MATH 4330/5330, Fourier Analysis

Section 7, L^{2} convergence of Fourier Series
In the last section we investigated the convergence of the Fourier series for a function f at a single point x, so-called pointwise convergence. We next study the convergence of Fourier series relative to a kind of average behavior. This kind of convergence is called L^{2} convergence or convergence in mean.
DEFINITION. A sequence $\left\{f_{n}\right\}$ of periodic, square-integrable functions is said to converge in L^{2} to a function f if the sequence of numbers $\left\{\int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x\right\}$ converges to 0 .
EXERCISE 7.1. For each $n \geq 1$ define a function f_{n} on $[0,1)$ as follows: $f_{n}(x)=$ $\sqrt{n} x^{n}$.
(a) Show that the sequence $\left\{f_{n}(x)\right\}$ converges to 0 for every $0 \leq x<1$. That is, show that

$$
\lim _{n \rightarrow \infty} \sqrt{n} x^{n}=0
$$

(b) Compute

$$
\int_{0}^{1}\left|f_{n}(x)-0\right|^{2} d x=\int_{0}^{1} n x^{2 n} d x
$$

and verify that this sequence does not converge to 0 .
(c) Conclude that, just because a sequence $\left\{f_{n}\right\}$ converges pointwise, it does not mean that it must converge in L^{2}.
EXERCISE 7.2. Now let f_{n} be defined by $f_{n}(x)=n^{1 / 3}$ if $0 \leq x \leq 1 / n$, and $f_{n}(x)=0$ otherwise.
(a) Sketch the graph of f_{n}.
(b) Show that $f_{n}(0)=n^{1 / 3}$, which does not converge to anything.
(c) Compute

$$
\int_{0}^{1}\left|f_{n}(x)-0\right|^{2} d x=\int_{0}^{\frac{1}{n}} n^{2 / 3}=n^{-\frac{1}{3}}
$$

Conclude that the sequence $\left\{f_{n}\right\}$ converges to the 0 function in L^{2}. Conclude then that, just because a sequence $\left\{f_{n}\right\}$ converges in L^{2}, it need not converge pointwise.

Here is Fourier's Theorem in this L^{2} convergence context. It is perfect.
THEOREM 7.1. Let f be a periodic, square-integrable function. Then the Fourier series for f converges in L^{2} to f; i.e.,

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|S_{N}(x)-f(x)\right|^{2} d x=0
$$

The proof of this theorem will have to wait until we have developed some more techniques.

For simplicity of notation, we will write ϕ_{n} for the exponential function $\phi_{n}(x)=$ $e^{2 \pi i n x}$.

EXERCISE 7.3. Verify that, in the ϕ_{n} notation, we have the following expressions for Fourier coefficients and Fourier series.

$$
\widehat{f}(n)=\int_{0}^{1} f(x) \overline{\phi_{n}(x)} d x=\int_{0}^{1} f(x) \phi_{-n}(x) d x
$$

and

$$
S_{N}(x)=\sum_{n=-N}^{N} \widehat{f}(n) \phi_{n}(x)
$$

PROPOSITION 7.2. The collection of functions $\left\{\phi_{n}\right\}$ satisfies the following properties:
(1) For every integer $n, \int_{0}^{1}\left|\phi_{n}(x)\right|^{2} d x=1$.
(2) If $n \neq k$, then $\int_{0}^{1} \phi_{n}(x) \overline{\phi_{k}(x)} d x=0$.
(3) For any integers n and $k, \int_{0}^{1} \phi_{n}(x) \overline{\phi_{k}(x)} d x=\delta_{n, k}$, where $\delta_{n, k}$ is the Kronecker δ function defined by $\delta_{n, k}=0$ if $n \neq k$ and $=1$ if $n=k$.
(4) If $f=\sum_{n=-N}^{N} c_{n} \phi_{n}$ is a finite linear combination of the ϕ_{n} 's, then

$$
\int_{0}^{1}|f(x)|^{2} d x=\sum_{n=-N}^{N}\left|c_{n}\right|^{2}
$$

PROOF. We leave the proof of parts (1), (2), and (3) to the next exercise. Rather, let us use part (3) to prove part (4). Hence, suppose $f=\sum_{n=-N}^{N} c_{n} \phi_{n}$. Then

$$
\begin{aligned}
\int_{0}^{1}|f(x)|^{2} d x & =\int_{0}^{1} f(x) \overline{f(x)} d x \\
& =\int_{0}^{1} \sum_{n=-N}^{N} c_{n} \phi_{n}(x) \times \overline{\sum_{k=-N}^{N} c_{k} \phi_{k}(x)} d x \\
& =\sum_{n=-N}^{N} \sum_{k=-N}^{N} \int_{0}^{1} c_{n} \overline{c_{k}} \phi_{n}(x) \overline{\phi_{k}(x)} d x \\
& =\sum_{n=-N}^{N} \sum_{k=-N}^{N} c_{n} \overline{c_{k}} \int_{0}^{1} \phi_{n}(x) \overline{\phi_{k}(x)} d x \\
& =\sum_{n=-N}^{N} \sum_{k=-N}^{N} c_{n} \overline{c_{k}} \delta_{n, k} \\
& =\sum_{n=-N}^{N} c_{n} \overline{c_{n}} \\
& =\sum_{n=-N}^{N}\left|c_{n}\right|^{2}
\end{aligned}
$$

as desired.
EXERCISE 7.4. (a) Prove parts (1), (2), and (3) of the preceding proposition.
(b) Let f be a square-integrable function on $\left[0,1\right.$), and write S_{N} for the N th partial sum of its Fourier series. Use part (4) of the preceding proposition to show that

$$
\int_{0}^{1}\left|S_{N}(x)\right|^{2} d x=\sum_{n=-N}^{N}|\widehat{f}(n)|^{2}
$$

The next result is famous, and its proof is tricky.

THEOREM 7.3. (Bessel's Inequality) Let f be a periodic, square-integrable function, and write \widehat{f} for its Fourier transform. Then, for every N, we have

$$
\sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \leq \int_{0}^{1}|f(x)|^{2} d x
$$

Consequently,

$$
\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2} \leq \int_{0}^{1}|f(x)|^{2} d x
$$

PROOF. Fix N, and as usual write $S_{N}(x)=\sum_{n=-N}^{N} \widehat{f}(n) \phi_{n}(x)$ for the partial
sums of the Fourier series for f. Then consider the following calculation:

$$
\begin{aligned}
& 0 \leq \int_{0}^{1}\left|f(x)-S_{N}(x)\right|^{2} d x \\
& =\int_{0}^{1}\left(f(x)-S_{N}(x)\right) \overline{\left(f(x)-S_{N}(x)\right)} d x \\
& =\int_{0}^{1}\left(f(x)-S_{N}(x)\right)\left(\overline{f(x)}-\overline{S_{N}(x)}\right) d x \\
& =\int_{0}^{1} f(x) \overline{f(x)}-\int_{0}^{1} f(x) \overline{S_{N}(x)} d x \\
& -\int_{0}^{1} S_{N}(x) \overline{f(x)} d x+\int_{0}^{1} S_{N}(x) \overline{S_{N}(x)} d x \\
& =\int_{0}^{1}|f(x)|^{2} d x-\int_{0}^{1} f(x) \sum_{n=-N}^{N} \overline{\hat{f}(n)} \overline{\phi_{n}(x)} d x \\
& -\int_{0}^{1} \sum_{n=-N}^{N} \widehat{f}(n) \phi_{n}(x) \overline{f(x)} d x+\int_{0}^{1}\left|S_{N}(x)\right|^{2} d x \\
& =\int_{0}^{1}|f(x)|^{2} d x-\sum_{n=-N}^{N} \overline{\hat{f}(n)} \int_{0}^{1} f(x) \overline{\phi_{n}(x)} d x \\
& -\sum_{n=-N}^{N} \widehat{f}(n) \int_{0}^{1} \phi_{n}(x) \overline{f(x)} d x+\sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \\
& =\int_{0}^{1}|f(x)|^{2} d x-\sum_{n=-N}^{N} \overline{\hat{f}}(n) \widehat{f}(n) \\
& -\sum_{n=-N}^{N} \widehat{f}(n) \overline{\int_{0}^{1} f(x) \overline{\phi_{n}(x)}} d x+\sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \\
& =\int_{0}^{1}|f(x)|^{2} d x-\sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \\
& -\sum_{n=-N}^{N}|\widehat{f}(n)|^{2}+\sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \\
& =\int_{0}^{1}|f(x)|^{2} d x-\sum_{n=-N}^{N}|\widehat{f}(n)|^{2},
\end{aligned}
$$

showing that

$$
0 \leq \int_{0}^{1}|f(x)|^{2}-\sum_{n=-N}^{N}|\widehat{f}(n)|^{2}
$$

from which the first assertion of the theorem follows.
The second assertion follows immediately from the fact that the infinite sum is the limit of the partial sums.

DEFINITION. By $L^{2}(\mathbb{Z})$, or simply l^{2}, we mean the set of all sequences $\left\{c_{n}\right\}_{-\infty}^{\infty}$ for which $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty$. Such sequences are called square-summable.

EXERCISE 7.5. Show that if $f \in L^{2}([0,1))$, then $\widehat{f} \in l^{2}$.
The preceding exercise tells us something about the range of the Fourier transform. It says that if f is square-integrable, then \widehat{f} is square-summable. The next theorem is an even more clean result about the range of the transform.

THEOREM 7.4. The range of the Fourier transform on L^{2} is all of l^{2}. That is, if $\left\{c_{n}\right\}$ is a square-summable sequence in l^{2}, then there exists a periodic, squareintegrable function g such that $c_{n}=\widehat{g}(n)$ for all n. Moreover,

$$
g(x)=\sum_{n=-\infty}^{\infty} c_{n} \phi_{n}(x)=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} c_{n} \phi_{n} m(x)
$$

where the limit is taken in the L^{2} sense.
REMARK. The proof of this theorem is a bit too advanced for this course. The argument goes like this: First show that if $T_{N}(x)$ is defined to be $\sum_{n=-N}^{N} c_{n} \phi_{n}(x)$, then the sequence $\left\{T_{N}\right\}$ converges in L^{2} to some function g. (The fact that the sequence $\left\{c_{n}\right\}$ is square-summable is what makes this so.) Then we show that $\widehat{g}(n)$ must equal c_{n} for all n. This part depends on some advanced continuity notions with respect to L^{2} convergence. We will just have to accept this theorem for the moment.

We can now, with the help of the preceding result, prove Fourier's Theorem for L^{2} convergence.

PROOF OF THEOREM 7.1. Let f be a periodic, square-integrable function. Then, by Bessel's Inequality, or more specifically Exercise 7.5, we see that the sequence $\left\{c_{n}\right\} \equiv\{\widehat{f}(n)\}$ is square-summable. So, by Theorem 7.4, there exists a periodic, square-integrable function g such that $g=\sum_{n=-\infty}^{\infty} c_{n} \phi_{n}$. Moreover, $\widehat{g}(n)=c_{n}$ for all n.

But this means that $\widehat{f}(n)=c_{n}=\widehat{g}(n)$ for all n. That is, $\widehat{f}=\widehat{g}$. Since we have seen that the Fourier transform is 1-1, this implies that $f=g$, or that

$$
f=\sum_{n=-\infty}^{\infty} \widehat{f}(n) \phi_{n}
$$

in L^{2}. This is exactly the claim in Theorem 7.1.
Bessel's Inequality gives an inequality between $\int|f(x)|^{2} d x$ and the infinite series $\sum|\widehat{f}(n)|^{2}$. Actually, this inequality turns out to be a precise equality.

THEOREM 7.5. (Parseval's Equality) Let f be a periodic, square-integrable function. Then

$$
\int_{0}^{1}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}
$$

PROOF. There is one serious mathematical point in this argument. See if you can spot it!

$$
\begin{aligned}
\int_{0}^{1}|f(x)|^{2} d x & =\int_{0}^{1} f(x) \overline{f(x)} d x \\
& =\int_{0}^{1} f(x) \overline{\lim _{N \rightarrow \infty} S_{N}(x)} d x \\
& =\int_{0}^{1} f(x) \lim _{N \rightarrow \infty} \overline{S_{N}(x)} d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{1} f(x) \overline{\sum_{n=-N}^{N} \widehat{f}(n) \phi_{n}(x)} d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{1} f(x) \sum_{n=-N}^{N} \overline{\hat{f}(n)} \overline{\phi_{n}(x)} d x \\
& =\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \overline{\hat{f}(n)} \int_{0}^{1} f(x) \overline{\phi_{n}(x)} d x \\
& =\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \overline{\widehat{f}(n) \widehat{f}(n)} \\
& =\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}|\widehat{f}(n)|^{2} \\
& =\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2} .
\end{aligned}
$$

EXERCISE 7.6. (a) Use the function $f(x)=1 / 2-x$ and Parseval's Equality to derive the formula

$$
\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

(b) Can you recall or figure out a function f whose Fourier coefficients satisfy something like $\widehat{f}(n)=c / n^{2}$. Use this function and Parseval's Equality to compute $\sum_{n=1}^{\infty} 1 / n^{4}$. (You should get $\pi^{4} / 90$.

