
MATH 4330/5330, Fourier Analysis
Section 5, The Dirichlet Kernel

Reformulating Fourier’s Theorem

What does Fourier’s Theorem really say? It says that, if f is a square-integrable
function on [0, 1), x is a point in [0, 1), and for each integer n, cn is defined by

cn ≡ f̂(n) =
∫ 1

0

f(t)e−2πint dt,

then

f(x) =
∞∑

n=−∞
cne

2πinx

= lim
N→∞

N∑
n=−N

cne
2πinx

= lim
N→∞

SN (x),

where SN denotes the Nth partial sum of the Fourier series for f.
It is difficult to see how to prove this claim as it stands. The point of this

section is to replace this limit of partial sums by a different kind of limit, one that
hopefully is easier to attack. So, we want to express this claim of Fourier’s in a
different mathematical way. Namely,

f(x) =
∞∑

n=−∞
cne

2πinx

= lim
N→∞

N∑
n=−N

cne
2πinx

= lim
N→∞

N∑
n=−N

∫ 1

0

f(t)e−2πint dte2πinx

= lim
N→∞

N∑
n=−N

∫ 1

0

f(t)e2πin(x−t) dt

= lim
N→∞

∫ 1

0

f(t)
N∑

n=−N
e2πin(x−t) dt

= lim
N→∞

∫ 1

0

f(t)DN (x− t) dt,

where DN is the function given by

DN (t) =
N∑

n=−N
e2πint.
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DEFINITION. The sequence {DN} of functions defined above is called the Dirich-
let kernel.

REMARK. Note that the calculation above relates the convergence of an infinite
series to the limit of a certain sequence of integrals. This is important to mathe-
maticians, because working with and estimating integrals is ordinarily much easier
than the corresponding problems with infinite series.

It is also evident from the computation above that understanding this Dirichlet
kernel is central to understanding Fourier’s Theorem.

We begin with some initial observations about this kernel.

THEOREM 5.1. The Dirichlet kernel satisfies the following:
(1) DN (t) =

∑N
n=−N e

2πint.

(2) DN (t) = 1 + 2
∑N
k=1 cos(2πkt).

(3) DN (0) = DN (1) = 2N + 1, and for 0 < t < 1,

DN (t) =
sin(2π(N + 1

2 )t)
sin(πt)

.

PROOF. The first formula is just the definition of DN . The second follows directly
from Euler’s Theorem. (See the exercise below.)

Let us prove the third formula. We will use the formula for the sum of a geometric
progression:

r∑
n=0

zn =
1− zr+1

1− z
.

(See the exercise below.) Hence,

DN (t) =
N∑

n=−N
e2πint

= e−2πiNt
2N∑
n=0

e2πint

= e−2πiNt
2N∑
n=0

(e2πit)n

= (e2πit)−N
1− (e2πit)2N+1

1− e2πit

=
(e2πit)−N − (e2πit)N+1

1− e2πit

=
eπit(e−2πiNt−πit − e2πiNt+πit

eπit(e−πit − eπit

=
e−(N+ 1

2 )2πit − e(N+ 1
2 )2πit

e−πit − eπit

=
−2i sin((N + 1

2 )2πt)
−2i sin(πt)

=
sin(2π(N + 1

2 )t)
sin(πt)

.



3

EXERCISE 5.1. (a) Prove part (2) of the preceding theorem.
(b) Derive the formula for the sum of a geometric series.

HINT: Set Sr =
∑r
n=0 z

n, and observe the two facts that Sr+1 = Sr + zr+1, and
Sr+1 = 1 + zSr.

(c) Show that, if |z| < 1, then
∞∑
n=0

zn =
1

1− z
.

EXERCISE 5.2. (a) Prove that
∫ 1

0
DN (t) dt = 1 for all N.

(b) If t 6= 0, what can you say about the numbers DN (t)? Are they converging
to 0? Is DN an example of a Dirac ∆ function?

(c) Compute
∫ 1

0
D2
N (t) dt.

HINT: Write

D2
N = (

N∑
n=−N

e2πint)2 =
N∑

n=−N
e2πint ×

N∑
m=−N

e2πimt.

Multiply it out, and then integrate. You should get 2N + 1 for your answer.
(d) Show that DN (t) = DN (1 − t) = DN (−t); i.e., DN is an even function and

is also symmetric about the number 1/2. That is, DN ( 1
2 + t) = DN ( 1

2 − t).

The Riemann-Lebesgue Lemma

Perhaps the most important computation in the beginning of Fourier analysis is
the following:

THEOREM 5.2. (Riemann-Lebesgue Lemma) Let f be a continuous function on
a closed interval [a, b]. Suppose that f is differentiable on the open interval (a, b)
and that the derivative f ′ is bounded, i.e., |f ′(t)| ≤ M for all t ∈ (a, b). Then, for
any sequence {kn} of numbers diverging to infinity, we have

lim
n→∞

∫ b

a

f(t) sin(knt) dt = 0.

REMARK. In fact, if f is any integrable function on [a, b), then the same is true:

lim
n→∞

∫ b

a

f(t) sin(knt) dt = 0.

This stronger assertion of the Riemann-Lebesgue Lemma can be shown, though not
easily, by proving that every integrable function is a kind of limit of differentiable
functions, and then taking limits. We omit that argument here. Take a course in
measure theory!

EXERCISE 5.3. (a) Prove the above theorem. Just integrate by parts, and use the
fact that |

∫ b
a
f ′(t) cos(knt) dt| ≤M(b− a).

(b) Let f be as in the Riemann-Lebesgue Lemma. As a special case of that
lemma, note that

lim
N→∞

∫ b

a

f(t) sin(2π(N +
1
2

)t) dt = 0.

Here is another, more subtle, property of the Dirichlet kernel.
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THEOREM 5.3. For any 0 < δ < 1/2, we have

lim
N→∞

∫ δ

0

DN (t) dt =
1
2
.

PROOF. Notice first that

lim
N→∞

∫ 1−δ

δ

DN (t) dt = 0

by the Riemann-Lebesgue Lemma. Just take [a, b] to be [δ, 1− δ], and take f(t) =
1/ sin(πt). Then apply part (b) of the preceding exercise.

Hence,

lim
N→∞

(
∫ δ

0

DN (t) dt+
∫ 1

1−δ
DN (t) dt) = 1.

(Why?) Finally, since DN (t) = DN (1− t), the result follows by replacing t by 1− t
in the second integral.

EXERCISE 5.4. Let 0 < a < b < 1, and let f be an integrable function on [a, b].
Show that

lim
N→∞

∫ b

a

f(t)DN (t) dt = 0.

Use the strong form of the Riemann-Lebesgue Lemma and the fact that (1/ sin(πt))×
f(t) is integrable on [a, b].

We finish this section with one final application of the Riemann-Lebesgue Lemma,
which will then give us an important computation. The next exercise will be helpful
here as well as later on.

EXERCISE 5.5. Let h be defined on the interval (0, 1/2] by

h(t) =
1
πt
− 1

sin(πt)
.

(a) Prove that limt→0 h(t) = 0, so that, defining h(0) to be this limit, means
that h is a continuous function on the closed interval [0, 1/2].
HINT: Write

h(t) =
1
πt
− 1

sin(πt)
=

sin(πt)− πt
πt sin(πt)

,

and use L’Hopital’s Rule two times.
(b) Prove that h is differentiable on (0, 1/2) and that the derivative h′ of h is

bounded. (The only possible problem would be the limit of h′(t) as t approaches
0. Do some algebra and use L’Hopital’s Rule as in part (a).)

(c) Show that, for any 0 < δ ≤ 1/2,

lim
B→∞

∫ δ

0

h(t) sin(Bt) dt = 0.
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THEOREM 5.4. For any 0 < δ ≤ 1/2, we have

lim
N→∞

∫ δ

0

sin(2π(N + 1
2 )t)

πt
dt =

1
2
.

REMARK. This is just like the preceding theorem, except we have replaced the
sin(πt) in the denominator by the (simpler) term πt.

PROOF. Let h be the function of the preceding exercise. Note that h is continuous
on the interval [0, δ], differentiable on the open interval (0, δ), and h′ is bounded on
(0, δ). We have∫ δ

0

sin(2π(N + 1
2 )t)

πt
dt =

∫ δ

0

sin(2π(N +
1
2

)t)
1
πt
dt

=
∫ δ

0

sin(2π(N +
1
2

)t)(
1
πt
− 1

sin(πt)
+

1
sin(πt)

) dt

=
∫ δ

0

sin(2π(N +
1
2

)t)(h(t) +
1

sin(πt)
) dt

=
∫ δ

0

h(t) sin(2π(N +
1
2

)t) dt+
∫ δ

0

DN (t) dt.

So, using part (c) of the preceding exercise, we obtain

lim
N→∞

∫ δ

0

sin(2π(N + 1
2 )t)

πt
= 0 + lim

N→∞

∫ δ

0

DN (t) dt =
1
2
,

as desired.

Next, we present another important and famous computation.

THEOREM 5.5. The improper Riemann integral∫ ∞
0

sin t
t

dt = lim
B→∞

∫ B

0

sin t
t

dt =
π

2
.

PROOF. Recall that we may evaluate the limit as B tends to ∞ by choosing any
sequence {kN} that diverges to ∞ and then evaluating

lim
N→∞

∫ kN

0

sin t
t

dt.

We will use the sequence kN = π(N + 1
2 ).

From the preceding theorem, we know that

π

2
= lim
N→∞

∫ 1/2

0

sin(2π(N + 1
2 )t)

t
dt.

So, substituting t = s/(2π(N + 1
2 ), we get

π

2
= lim
N→∞

∫ π(N+ 1
2 )

0

sin s
s

ds,

which proves the claim.


