
MATH 4330/5330, Fourier Analysis
Section 8, The Fourier Transform on the Line

What makes the Fourier transform on the circle work? What is it about the
functions φn(x) = e2πinx that underlies their importance for analyzing other func-
tions in terms of them? Here’s one very special property that these exponential
functions have.

THEOREM 8.1. If f is a complex-valued, differentiable, periodic function for
which

(1) The values f(x) of x belong to the unit circle T; i.e., |f(x)| = 1 for all x,
and

(2) f satisfies the law of exponents, i.e., f(x+ y) = f(x)f(y) for all x and y,
Then there must exist a unique integer n0 such that f(x) = e2πin0x for all x.
That is, the functions e2πinx are precisely the (differentiable) homomorphisms of
the group of real numbers R (under addition mod 1) into the circle group T (under
multiplication).

PROOF. Suppose f is a function that satisfies (1) and (2). Since the values of f
belong to the unit circle, f is bounded and hence square-integrable. Writing f in
its Fourier series, we have

f(x) =
∞∑

n=−∞
f̂(n)e2πinx

for all x. We then have
∞∑

n=−∞
e2πiny f̂(n)e2πinx =

∞∑
n=−∞

f̂(n)e2πin(x+y)

= f(x+ y)

= f(x)f(y)

= f(y)f(x)

= f(y)
∞∑

n=−∞
f̂(n)e2πinx

=
∞∑

n=−∞
f(y)f̂(n)e2πinx,

which implies that
e2πiny f̂(n) = f(y)f̂(n)

for all n. Hence, if n is any integer for which f̂(n) 6= 0, we must have f(y) = e2πiny

for every y. Because f is not the 0 function, there must be at least one integer n
for which f̂(n) 6= 0. Obviously the equation above for f(y) can not hold for more
than one integer n, and we write n0 for the unique integer for which f(y) = e2πin0y

for all y. The proof of the theorem is now complete.

Let us now consider the real line R. What are the analogous homomorphisms f
on R into T? That is, what are the differentiable homomorphisms of the group R
under addition into the group T under multiplication? Here’s the answer.
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THEOREM 8.2. Let f be a (complex-valued) differentiable function on R into T
for which f(x+y) = f(x)f(y) for all x and y in R. Then there exists a real number
ω (not necessarily an integer) such that

f(x) = e2πiωx

for all real numbers x.

PROOF. first of all, if f(x) = 1 for every x, then we set ω = 0, and obviously

f(x) = 1 = e2πiωx

as desired.
If f(x) is not identically 1, let p be a positive number for which f(p) = 1. (How

do we know there is such a positive number? See the exercise below.) Define a
function h by h(x) = f(px). Then, h is a differentiable, periodic, square-integrable
function that satisfies h(x + y) = h(x)h(y) for all x and y. (Check these claims
out.) So, by Theorem 8.1, let n0 be the unique integer such that h(x) = e2πin0x.
But then

f(x) = f(p
1
p
x) = h(

1
p
x) = e2πin0

1
px = e2πiωx,

where ω = n0/p.

EXERCISE 8.1. Suppose f is as in the preceding theorem, and assume that f(x)
is not identically 1. Use the outline below to show that there must exist a positive
number p such that f(p) = 1.

(a) First, show that there exists a positive number y such that f(y) 6= 1.
(b) Next, define a function g by

g(x) =
f(x)− f(x)

2i
.

If we write the element f(x) of the unit circle as f(x) = eiθ(x) = cos θ(x)+ i sin θ(x)
for some angle θ(x) between 0 and 2π, then note that g(x) = sin θ(x). Show that,
if g(y) = 0, then θ(y) is either 0 or π, and therefore f(y) = ±1, and so f(2y) = 1.
So, in this case we may take p to be 2y.

(c) Next, suppose that g(y) 6= 0, i.e., that sin θ(y) 6= 0. Show that there exists
an integer n such that sin θ(y) and sin(nθ(y)) are of opposite signs, one positive
and the other negative. In other words, g(y) and g(ny) are of opposite signs. Use
the Intermediate Value theorem to conclude that there exists a number z between
y and ny for which g(z) = 0. Conclude then that f(z) = ±1, and therefore that
f(2z) = 1, so that we may take p to be 2z in this case.

EXERCISE 8.2. If ω is any real number, show that the function φω(x) = e2πiωx

satisfies the two hypotheses of Theorem 8.2. Conclude that there is a 1-1 corre-
spondence between the set of all real numbers ω and the set of all differentiable
homomorphisms of the group R of real numbers into the group T of complex num-
bers of absolute value 1.
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By analogy with what we did for functions on the circle, together with Theorem
8.2, it is tempting to define the Fourier transform of a function f on the real line
to be another function f̂ , also on the real line, and which is given by

f̂(ω) =
∫ ∞
−∞

f(t)e−2πiωt dt =
∫
R

f(t)e−2πiωt dt.

One problem immediately shows up here that did not appear before. What do we
mean by the integral over the entire real line? Of course we no doubt mean an
improper Riemann integral. That is,

f̂(ω) = lim
B→∞

∫ B

−B
f(t)e−2πiωt dt.

To make good sense of this definition of the Fourier transform, we would be forced
to assume that all the improper Riemann integrals, a different one for each number
ω, exist. Not only is this a funny assumption to make, it would be horrible to check.
We solve this particular dilemma by defining the Fourier transform only for abso-

lutely integrable functions. These are functions f for which limB→∞
∫ B
−B |f(t)| dt

exists. Because |e−2πiωt| = 1 for every t and ω, it follows that if f is absolutely
integrable, then each of the integrals in our definition of the Fourier transform will
exist.

Also, in the case of the circle, we worked for the most part with square-integrable
functions instead of integrable ones. The difference between these concepts for
functions on the circle is not so great, but on the whole real line these notions are
quite distinct, as the following exercise shows.

EXERCISE 8.3. (a) Define f on R by f(x) = 1/x if 1 ≤ x < ∞, and f(x) =
0 otherwise. Show that f is square-integrable over the whole real line but not
integrable over the whole real line.

(b) Define f on R by f(x) = x−1/2 if 0 < x < 1 and f(x) = 0 otherwise. Show
that f is integrable over the whole real line but not square-integrable over the whole
real line.

(c) Define f(t) = sin t/t. Recall that

∫ ∞
−∞

sin t
t

dt = lim
B→∞

∫ B

−B

sin t
t

dt = π.

Show that f is not absolutely integrable; i.e., show that

lim
B→∞

∫ B

−B
| sin t
t
| dt =∞.
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HINT: Verify that∫ ∞
0

| sin t
t
| dt =

∞∑
n=0

∫ (n+1)π

nπ

| sin t
t
| dt

=
∞∑
n=0

∫ (n+1)π

nπ

| sin t|1
t
dt

≥
∞∑
n=0|

∫ (n+1)π

nπ

| sin t| 1
(n+ 1)π

dt

=
∞∑
n=0

1
(n+ 1)π

∫ (n+1)π

nπ

| sin t| dt

=
∞∑
n=0

1
(n+ 1)π

∫ 1

0

| sin s+ nπ| ds

=
∞∑
n=0

1
(n+ 1)π

∫ 1

0

| sin s| ds

=
∞∑
n=0

1
(n+ 1)π

∫ 1

0

sin s ds

= 2
∞∑
n=0

1
(n+ 1)π

=∞.

(d) Conclude that, just because a function is (improperly) integrable, it may not
be absolutely integrable; i.e., its absolute value may not be integrable.

Here is our formal definition of the Fourier transform on the line.

DEFINITION. Let f be an absolutely integrable function on R. In other words,
let f be an element of L1(R). By the Fourier transform f̂ of f we mean the function
f̂ , also defined on R, given by

f̂(ω) =
∫ ∞
−∞

f(t)e−2πiωt dt =
∫
R

f(t)e−2πiωt dt.

What would be the analog of Fourier’s Theorem in this context? That is, what
should the inverse of the Fourier transform be? How do we recover the function f

from its transform F̂?

THEOREM 8.3. (Fourier’s Theorem on the line) If f is an absolutely integrable
function on R, then

f(x) =
∫
R

f̂(ω)e2πiωx dω.

REMARK. As it was for functions on the circle, this broad assertion is not quite
right. Hypotheses will have to be added to make it true. For instance, it looks here
as if we might very well need (or hope) that the Fourier transform f̂ also should be
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absolutely integrable for Fourier’s formula to hold. Also, as we will see later, the
L2 theory will again be more perfect than the pointwise theory.

EXERCISE 8.4. Compute the Fourier transforms of the following functions.
(a) f(x) = 1 if −1/2 ≤ x < 1/2, and f(x) = 0 otherwise. You should get

f̂(ω) =
sin(πω)
πω

.

Notice that, although f is absolutely integrable, f̂ is not.
(b) f(x) = 1 if −B/2 ≤ x < B/2, and f(x) = 0 otherwise. You should get

f̂(ω) =
sin(Bπω)

πω
.

(c) f(x) = e−|x|. You should get

f̂(ω) =
2

1 + 4π2ω2
.

Here is one of the most interesting calculations in Fourier theory.

THEOREM 8.4. Let f(x) = e−πx
2
. Then f̂ = f, i.e., f̂(ω) = e−πω

2
.

PROOF. This calculation begins by computing the derivative of f̂ . Be alert for
mathematical details!

f̂ ′(ω =
d

dω

∫
R

f(t)e−2πiωt dt

=
∫
R

f(t)(−2πit)e−2πiωt dt

= i

∫
R

e−πt
2
(−2πt)e−2πiωt dt.

Now, we integrate this by parts, obtaining

i

∫
R

e−πt
2
(−2πt)e−2πiωt dt = (ie−πt

2
e−2πiωt)[∞−∞

+ i(2πiω)
∫
R

e−πt
2
e−2πiωt dt

= 0− 0− 2πωf̂(ω.

Hence, we see that the function f̂ satisfies the differential equation

f̂ ′(ω) = −2πωf̂(ω).

It follows that f̂(ω) = ce−πω
2
, where c is a constant. We can evaluate c by setting

ω = 0. Thus,

c = f̂(0) =
∫
R

e−πt
2
dt = 1.
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What precisely does Fourier’s Theorem (8.3) say analytically? (See if you can
spot the subtle mathematical points in the following computation. Also note the
similarity between this calculation and the first calculation in Section 5.)

f(x) =
∫
R

f̂(ω)e2πiωx dω

= lim
B→∞

IB(x)

= lim
B→∞

∫ B

−B
f̂(ω)e2πiωx dω

= lim
B→∞

∫ B

−B

∫
R

f(t)e−2πitω dte2πiωx dω

= lim
B→∞

∫ B

−B

∫
R

f(t)e2πi(x−t)ω) dtdω

= lim
B→∞

∫
R

∫ B

−B
e2πi(x−t)ω dω f(t) dt

= lim
B→∞

∫
R

e2πi(x−t)B − e−2πi(x−t)B

2πi(x− t)
f(t) dt

= lim
B→∞

∫
R

f(t)
sin(B2π(x− t))

π(x− t)
dt

= lim
B→∞

∫
R

f(t)KB(x− t) dt,

where KB is the function (kernel) given by

KB(t) =
sin(2πBt)

πt
.

Obviously, the kernel KB is playing the role here that the Dirichlet kernel DN

played for the circle, and the “partial” integral

IB(x) =
∫ B

−B
f̂(ω)e2πiωx dω =

∫
R

f(t)KB(x− t) dt

is playing the role of the partial sums of Fourier series.
Note that KB is the Fourier transform of a rather simple function. (See part (b)

of Exercise 8.4.)

EXERCISE 8.5. Here is an important theorem from Lebesgue integration theory.
It is called Fubini’s Theorem, and it is what’s needed to justify interchanging the
order of integration in a double integral.

THEOREM: If f is a function of two variables x and y, then∫ b

a

∫ d

c

f(x, y) dydx =
∫ d

c

∫ b

a

f(x, y) dxdy

providing that ∫ b

a

∫ d

c

|f(x, y)| dydx is finite..
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Show that the interchange of the order of integration in the preceding computa-
tion is justified by appealing to Fubini’s Theorem.

Here are some properties of the kernel KB that you should recognize as similar
to corresponding properties of the Dirichlet kernel DN .

EXERCISE 8.6. (a) Prove that
∫
R
KB(t) dt = 1 for all B.

(b) Show that, for any δ > 0,

lim
B→∞

∫ δ

−δ
KB(t) dt = 1.

Conclude that
lim
B→∞

∫ ∞
δ

KB(t) dt = 0.

(This kernel KB is some version of the Dirac δ function.)

Though the initial observations indicate that the Fourier transform on the real
line are quite similar to the Fourier transform on the circle, it is not entirely the
case. The transform on the real line is a good bit more subtle. As a first step toward
understanding Fourier analysis in this real line context, we have the following analog
to Theorem 6.1. We will again rely heavily on the Riemann-Lebesgue Lemma.

EXERCISE 8.7. Revisit the statement and proof of the Riemann-Lebesgue Lemma:
If f is an absolutely integrable function, then

lim
B→∞

∫
R

f(t) sin(Bt) dt = 0.

First assume that f(x) = 0 unless x belongs to a closed interval [a, b], suppose that
f is differentiable on the open interval (a, b), and that its derivative f ′ is bounded
there. Then prove the Riemann-Lebesgue Lemma by integrating by parts, etc.
Compare with Theorem 5.2 and Exercise 5.3.

Recall that the general statement of the Riemann-Lebesgue Lemma follows from
this special case by Lebesgue integration theory.

THEOREM 8.5. If f is an absolutely integrable function on R, and if f is dif-
ferentiable at a point x, then Fourier’s Theorem holds. That is,

f(x) =
∫
R

f̂(ω)e2πiωx dω = lim
B→∞

IB(x).

PROOF. We know from above that the partial integral IB(x) =
∫ B
−B f̂(ω)e2πiωx dω

is given in an integral form by

IB(x) =
∫
R

f(t)KB(x− t) dt.

So, changing variables, and using the fact that the function KB is an even function,
we get

IB(x) =
∫
R

f(x+ t)KB(t) dt
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and
IB(x) =

∫
R

f(x− t)KB(t) dt.

Now, f(x) = f(x)
∫
R
KB(t) dt, and so

IB(x)− f(x) =
∫
R

f(x+ t) + f(x− t)
2

KB(t) dt−
∫
R

f(x)KB(t) dt

=
∫
R

f(x+ t) + f(x− t)− 2f(x)
2

KB(t) dt

=
∫
R

f(x+ t) + f(x− t)− 2f(x)
2πt

sin(2Bπt) dt

=
∫
R

g(t) sin(2Bπt) dt,

where g(t) = (f(x + t) + f(x − t) − 2f(x))/(2πt). So limB→∞(IB(x) − f(x)) = 0,
i.e., f(x) equals limB→∞ IB(x) if we can show that the integral above tends to 0
as B tends to ∞.

Because f is assumed to be differentiable at the point x, there must exist a δ > 0
so that the two differential quotients (f(x + t) − f(x))/t and (F (x − t) − f(x))/t
are both bounded if |t| < δ. We show that the limit of the integral above is 0 by
breaking the integral into three integrals over the three intervals (−∞,−δ), (−δ, δ),
and (δ,∞), and showing that each of these three integrals tends to 0.

For the middle interval (−δ, δ), we write

g(t) =
1

2π
(
f(x+ t)− f(x)

t
+
f(x− t)− f(x)

t
),

which is a bounded function, and so is an integrable function on the finite interval
(−δ, δ). Hence, that integral tends to 0 by the Riemann-Lebesgue Lemma.

For the interval (δ,∞), we write∫ ∞
δ

g(t) sin(2Bπt) dt =
∫ ∞
δ

f(x+ t) + f(x− t
2πt

sin(2Bπt) dt−−2f(x)
∫ ∞
δ

KB(t dt.

Note that the first integral on the right tends to 0 by the Riemann-Lebesgue Lemma,
since the function (f(x+ t) + f(x− t))/(2πt) is integrable on that interval. Finally,
the second integral on the right tends to 0 by part (b) of Exercise 8.6. The proof
is now complete.

EXERCISE 8.8. (a) State and prove a theorem for functions in L1(R) that is an
analog to Theorem 6.3 for functions on the circle.

(b) Use the theorem you stated in part (a) to prove that, for every real number
x,

e−|x| =
∫
R

2
1 + 4π2ω2

e2πiωx dω =
∫
R

2
1 + 4π2ω2

cos(2πωx) dω.

(c) Let f(x) = e−|x|. Prove that f = ̂̂
f.

Before developing any more results about Fourier’s Theorem on the real line, we
must develop some additional properties of the Fourier transform on L1.
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THEOREM 8.6. Let f and g be elements of L1(R), and let a be any real number.
Then

(1) The Fourier transform on L1(R) is a linear transformation. That is, f̂ + g =
f̂ + ĝ, and ĉf = cf̂ for any complex number c.

(2) Each function f̂ is bounded. In fact,

|f̂(ω)| ≤
∫
R

|f(t)| dt.

(3) If fa is the function given by fa(t) = f(t+ a), Then

f̂a(ω) = e2πiωaf̂(ω).

Under the Fourier transform, the translation operator is converted into a
multiplication operator.

(4) Suppose f is a differentiable function, and assume that f ′ is also in L1.
Then

f̂ ′(ω) = 2πiωf̂(ω).

The differentiation operator is converted into a multiplication operator.
(5) (The Hat Trick.)∫

R

f̂(x)g(x) dx =
∫
R

f(x)ĝ(x) dx.

PROOF. We leave parts (1), (2), and (3) to an exercise.
To prove part (4), we integrate by parts:

f̂ ′(ω) = lim
B→∞

∫ B

−B
f ′(t)e−2πiωt dt

= lim
B→∞

f(t)e−2πiωt[B−B− lim
B→∞

∫ B

−B
f(t)(−2πiω)e−2πiωt dt

= lim
B→∞

(f(B)e−2πiωB − f(−B)e2πiωB) + 2πiω lim
B→∞

∫ B

−B
f(t)e−2πiωt dt

= 0− 0 + 2πiωf̂(ω).

(Why do the integrated terms go away?)
The proof to part (5) depends on interchanging the order of integration in a

double integral. Fubini’s Theorem is what’s required to justify this interchange.∫
R

f̂(x)g(x) dx =
∫
R

∫
R

f(t)e−2πixt dtg(x) dx

=
∫
R

∫
R

f(t)g(x)e−2πixt dtdx

=
∫
R

∫
R

f(t)g(x)e−2πixt dxdt

=
∫
R

f(t)
∫
R

g(x)e−2πixt dxdt

=
∫
R

f(t)ĝ(t) dt

=
∫
R

f(x)ĝ(x) dx,
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which proves part (5).

EXERCISE 8.9. (a) Prove parts (1), (2), and (3) of the preceding theorem.
(b) Use Fubini’s Theorem to justify the interchange of the order of integration

in the preceding proof.


