
MATH 4330/5330, Fourier Analysis
Section 6, Proof of Fourier’s Theorem for Pointwise Convergence

First, some comments about integrating periodic functions. If g is a periodic
function, g(x+ 1) = g(x) for all real x, then

(1)
∫ 1

0
g(t) dt =

∫ c+1

c
g(t) dt for all real numbers c.

(2)
∫ 1

0
g(t+ a) dt =

∫ 1

0
g(t) dt. for all real numbers a.

(3)
∫ 1

0
g(−t) dt =

∫ 1

0
g(t) dt.

EXERCISE 6.1. Verify that the above integration formulas are correct.

What can Fourier really prove? It’s not quite as wonderful as it may have
sounded. Here’s a first step:

THEOREM 6.1. Let f be a square-integrable, periodic function, and suppose that
f is differentiable at a point x. Then

f(x) =
∞∑

n=−∞
f̂(n)e2πinx,

where of course

f̂(n) = cn =
∫ 1

0

f(t)e−2πint dt.

REMARK. So, Fourier’s Theorem may not hold for all functions and all points.
For instance, we are assuming here that f is in fact differentiable at the point in
question, and clearly not every function is necessarily differentiable at every point.

PROOF. We know from Section 5 that the partial sum

SN (x) =
N∑

n=−N
cne

2πinx

of the Fourier series for f is given in an integral form by

SN (x) =
∫ 1

0

f(t)DN (x− t) dt,

where DN is the Dirichlet kernel. Now, using the integration formulas of Exercise
6.1, we see that

SN (x) =
∫ 1

0

f(x+ t)DN (t) dt

and also

SN (x) =
∫ 1

0

f(x− t)DN (t) dt.

Hence,

SN (x) =
∫ 1

0

f(x+ t) + f(x− t)
2

DN (t) dt.

1
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And then, since the integrand here is an even function, we get that

SN (x) = 2
∫ 1

2

0

f(x+ t) + f(x− t)
2

DN (t) dt =
∫ 1

2

0

(f(x+ t) + f(x− t))DN (t) dt.

Now,

f(x) = f(x)×
∫ 1

0

DN (t) dt = 2
∫ 1

2

0

f(x)DN (t) dt.

To show that f(x) is the sum of its Fourier series, we must show that f(x) is the
limit of the partial sums of the Fourier series. That means we must show that
limN→∞(f(x)− SN (x)) = 0. We have

f(x)− SN (x) =
∫ 1

2

0

[2f(x)− f(x+ t)− f(x− t)]DN (t) dt

=
∫ 1

2

0

2f(x)− f(x+ t)− f(x− t)
sin(πt)

sin(2π(N +
1
2

)t) dt,

so, by the Riemann-Lebesgue Lemma, limN→∞ f(x)−SN (x) will be 0 if the function
g defined by

g(t) =
2f(x)− f(x+ t)− f(x− t)

sin(πt)
is integrable.

Now, because f is assumed to be differentiable at x, there exists a δ > 0 such
that the differential quotient (f(x)−f(x+ t))/t is close to f ′(x), implying that this
quotient is bounded by a number M , for all 0 < |t| < δ. We will prove that the
function g(t) is integrable by showing that it is integrable on the interval [0, δ] and
also integrable on the interval [δ, 1/2].

On the interval [δ, 1/2], the three terms in the numerator of the function g,
f(x), f(x + t), and f(x − t) are all integrable functions of t, so the sum is also
integrable. And, on that interval [δ, 1/2], the denominator sin(πt) is bounded away
from 0, so that the reciprocal 1/ sin(πt) is bounded. Hence, the entire function
g, on the interval [δ, 1/2] must be integrable, being the product of an integrable
function and a bounded function.

Now, on the interval [0, δ], write

g(t) =
2f(x)− f(x+ t)− f(x− t)

t
× t

sin(πt)

= (
f(x)− f(x+ t)

t
+
f(x)− f(x− t)

t
)

t

sin(πt)
.

Recall that the function t/ sin(πt) is bounded on the interval [0, δ], (Why is that?),
and since both the differential quotients are bounded by M on that interval, the
function g must be bounded on the interval [0, δ) and hence integrable.

This completes the proof.

EXERCISE 6.2. (a) Let f be the periodic function defined by f(x) = x on [0, 1).
Compute the Fourier coefficients cn = f̂(n) for f, and then, for 0 < x < 1, derive
the formula:

x =
1
2
−
∞∑
n=1

1
πn

sin(2πnx).
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(Consult your computations in Exercise 4.8.) Check this equation out for x = 1/2
and for x = 1/4. Derive the formula

π

4
=
∞∑
k=0

(−1)k

2k + 1
.

(b) Now let f be the periodic function defined by f(x) = x2. Compute the
Fourier coefficients for f, and derive a formula analogous to the one in part (a).

(c) Let h be the periodic function defined by h(x) = −1 for 0 ≤ x < 1/2, and
h(x) = 1 for 1/2 ≤ x < 1. Compute the fourier coefficients for h, and examine the
corresponding formulas. What happens to this series for the discontinuity points
x = 1/2 or x = 0?

REMARK. Fourier’s Theorem certainly would imply that the Fourier transform
T has an inverse. The theorem says that we can recover the function f from the
transform f̂ . Theorem 6.1 establishes Fourier’s Theorem for certain functions, but
we don’t yet really know that the Fourier transform has an inverse. However, we
can use Theorem 6.1 to prove this.

THEOREM 6.2. The Fourier transform T is 1-1 on L2([0, 1)). That is, it has
an inverse.

PROOF. Since T is a linear transformation from one vector space into another, we
can prove it is 1-1 by showing that its kernel N is trivial, i.e., the only element of
N is the 0 function. Thus, suppose f is a function that satisfies T (f) = 0, and let
us show that f must be the zero function. We know then that f̂(n) = 0 for every
n.

Write F for the function defined by

F (x) =
∫ x

0

f(t) dt.

Then, it is known that F is continuous on [0, 1] and differentiable (almost every-
where), and F ′(x) = f(x). Also, note that F (0) = 0 and

F (1) =
∫ 1

0

f(t) dt = f̂(0) = 0,

so that F can be extended to a continuous periodic function.
Now Theorem 6.1 applies to the function F, so that for almost every x

F (x) =
∞∑

n=−∞
F̂ (n)e2πinx.

But, by the exercise below, we know that F̂ (n) = 0 for all n 6= 0. So, F (x) = F̂ (0)
for all x, i.e., F is a constant function. But then, f must be the 0 function, since
it is the derivative of the constant function F. This completes the proof.

EXERCISE 6.3. Let f and F be as in the preceding theorem. Use integration by
parts to show that, for all nonzero n,

F̂ (n) =
1

2πin
f̂(n) = 0.
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Convergence of Fourier Series at Jump Discontinuities

Theorem 6.1 asserts that the Fourier series for a function f converges at each
point x where f is differentiable. Something analogous occurs if f is differentiable
near a point x, but has a jump discontinuity exactly at x.

THEOREM 6.3. Suppose f is a square-integrable, periodic function, and suppose
that f satisfies the following additional assumptions.

(1) There exists a point x such that both a left and a right limit as t approaches
x exist:

r = lim
t→x+

f(t) and l = lim
t→x−

f(t).

(2) f has both a left and a right derivate at the point x; i.e.,

lim
h→0+

f(x+ h)− r
h

exists,

and

lim
h→0−

f(x+ h)− l
h

exists.

Then, the Fourier series for f at x converges to the average of the right and left
limits at x :

lim
N→∞

SN (x) =
∞∑

n=−∞
f̂(n)e2πinx =

r + l

2
.

PROOF. Just as in the proof of Theorem 6.1, we have that

SN (x) =
∫ 1

2

0

(f(x+ t) + f(x− t))DN (t) dt.

Now,

r = r ×
∫ 1

0

DN (t) dt = 2
∫ 1

2

0

rDN (t) dt

and

l = l ×
∫ 1

0

DN (t) dt = 2
∫ 1

2

0

lDN (t) dt.

So,

l + r

2
− SN (x) =

∫ 1
2

0

[2
l + r

2
− f(x+ t)− f(x− t)]DN (t) dt

=
∫ 1

2

0

l + r − f(x+ t)− f(x− t)
sin(πt)

sin(2π(N +
1
2

)t) dt,

so, by the Riemann-Lebesgue Lemma, (l+ r)/2 will equal the limit of SN (x) if the
function g defined by

g(t) =
l + r − f(x+ t)− f(x− t)

sin(πt)
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is integrable on the interval [0, 1
2 ].

Now, from the assumptions about the existence of left and right derivates of f at
x, we know that there must exist a δ > 0 such that the two quotients (r−f(x+t))/t
and (l − f(x− t)/t are bounded by a number M for all 0 < |t| < δ. We will prove
that the function g(t) is integrable by showing that it is integrable on the interval
[0, δ] and also integrable on the interval [δ, 1/2].

On the interval [δ, 1/2], the four terms in the numerator of g, l, r, f(x + t), and
f(x − t) are all integrable functions of t, so the sum is also integrable. And, on
that interval [δ, 1/2], the denominator sin(πt) is bounded away from 0, so that the
reciprocal 1/ sin(πt) is bounded. Hence, the entire function g, on the interval [δ, 1/2]
must be integrable, being the product of an integrable function and a bounded
function.

Now, on the interval [0, δ], write

g(t) =
l + r − f(x+ t)− f(x− t)

t
× t

sin(πt)

= (
r − f(x+ t)

t
+
l − f(x− t)

t
)

t

sin(πt)
.

So, since the function t/ sin(πt) is bounded on the interval [0, δ], and since both
of the quotients in the above expression are bounded by M on that interval, the
function g must be bounded on that interval and hence integrable.

This completes the proof.

The Gibb’s Phenomenon

We begin our discussion of the Gibb’s Phenomenon with a special example.

EXERCISE 6.4. Let f be the periodic function defined on [0, 1) by f(t) = 1/2 − t.
(a) Use the results from Exercise 6.2 to write down a formula for the partial

sums SN of the Fourier series for f. You should get

SN (x) =
N∑
n=1

sin(2πnx)
nπ

.

(b) Justify the following computations:

N∑
n=1

sin(2πnx)
πn

=
N∑
n=1

2
∫ x

0

cos(2πnt) dt

=
∫ x

0

2
N∑
n=1

cos(2πnt) dt

=
∫ x

0

(DN (t)− 1) dt

=
∫ x

0

DN (t) dt− x.

(c) Use parts (a) and (b) to conclude that

SN (x) =
∫ x

0

DN (t) dt− x,
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where SN (x) is the Nth partial sum of the Fourier series for the function f(x) =
1/2 − x.

(d) Verify that both the hypotheses and the conclusion of Theorem 6.3 hold
for this function. That is, show that limN→∞

∫ x
0
DN (t) dt − x = 1

2 − x for every
x ∈ [0, 1).

REMARK. The Gibb’s Phenomenon concerns the manner in which the partial
sums SN (x) of a Fourier series converge as the point x varies. For instance, how
does the rate of convergence depend on the point x. In the function of the preceding
exercise, f(x) = 1/2 − x, we see that the function values f(x) are always between
−1/2 and +1/2. One would expect that the values of the partial sums SN (x) would
tend, in the limit at least, also to be between −1/2 and +1/2. The fact that this
is not uniformly the case near a jump discontinuity point is an example of what’s
called the Gibb’s Phenomenon. The next theorem demonstrates this explicitly for
the function 1/2 − x and the discontinuity point x = 0.

First, some preliminary calculations and estimates:

EXERCISE 6.5. (a) Estimate the number
∫ π

0
sin(t)/t dt. Show that it is approxi-

mately 1.8.
(b) Define the Gibb’s constant G by

G =
2
π

∫ π

0

sin(t)
t

dt.

Show that G is approximately 1.18.

THEOREM 6.4. Let f be the periodic function of Exercise 6.5. Then

lim
N→∞

SN (
1

2N + 1
) = G

1
2

=
G

2
>

1
2
× 1.18,

and

lim
N→∞

SN (1− 1
2N + 1

) = −G1
2

= −G
2
< −1

2
× 1.18,

where G is the Gibb’s constant.

REMARK. What this shows is that no matter how large N gets, the values of the
partial sums of this Fourier series are not uniformly squeezing down to the interval
[−1/2, 1/2), even though the function 1/2 − x itself is confined to that interval.

PROOF. We will make use of the function

h(t) =
1

sin(πt)
− 1
πt
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from Section 5. Using the results from Exercises 6.4 and 6.5, we have

SN (
1

2N + 1
) =

∫ 1
2N+1

0

DN (t) dt− 1
2N + 1

=
∫ 1

2N+1

0

sin(2π(N + 1
2 )t)

sin(πt)
dt− 1

2N + 1

=
∫ 1

2N+1

0

sin(2π(N + 1
2 )t)

πt
dt

+
∫ 1

2N+1

0

sin(2π(N +
1
2

)t)h(t) dt− 1
2N + 1

=
∫ π

0

sin(t)
πt

dt+
∫ 1

2N+1

0

sin(2π(N +
1
2

)t)h(t) dt− 1
2N + 1

.

Now the first term is exactly equal to G/2, and the limits of the second and third
terms are both 0. (Why?) This proves the first assertion of the theorem.

The second assertion is easy now, because the partial sums SN are periodic and
also are odd functions.

SN (1− 1
2N + 1

) = SN (− 1
2N + 1

) = −SN (
1

2N + 1
),

so that

lim
N→∞

SN (1− 1
2N + 1

) = − lim
N→∞

SN (
1

2N + 1
) = −G

2
.

EXERCISE 6.6. Sketch the graph of the function f(x) = 1/2 −x, and then sketch
the graphs of the partial sums SN (x). Convince yourself that, as x approaches the
jump discontinuity, the graphs of the partial sums “overshoot” or “undershoot” the
proper values.

Here is the general statement of the Gibb’s Phenomenon.

THEOREM 6.5. Suppose f is a square-integrable, periodic function, and suppose
that f satisfies the following additional assumptions.

(1) There exists a point x such that both a left and a right limit as t approaches
x exist:

r = lim
t→x+

f(t) and l = lim
t→x−

f(t).

(2) f has both a left and a right derivate at the point x; i.e.,

lim
h→0+

f(x+ h)− r
h

exists,

and

lim
h→0−

f(x+ h)− l
h

exists.
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Then, the Fourier series for f at x converges to the average of the right and left
limits at x :

lim
N→∞

SN (x) =
∞∑

n=−∞
f̂(n)e2πinx =

r + l

2
.

Moreover, there exist two sequences {xN} and {yN} converging to x for which

lim
N→∞

SN (xN ) =
l + r

2
+
G

2
|l − r|

and
lim
N→∞

SN (yN ) =
l + r

2
− G

2
|l − r|.


