) Using the fact that z = z - w + w, derive the backwards triangle inequality:

$$|z - w| \ge ||z| - |w||.$$

(g) Let \mathbb{T} be the set of complex numbers having absolute value equal to 1. Prove that \mathbb{T} coincides with the unit circle in the plane, and show also that \mathbb{T} forms a group under the operation of multiplication. That is, show that if both z and w belong to \mathbb{T} , then so do zw and 1/z.

TRIGONOMETRY

For each positive real number t, think of traveling a distance t counterclockwise around the unit circle \mathbb{T} , starting at the point (1,0). Obviously, to each such t, there corresponds a point (x(t), y(t)) representing the point on the unit circle we have reached after traveling this distance of t. We call the number x(t) the cosine of t and the number y(t) the sine of t. By construction, the point $(\cos t, \sin t)$ lies on the unit circle; i.e., $\cos^2 t + \sin^2 t = 1$. If t is a negative real number, we make the same kind of construction, except we travel in a clockwise direction around the unit circle.

The "functions" \cos and \sin of the real variable t are called the *trigonometric functions*.

We have identified the Euclidean plane with the complex plane, i.e., the set of all complex numbers. So, by the above discussion, for every real number t, there exists a point $\cos t + i \sin t$ in the complex plane. This is nothing more than realizing that there is a perfect 1-1 correspondence between the set of all ordered pairs (a, b) and the set of all complex numbers a + ib.

DEFINITION. For each real number t, we use the shorthand notation e^{it} for the complex number $\cos t + i \sin t$.

This definition in other contexts is called Euler's Theorem:

$$e^{it} = \cos t + i\sin t.$$

We will justify the use of this exponential notation a bit later.

Recall the following properties of the trigonometric functions as well as the accompanying trigonometric identities:

- (1) $\cos 0 = 1$, and $\sin 0 = 0$.
- (2) $\cos(\pi/2) = 0$, and $\sin(\pi/2) = 1$.
- (3) $\cos \pi$) = -1, and $\sin \pi = 0$.
- (4) $\cos(t+2\pi) = \cos t$, and $\sin(t+2\pi) = \sin t$.
- (5) $\cos(2n\pi) = 1$ and $\sin(2n\pi) = 0$ for all integers *n*.
- (6) $\cos(-t) = \cos t$.
- $(7) \quad \sin(-t) = -\sin t.$

EXERCISE 3.3. Recall from basic trigonometry the following "addition formulas" for the trig functions:

- (1) $\sin(x+y) = \sin x \cos y + \sin y \cos x$, and
- (2) $\cos(x+y) = \cos x \cos y \sin x \sin y.$
- (a) Derive the double angle formulas

 $\sin(2x) = 2\sin(x)\cos(x)$ and $\cos(2x) = \cos^2(x) - \sin^2(x)$.

(b) Derive the half angle formulas: $\sin(x/2) = \sqrt{1 - \cos x}/\sqrt{2}$, and $\cos(x/2) = \sqrt{1 + \cos x}/\sqrt{2}$.

Here is the justification for the exponential notation e^{it} we are using.

THEOREM 3.2. For any two real numbers t and s, we have

$$e^{i(t+s)} = e^{it}e^{is}.$$

That is, the function e^{it} satisfies the law of exponents.

EXERCISE 3.4. (a) Prove the preceding theorem. Notice that it boils down to showing that

$$\cos(t+s) + i\sin(t+s) = (\cos t + i\sin t)(\cos s + i\sin s),$$

which can be done by doing the algebra and then equating real parts on both sides and imaginary parts on both sides.

(b) Show that $e^{2\pi i n} = 1$ for every integer n.

EXERCISE 3.5. Derive the following relations among the trigonometric functions and the function e^{it} .

$$\cos t = \frac{e^{it} + e^{-it}}{2}$$
$$\sin t = \frac{e^{it} - e^{-it}}{2i}.$$

2i

and

EXERCISE 3.6. Suppose
$$u(t, x)$$
 is a solution of the heat equation, that $u(t, x) = g(t) \times h(x)$, and that $u(0, x) = f(x)$. Show there exist three constants ω , a , and b such that

$$f(x) = a\cos(\omega x) + b\sin(\omega x)$$

and

$$(t,x) = e^{-\omega^2 t} (a\cos(\omega x) + b\sin(\omega x))$$

Compare with Theorem 2.3.

Derivatives and Integrals of Trig Functions

Recall that the derivative of $\cos is - \sin$, and the derivative of $\sin is \cos$. And, the antiderivative of $\cos is \sin and$ the antiderivative of $\sin is - \cos$.

EXERCISE 3.7. (a) Show that the derivative of e^{it} is ie^{it} .

(b) Show that the antiderivative of e^{it} is e^{it}/i .

11

(c) Find an antiderivative of $\cos(at)$, $\sin(at)$, and e^{iat} , where a is a real number.

(d) Evaluate

$$\int_{a}^{b} e^{ict} \, dt.$$

(e) Evaluate

$$\int_0^1 e^{2\pi i n t} \, dt$$

where n is any integer.

(f) Evaluate

$$\int_{s}^{s+1} e^{2\pi i n t} \, dt,$$

where n is an integer and s is any real number.