
MATH4330/5330, Fourier Analysis
Section 3

COMPLEX NUMBERS, TRIGONOMETRY, AND EULER’S THEOREM

DEFINITION. Let i denote a “number” satisfying I2 = −1. By the complex
numbers we mean the set C of all objects of the form a+ bi, where a and b are real
numbers. Two complex numbers a+ bi and a′ + b′i are equal if and only if a = a′

and b = b′.
We add and multiply complex numbers according to the following formulas:
(1) (a+ bi) + (c+ di) = a+ c+ (b+ d)i, and
(2) (a+ bi)× (c+ di) = ac+ bic+ adi+ bidi = ac− bd+ (ad+ bc)i.

We write 0 for the complex number 0 + 0i and 1 for the complex number 1 + 0i.
Complex numbers of the form a+ 0i are called real numbers, and those of the form
0 + bi purely imaginary numbers. If z = a + bi is a complex number, we say that
the real part of z is a, and the imaginary part of z is b. Denote the real part of z
by the symbol <(z) and the imaginary part by the symbol =(z).

If z = a + bi is a complex number, define the conjugate of z, which we denote
by z, by z = a− bi.

Define the absolute value of the complex number z = a+ bi by |z| =
√
a2 + b2.

Note that (prove that) 0 + z = z for all complex numbers z, and 1 × z = z for
all complex numbers.

THEOREM 3.1. The set C, equipped with the operations of addition and mul-
tiplication defined above, is a field. That is, both addition and multiplication are
commutative and associative, multiplication is distributive over addition, and every
nonzero element in C has a multiplicative inverse; i.e., if z 6= 0 then there exists a
w such that zw = 1.

EXERCISE 3.1. (a) If z = a + bi is not the 0 element in C, show that the multi-
plicative inverse of z is given by

1
z

=
z

|z|2
=

a

a2 + b2
− b

a2 + b2
i.

(b) Prove that z = (−1/2) + (
√

3/2)i is a cube root of 1; i.e., that z3 = 1.
(c) Show that C can be identified with the Cartesian plane R2 by corresponding

the complex number x+yi with the ordered pair (x, y). Show that under this iden-
tification the real numbers are along the x-axis and the purely imaginary complex
numbers are along the y-axis.

EXERCISE 3.2. (a) Show that z × z is always ≥ 0, and in fact equals |z|2.
(b) Prove that z + w = z + w, and zw = z , w. (Just do the algebra.)
(c) Show that |<(z)| ≤ |z| and |=(z)| ≤ |z|.
(d) Show that <(z) = z+z

2 and =(z) = z−z
2 . Conclude that zw + zw = 2<(zw).

(e) Show that the absolute value satisfies the triangle inequality:

|z + w| ≤ |z|+ |w|.

(f) Using the fact that z = z − w + w, derive the backwards triangle inequality:

|z − w| ≥ ||z| − |w||.
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(g) Let T be the set of complex numbers having absolute value equal to 1. Prove
that T coincides with the unit circle in the plane, and show also that T forms a
group under the operation of multiplication. That is, show that if both z and w
belong to T, then so do zw and 1/z.

TRIGONOMETRY

For each positive real number t, think of traveling a distance t counterclockwise
around the unit circle T, starting at the point (1, 0). Obviously, to each such t,
there corresponds a point (x(t), y(t)) representing the point on the unit circle we
have reached after traveling this distance of t. We call the number x(t) the cosine
of t and the number y(t) the sine of t. By construction, the point (cos t, sin t)lies
on the unit circle; i.e., cos2 t + sin2 t = 1. If t is a negative real number, we make
the same kind of construction, except we travel in a clockwise direction around the
unit circle.

The “functions” cos and sin of the real variable t are called the trigonometric
functions.

We have identified the Euclidean plane with the complex plane, i.e., the set of all
complex numbers. So, by the above discussion, for every real number t, there exists
a point cos t+ i sin t in the complex plane. This is nothing more than realizing that
there is a perfect 1-1 correspondence between the set of all ordered pairs (a, b) and
the set of all complex numbers a+ ib.

DEFINITION. For each real number t, we use the shorthand notation eit for the
complex number cos t+ i sin t.

This definition in other contexts is called Euler’s Theorem:

eit = cos t+ i sin t.

We will justify the use of this exponential notation a bit later.
Recall the following properties of the trigonometric functions as well as the ac-

companying trigonometric identities:
(1) cos 0 = 1, and sin 0 = 0.
(2) cos(π/2) = 0, and sin(π/2) = 1.
(3) cosπ) = −1, and sinπ = 0.
(4) cos(t+ 2π) = cos t, and sin(t+ 2π) = sin t.
(5) cos(2nπ) = 1 and sin(2nπ) = 0 for all integers n.
(6) cos(−t) = cos t.
(7) sin(−t) = − sin t.

EXERCISE 3.3. Recall from basic trigonometry the following “addition formulas”
for the trig functions:

(1) sin(x+ y) = sinx cos y + sin y cosx, and
(2) cos(x+ y) = cosx cos y − sinx sin y.

(a) Derive the double angle formulas

sin(2x) = 2 sin(x) cos(x) and cos(2x) = cos2(x)− sin2(x).

(b) Derive the half angle formulas: sin(x/2) =
√

1− cosx/
√

2, and cos(x/2) =√
1 + cosx/

√
2.

Here is the justification for the exponential notation eit we are using.
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THEOREM 3.2. For any two real numbers t and s, we have

ei(t+s) = eiteis.

That is, the function eit satisfies the law of exponents.

EXERCISE 3.4. (a) Prove the preceding theorem. Notice that it boils down to
showing that

cos(t+ s) + i sin(t+ s) = (cos t+ i sin t)(cos s+ i sin s),

which can be done by doing the algebra and then equating real parts on both sides
and imaginary parts on both sides.

(b) Show that e2πin = 1 for every integer n.

EXERCISE 3.5. Derive the following relations among the trigonometric functions
and the function eit.

cos t =
eit + e−it

2
and

sin t =
eit − e−it

2i
.

EXERCISE 3.6. Suppose u(t, x) is a solution of the heat equation, that u(t, x) =
g(t) × h(x), and that u(0, x) = f(x). Show there exist three constants ω, a, and b
such that

f(x) = a cos(ωx) + b sin(ωx)

and
u(t, x) = e−ω

2t(a cos(ωx) + b sin(ωx)).

Compare with Theorem 2.3.

Derivatives and Integrals of Trig Functions

Recall that the derivative of cos is − sin, and the derivative of sin is cos . And,
the antiderivative of cos is sin and the antiderivative of sin is − cos .

EXERCISE 3.7. (a) Show that the derivative of eit is ieit.
(b) Show that the antiderivative of eit is eit/i.
(c) Find an antiderivative of cos(at), sin(at), and eiat, where a is a real number.
(d) Evaluate ∫ b

a

eict dt.

(e) Evaluate ∫ 1

0

e2πint dt

where n is any integer.
(f) Evaluate ∫ s+1

s

e2πint dt,

where n is an integer and s is any real number.


