
MATH 4330/5330, Fourier Analysis
Section 4, The Heat Equation on the Circle

Fourier’s Theorem

We imagine that we have a wire of length 1 that has been bent into a circle (with
the ends 0 and 1 attached). We suppose that a function u of two variables t and
x is such that the value u(t, x) is the temperature at the point x on the wire at
time t. Notice that the fact that the interval [0, 1] is bent into a circle imposes a
condition on the function u. Namely, u(t, 0) must equal u(t, 1) for all times t ≥ 0.

We would like to be able to predict how this temperature function changes with
time. Again, we consider the following so-called “initial value problem.”

We suppose that we know the values u(0, x) ≡ f(x) for all points 0 ≤ x < 1.
These are the initial values. Is that enough information for us to be able to figure
out the values u(t, x) for a later time t?

REMARK. As before, physicists think that the temperature at a point on the wire
is proportional to the velocity of the molecule at that point in the wire. Since the
square of the velocity V 2 is proportional to the kinetic energy mV 2/2, we presume
that the function |u(t, x)|2 is proportional to the “instantaneous” energy at the
point x, and so it must satisfy

∫ 1

0
|u(t, x)|2 dx < ∞ for every time t. The total

energy must be finite at any given time.
Again, physicists also believe that this temperature function u must satisfy the

same heat equation as in Section 1.

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x).

EXERCISE 4.1. Can you think of any solutions to this partial differential equation?
Just as before, u(t, x) = 0 or u(t, x) = 1, or u(t, x) = 2t+ x2? How about u(t, x) =
e−ω

2t×eiωx? This time, these functions do satisfy the finite energy (L2) requirement.
Do any satisfy the requirement u(t, 0) = u(t, 1) for all time t?

The preceding exercise shows that there are many solutions to the heat equation
on the circle. Are there enough, i.e., given an arbitrary initial condition f(x),
is there necessarily a solution to the initial value problem? Are there too many
solutions, i.e., given initial data f(x), can there be more than one solution to the
initial value problem?

We know from Section 2 that u(t, x) = e−ω
2teiωx is a solution of the heat equa-

tion, and its initial value is the function f(x) = eiωx. (What do you think of an
initial temperature function of the form f(x) = eiωx? Would our physicist friends
buy this?) The condition that u(t, 0) = u(t, 1) then requires that eiω = 1, and this
only happens if ω = 2nπ for some integer n. So, the only solutions of the initial value
problem that we have thus far are functions of the form u(t, x) = e−4π2n2te2πinx,
and the only initial conditions f(x) for which we can solve the initial value problem
for the heat equation are the functions f(x) = e2πinx.

EXERCISE 4.2. (a) Show that the set of solutions of the heat equation on the
circle form a vectors space. That is, show that the sum of any two solutions is
again a solution, and any scalar multiple of a solution is also a solution.
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(b) Conclude that there is a solution to the initial value problem for the heat
equation on the circle whenever the initial condition f is of the form

f(x) =
N∑

n=−N
cne

2πinx,

where the cn’s are any complex numbers. In fact, exhibit an explicit solution. That
is, write one down.

(c) Find solutions to the initial value problem for the heat equation, where the
initial condition is f(x) = cos(2πx) or f(x) = sin(6πx). What about other initial
value functions?

EXERCISE 4.3. (a) Show that if two functions h(x) and g(x) are square-integrable,
then so is the sum h(x) + g(x). Make use of the following inequalities:

|h(x) + g(x)|2 ≤ (|h(x)|+ |g(x)|)2

≤ (2 max(|(h(x)|, |g(x)|))2

= 4(max(|h(x)|, |g(x)|)2

≤ 4(|h(x)|2 + |g(x)|2).

(b) Conclude that the set of all square-integrable solutions to the heat equation
is a vector space.

(c) Is it true, or clear, that there is just one solution to an initial value problem?
That is, if u(t, x) and v(t, x) are both solutions to the heat equation, and if u(0, x) =
v(0, x) for all x, does it follow that u(t, x) = v(t, x) for all t and x?

Periodic Functions

If f is a function, defined on the interval [0, 1), we may define a function, still
called f, on the entire real line by extending f periodically. For example, for
1 ≤ x < 2, we set f(x) to be the same as f(x − 1). The number x − 1 is between
0 and 1, so we know the value of f on that point. Then, for 2 ≤ x < 3, we set
f(x) = f(x− 1) = f(x− 2). In general, for any real number x, write x = [x] + 〈x〉,
where [x] denotes the greatest integer ≤ x and 〈x〉 denotes the fractional part of x,
i.e., x − [x]. This extended function satisfies the condition f(x) = f(x + 1) for all
real x.

A function on the whole real line that satisfies the equation f(x+ 1) = f(x) for
all x ∈ R is called a periodic function with period 1, or simply a periodic function.
Any such periodic function is completely determined by its values on any interval
of length 1, i.e., any interval of the form [a, a + 1). This particular function f is
called the periodic extension of the original function f.

REMARK. We will often not distinguish between a function f on the interval [0, 1)
and its periodic extension. They are completely interchangeable.

DEFINITION. Let p be a positive number. A function f on R is called periodic
with period p if f(x+ p) = f(x) for all x.

Clearly, a periodic function with period p is totally determined by its values on
any interval of the form [a, a+ p).
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EXERCISE 4.4. (a) Show that the functions sin(2πx), cos(2πx), and e2πix are pe-
riodic.

(b) Show that the functions | sin(2πx)| and | cos(2πx)| are periodic with period
1/2.

(c) Let α be a positive number. Show that the function eiαx is periodic with
period 2π/α.

Fourier’s Claim

Fourier asserted that essentially every initial condition determines a unique so-
lution of the initial value problem for the heat equation on the circle. He asserted
this, because he claimed the following remarkable result:

THEOREM 4.1. (Fourier’s Theorem)

(1) Every square-integrable function f on [0, 1) can be represented as a (possibly
infinite) linear combination of the exponential functions {e2πinx} :

f(x) =
∞∑

n=−∞
cne

2πinx

= lim
N→∞

N∑
n=−N

cne
2πinx

= lim
N→∞

SN (x).

(2) For such an f, the function

u(t, x) =
∞∑

n=−∞
cne
−4π2n2te2πinx

satisfies the initial value problem for the heat equation, with initial values
f(x).

EXERCISE 4.5. Assuming that part (1) is true, just how hard is it to prove part



4

(2)? What are the mathematical subtleties in the following computation?

∂

∂t
(u(t, x)) =

∂

∂t
(
∞∑

n=−∞
cne
−4π2n2te2πinx)

=
∂

∂t
( lim
N→∞

N∑
n=−N

cne
−4π2n2te2πinx)

= lim
N→∞

∂

∂t
(

N∑
n=−N

cne
−4π2n2te2πinx)

= lim
N→∞

(
N∑

n=−N

∂

∂t
cne
−4π2n2te2πinx)

=
∞∑

n=−∞
−4π2n2cne

−4π2n2te2πinx

=
∞∑

n=−∞
cne
−4π2n2t ∂

2

∂x2
(e2πinx)

= · · ·

=
∂2

∂x2
(
∞∑

n=−∞
cne
−4π2n2te2πinx)

=
∂2

∂x2
(u(t, x)),

and

u(0, x) =
∞∑

n=−∞
cne

2πinx = f(x).

Moreover, Fourier is even more precise about part (1) of his theorem. He tells
us exactly what the coefficients cn are.

THEOREM 4.2. If f is a square-integrable function on [0, 1), then the coefficients
{cn} for which

f(x) =
∞∑

n=−∞
cne

2πinx

are uniquely determined, and are given explicitly by the formulas

cn =
∫ 1

0

f(t)e−2πint dt.

We will come back to the proofs of these theorems in later sections.

DEFINITION. The infinite series
∑∞
n=−∞ cne

2πinx is called the Fourier series

for f, and the partial sums SN (x) =
∑N
n=−N cne

2πinx are called the partial sums
of the Fourier series for f.

.
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EXERCISE 4.6. Use Euler’s Theorem to show that part (1) of Fourier’s Theorem
can be stated as follows: If f is a square-integrable function on [0, 1), then f can
be written in the form

f(x) = a0 +
∞∑
k=1

ak cos(2πkx) +
∞∑
k=1

bk sin(2πkx),

where

a0 = c0 =
∫ 1

0

f(t) dt,

and, for k ≥ 1,

ak = 2
∫ 1

0

f(t) cos(2πkt) dt

and

bk = 2
∫ 1

0

f(t) sin(2πkt) dt.

HINT: Justify the following calculations:

f(x) =
∞∑

n=−∞
cne

2πinx

=
−1∑

n=−∞
cne

2πinx + c0 +
∞∑
n=1

cne
2πinx

= c0 +
∞∑
n=1

c−ne
−2πinx +

∞∑
n=1

cne
2πinx

= c0 +
∞∑
n=1

c−n(cos(−2πnx) + i sin(−2πnx)) +
∞∑
n=1

cn(cos(2πnx) + i sin(2πnx))

= c0 +
∞∑
n=1

(c−n + cn) cos(2πnx) +
∞∑
n=1

i(cn − c−n) sin(2πnx)

= c0 +
∞∑
k=1

(c−k + ck) cos(2πkx) +
∞∑
k=1

i(ck − c−k) sin(2πkx).

Now check that the coefficients of cos(2πkx) and sin(2πkx) are as claimed.

EXERCISE 4.7. How can Fourier’s Theorem be stated for periodic functions f on
R? That is, “If f is a periodic function, ....”

The Fourier Transform on the Circle

For each square-integrable function f on [0, 1), define a function f̂ on the set Z
of integers by

f̂(n) =
∫ 1

0

f(t)e−2πint dt.

The assignment that takes f to f̂ is called the Fourier transform on the circle. If
f ∈ L2([0, 1)), we often write T (f) for its Fourier transform. It assigns to each
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square-integrable function f a doubly-infinite sequence {cn} ≡ {f̂(n} of numbers.
According to Fourier’s theorem, the transform has an inverse; i.e., we can recover
the function f from its transform F̂ :

f(x) =
∞∑

n=−∞
f̂(n)e2πinx.

EXERCISE 4.8. Compute the Fourier transforms of the following functions on
[0, 1).
f(x) = x, f(x) = x2, f(x) = sin(2πx), f(x) = sinx, and f(x) = e8πix.

REMARK. In some sense, since we can go back and forth between them, the same
information is encoded in the function f as is encoded in the function (sequence)
f̂ . Since f and f̂ are very different objects, it could be, and in fact often is, very
informative that these two different objects both encode the same information.
For example, a question or problem about functions can be “transformed” into
a corresponding question or problem about sequences. While one of these two
questions may be difficult to answer, the other one may be easy. And, since they
are somehow really the same question in two different forms, a solution of one can
be transformed into a solution of the other. This is perhaps the true essence of
Fourier analysis.

EXAMPLE 4.1. Let α be a positive irrational number. Suppose f is a periodic
function that is also periodic with period α. That is, f is periodic with respect to
two different periods. What can be said about such an f? What can be said about
its Fourier transform? Let us calculate:

f̂(n) =
∫ 1

0

f(t)e−2πint dt

=
∫ 1−α

−α
f(s+ α)e−2πin(s+α) ds

=
∫ −α+1

−α
f(s)e−2πinse−2πnα ds

= e−2πinα

∫ 1

0

f(s)e−2πins ds

= e−2πinαf̂(n).

Hence, for any integer n such that f̂(n) 6= 0, we must have e−2πinα = 1. But, eit = 1
only if t = 2kπ for some integer k.

So, if f̂(n) 6= 0, we must have −2πinα = 2πk or −nα = k. This can’t happen if
n 6= 0, for that would mean that α = −k/n which is rational.

So the only n for which f̂(n) 6= 0 is for n = 0.
We know exactly what the Fourier transform of f looks like. f̂(n) = 0 for all

n 6= 0. What does this mean about f itself? Fourier’s Theorem tells us that

f(x) =
∞∑

n=−∞
f̂(n)e2πinx = f̂(0).
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That is, f is a constant function.
We have shown then, using Fourier’s Theorem, that any periodic function that

is also periodic with an irrational period, must be a constant function.

One final and extremely useful fact about the Fourier transform is this:

THEOREM 4.3. Let L2([0, 1)) denote the set of all square-integrable functions
on the interval [0, 1), and let C denote the set of all doubly-infinite sequences {cn}.
Then:

(1) L2([0, 1)) is a vector space.
(2) C is a vector space.
(3) The Fourier transform is a linear transformation from the vector space

L2([0, 1)) into the vectors space C. That is, ̂af + bg = af̂ + bĝ for all
f, g ∈ L2([0, 1)) and all complex numbers a and b.

PROOF. To see that L2([0, 1)) is a vector space, we use Exercise 4.3. (Why is this
enough?)

That C is a vector space is even easier. We just note that the sum of two
sequences is again a sequence, and any complex number times a sequence is again
a sequence.

To see part (3), we just compute. It is going to work because the integral is a
linear transformation.

̂af + bg(n) =
∫ 1

0

(af(t) + bg(t))e−2πint dt

=
∫ 1

0

(af(t)e−2πint + bg(t)e−2πint) dt

= a

∫ 1

0

f(t)e−2πint dt+ b

∫ 1

0

g(t)e−2πint dt

= af̂(n) + bĝ(n).

EXERCISE 4.9. Use the preceding theorem and your answers to Exercise 4.8 to
compute the Fourier transforms of f(x) = 1

2 − x and f(x) = 1
6 − x− x

2.


