MATH4330/5330, Fourier Analysis

Section 3
COMPLEX NUMBERS, TRIGONOMETRY, AND EULER'S THEOREM
DEFINITION. Let i denote a "number" satisfying $I^{2}=-1$. By the complex numbers we mean the set \mathbb{C} of all objects of the form $a+b i$, where a and b are real numbers. Two complex numbers $a+b i$ and $a^{\prime}+b^{\prime} i$ are equal if and only if $a=a^{\prime}$ and $b=b^{\prime}$.

We add and multiply complex numbers according to the following formulas:
(1) $(a+b i)+(c+d i)=a+c+(b+d) i$, and
(2) $(a+b i) \times(c+d i)=a c+b i c+a d i+b i d i=a c-b d+(a d+b c) i$.

We write 0 for the complex number $0+0 i$ and 1 for the complex number $1+0 i$. Complex numbers of the form $a+0 i$ are called real numbers, and those of the form $0+b i$ purely imaginary numbers. If $z=a+b i$ is a complex number, we say that the real part of z is a, and the imaginary part of z is b. Denote the real part of z by the symbol $\Re(z)$ and the imaginary part by the symbol $\Im(z)$.

If $z=a+b i$ is a complex number, define the conjugate of z, which we denote by \bar{z}, by $\bar{z}=a-b i$.

Define the absolute value of the complex number $z=a+b i$ by $|z|=\sqrt{a^{2}+b^{2}}$.
Note that (prove that) $0+z=z$ for all complex numbers z, and $1 \times z=z$ for all complex numbers.
THEOREM 3.1. The set \mathbb{C}, equipped with the operations of addition and multiplication defined above, is a field. That is, both addition and multiplication are commutative and associative, multiplication is distributive over addition, and every nonzero element in \mathbb{C} has a multiplicative inverse; i.e., if $z \neq 0$ then there exists a w such that $z w=1$.
EXERCISE 3.1. (a) If $z=a+b i$ is not the 0 element in \mathbb{C}, show that the multiplicative inverse of z is given by

$$
\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

(b) Prove that $z=(-1 / 2)+(\sqrt{3} / 2) i$ is a cube root of 1 ; i.e., that $z^{3}=1$.
(c) Show that \mathbb{C} can be identified with the Cartesian plane \mathbb{R}^{2} by corresponding the complex number $x+y i$ with the ordered pair (x, y). Show that under this identification the real numbers are along the x-axis and the purely imaginary complex numbers are along the y-axis.
EXERCISE 3.2. (a) Show that $\bar{z} \times z$ is always ≥ 0, and in fact equals $|z|^{2}$.
(b) Prove that $\overline{z+w}=\bar{z}+\bar{w}$, and $\overline{z w}=\bar{z}, \bar{w}$. (Just do the algebra.)
(c) Show that $|\Re(z)| \leq|z|$ and $|\Im(z)| \leq|z|$.
(d) Show that $\Re(z)=\frac{z+\bar{z}}{2}$ and $\Im(z)=\frac{z-\bar{z}}{2}$. Conclude that $z \bar{w}+\bar{z} w=2 \Re(z \bar{w})$.
(e) Show that the absolute value satisfies the triangle inequality:

$$
|z+w| \leq|z|+|w|
$$

(f) Using the fact that $z=z-w+w$, derive the backwards triangle inequality:

$$
|z-w| \geq \underset{1}{| | z \mid}-|w| \mid
$$

(g) Let \mathbb{T} be the set of complex numbers having absolute value equal to 1 . Prove that \mathbb{T} coincides with the unit circle in the plane, and show also that \mathbb{T} forms a group under the operation of multiplication. That is, show that if both z and w belong to \mathbb{T}, then so do $z w$ and $1 / z$.

TRIGONOMETRY

For each positive real number t, think of traveling a distance t counterclockwise around the unit circle \mathbb{T}, starting at the point $(1,0)$. Obviously, to each such t, there corresponds a point $(x(t), y(t))$ representing the point on the unit circle we have reached after traveling this distance of t. We call the number $x(t)$ the cosine of t and the number $y(t)$ the sine of t. By construction, the point $(\cos t, \sin t)$ lies on the unit circle; i.e., $\cos ^{2} t+\sin ^{2} t=1$. If t is a negative real number, we make the same kind of construction, except we travel in a clockwise direction around the unit circle.

The "functions" cos and \sin of the real variable t are called the trigonometric functions.

We have identified the Euclidean plane with the complex plane, i.e., the set of all complex numbers. So, by the above discussion, for every real number t, there exists a point $\cos t+i \sin t$ in the complex plane. This is nothing more than realizing that there is a perfect 1-1 correspondence between the set of all ordered pairs (a, b) and the set of all complex numbers $a+i b$.
DEFINITION. For each real number t, we use the shorthand notation $e^{i t}$ for the complex number $\cos t+i \sin t$.

This definition in other contexts is called Euler's Theorem:

$$
e^{i t}=\cos t+i \sin t
$$

We will justify the use of this exponential notation a bit later.
Recall the following properties of the trigonometric functions as well as the accompanying trigonometric identities:
(1) $\cos 0=1$, and $\sin 0=0$.
(2) $\cos (\pi / 2)=0$, and $\sin (\pi / 2)=1$.
(3) $\cos \pi)=-1$, and $\sin \pi=0$.
(4) $\cos (t+2 \pi)=\cos t$, and $\sin (t+2 \pi)=\sin t$.
(5) $\cos (2 n \pi)=1$ and $\sin (2 n \pi)=0$ for all integers n.
(6) $\cos (-t)=\cos t$.
(7) $\sin (-t)=-\sin t$.

EXERCISE 3.3. Recall from basic trigonometry the following "addition formulas" for the trig functions:
(1) $\sin (x+y)=\sin x \cos y+\sin y \cos x$, and
(2) $\cos (x+y)=\cos x \cos y-\sin x \sin y$.
(a) Derive the double angle formulas

$$
\sin (2 x)=2 \sin (x) \cos (x) \text { and } \cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x) .
$$

(b) Derive the half angle formulas: $\sin (x / 2)=\sqrt{1-\cos x} / \sqrt{2}$, and $\cos (x / 2)=$ $\sqrt{1+\cos x} / \sqrt{2}$.

Here is the justification for the exponential notation $e^{i t}$ we are using.

THEOREM 3.2. For any two real numbers t and s, we have

$$
e^{i(t+s)}=e^{i t} e^{i s}
$$

That is, the function $e^{i t}$ satisfies the law of exponents.
EXERCISE 3.4. (a) Prove the preceding theorem. Notice that it boils down to showing that

$$
\cos (t+s)+i \sin (t+s)=(\cos t+i \sin t)(\cos s+i \sin s)
$$

which can be done by doing the algebra and then equating real parts on both sides and imaginary parts on both sides.
(b) Show that $e^{2 \pi i n}=1$ for every integer n.

EXERCISE 3.5. Derive the following relations among the trigonometric functions and the function $e^{i t}$.

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2}
$$

and

$$
\sin t=\frac{e^{i t}-e^{-i t}}{2 i}
$$

EXERCISE 3.6. Suppose $u(t, x)$ is a solution of the heat equation, that $u(t, x)=$ $g(t) \times h(x)$, and that $u(0, x)=f(x)$. Show there exist three constants ω, a, and b such that

$$
f(x)=a \cos (\omega x)+b \sin (\omega x)
$$

and

$$
u(t, x)=e^{-\omega^{2} t}(a \cos (\omega x)+b \sin (\omega x))
$$

Compare with Theorem 2.3.

Derivatives and Integrals of Trig Functions

Recall that the derivative of \cos is $-\sin$, and the derivative of \sin is \cos. And, the antiderivative of \cos is \sin and the antiderivative of \sin is $-\cos$.

EXERCISE 3.7. (a) Show that the derivative of $e^{i t}$ is $i e^{i t}$.
(b) Show that the antiderivative of $e^{i t}$ is $e^{i t} / i$.
(c) Find an antiderivative of $\cos (a t), \sin (a t)$, and $e^{i a t}$, where a is a real number.
(d) Evaluate

$$
\int_{a}^{b} e^{i c t} d t
$$

(e) Evaluate

$$
\int_{0}^{1} e^{2 \pi i n t} d t
$$

where n is any integer.
(f) Evaluate

$$
\int_{s}^{s+1} e^{2 \pi i n t} d t
$$

where n is an integer and s is any real number.

