
MATH 4330/5330, Fourier Analysis
Section 9

Properties of the Fourier Transform

The reason that the Fourier transform is so useful is that it converts operations
on functions f into different operations on the functions f̂ . We must try to catalog
how these conversions work. The next two results generalize Theorem 8.6.

PROPOSITION 9.1. (Translation)
(1) If f is a periodic, square-integrable function, and if a is any real number,

define fa to be the function given by fa(x) = f(x+ a). Then

f̂a(n) = e2πinaf̂(n).

(2) If f is an element of L1(R, and a is any real number, define fa to be the
function given by fa(x) = f(x+ a). Then

f̂a(ω) = e2πiωaf̂(ω).

In both cases, the translation operator is converted into a multiplication opera-
tor.

EXERCISE 9.1. Prove Proposition 9.1. It’s just a matter of changing variables in
the integral.

PROPOSITION 9.2. (Differentiation)
(1) Suppose f is a differentiable function, and assume that both f and f ′ are

periodic and square-integrable. Then

f̂ ′(n) = 2πinf̂(n).

(2) Suppose f is a differentiable function on R, and assume that both f and f ′

are elements of L1(R). Then

f̂ ′(ω) = 2πiωf̂(ω).

In both cases, the differentiation operator is converted into a multiplication op-
erator.

EXERCISE 9.2. (a) Prove Proposition 9.2. (Just integrate by parts.)
(b) Generalize Proposition 9.2 to compute the Fourier transform of the second

derivative of f. What about higher derivatives?

Convolution of Functions

DEFINITION. Let f and g be two periodic, square-integrable functions, and
define another function, denoted f ∗ g, by

f ∗ g(x) =
∫ 1

0

f(x− t)g(t) dt.

We call the function f ∗ g the convolution of f andg.
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EXERCISE 9.3. (a) Can you explain the minus sign?
(b) If f and g are periodic, square-integrable functions, show that f ∗ g is also

periodic.
(c) Let f be a periodic, square-integrable function, and write {SN} for the se-

quence of partial sums of its Fourier series. Prove that SN = f ∗DN . That is, the
partial sum SN is the convolution of the function f with the Dirichlet kernel DN .

(d) As usual, let φn(x) = e2πinx. Compute the convolution φn ∗ φk.
(e) Let f be the periodic function defined on [0, 1) by f(x) = x. Compute the

convolution f ∗ f.

THEOREM 9.3. The convolution of square-integrable, periodic functions has the
following properties:

(1) Convolution is a binary operation on the set of periodic, square-integrable
functions.

(2) The convolution of f and g is always a bounded function.
(3) f ∗ g = g ∗ f, i.e., the convolution is commutative.
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h, i.e., the convolution is associative.
(5) f ∗ (g + h) = f ∗ g + f ∗ h, i.e., convolution is distributive over addition.
(6) ‖f ∗ g‖ ≤ ‖f‖‖g‖, where the norm of a function f is given by

‖f‖ =

√∫ 1

0

|f(x)|2 dx.

PROOF. We prove parts (4) and (6), leaving the rest to the exercise that follows.
Let f, g, and h be periodic and square-integrable. Find the subtle mathematical

step in the following.

f ∗ (g ∗ h)(x) =
∫ 1

0

f(x− t)g ∗ h(t) dt

=
∫ 1

0

f(x− t)
∫ 1

0

g(t− s)h(s) dsdt

=
∫ 1

0

∫ 1

0

f(x− t)g(t− s)h(s) dsdt

=
∫ 1

0

∫ 1

0

f(x− t)g(t− s)h(s) dtds

=
∫ 1

0

∫ 1

0

f(x− t− s)g(t)h(s) dtds

=
∫ 1

0

∫ 1

0

f(x− s− t)g(t) dth(s) ds

=
∫ 1

0

f ∗ g(x− s)h(s) ds

= (f ∗ g) ∗ h(x),

and this proves (4).
Let us verify part (6). Thus let f and g be periodic, square-integrable functions,

and for each x write hx for the function defined by hx(t) = f(x− t). We will need
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this notation in the calculation below, and also, at some point we will use the
Cauchy-Schwarz Inequality. See if you can spot it.

‖f ∗ g‖2 =
∫ 1

0

|f ∗ g(x)|2 dx

=
∫ 1

0

|
∫ 1

0

f(x− t)g(t) dt|2 dx

=
∫ 1

0

|
∫ 1

0

g(t)hx(t) dt|2 dx

=
∫ 1

0

|〈g | hx〉|2 dx

≤
∫ 1

0

‖g‖2‖hx‖2 dx

= ‖g‖2
∫ 1

0

‖hx‖2 dx

= ‖g‖2
∫ 1

0

∫ 1

0

|f(x− t)|2 dtdx

= ‖g‖2
∫ 1

0

∫ 1

0

|f(t)|2 dtdx

= ‖g‖2
∫ 1

0

‖f‖2 dx

= ‖g‖2‖f‖2,

which proves the desired inequality by taking square roots.

EXERCISE 9.4. Prove parts (1), (2), (3), and (5) of the preceding theorem. Can
you explain the minus sign now?

REMARK. The set L2([0, 1)) is now an example of a normed algebra. The prop-
erties in the preceding theorem are just what’s required to be a normed algebra. It
is a vector space, and in addition it has a notion of multiplication. Finally, both
addition and multiplication are related to the norm by inequalities. Many ques-
tions come up now about this convolution operation. Is there an identity? That
is, is there a function e such that f = f ∗ e for every f. Are there lots of func-
tions that satisfy f ∗ f = f? Can we solve polynomial equations in L2? That is, if
p(x) =

∑n
j=0 cjx

j is a polynomial, is there a function f in L2 such that

p(f) =
n∑
j=0

cjf
j = 0?

Of course, here we mean by f j the convolution product of f with itself j times.

THEOREM 9.4. (Convolution Theorem) Let f and g be periodic, square-integrable
functions. Then

f̂ ∗ g = f̂ ĝ,

or more explicitly,
f̂ ∗ g(n) = f̂(n)ĝ(n)
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for all n. Under the Fourier transform, the binary operation of convolution is con-
verted into the ordinary product of functions.

PROOF. We just compute. Watch for the mathematical subtleties.

f̂ ∗ g(n) =
∫ 1

0

f ∗ g(x)e−2πinx dx

=
∫ 1

0

∫ 1

0

f(x− t)g(t) dte−2πinx dx

=
∫ 1

0

∫ 1

0

f(x− t)g(t)e−2πinx dtdx

=
∫ 1

0

∫ 1

0

f(x− t)g(t)e−2πinx dxdt

=
∫ 1

0

∫ 1

0

f(x)g(t)e−2πin(x+t) dxdt

=
∫ 1

0

∫ 1

0

f(x)e−2πinx dxg(t)e−2πint dt

=
∫ 1

0

f̂(n)g(t)e−2πint dt

= f̂(n)ĝ(n),

as desired.

Convolution on the real line

DEFINITION. Let f and g be two elements of L1(R), and define a third function
denoted f ∗ g, by

f ∗ g(x) =
∫
R

f(x− t)g(t) dt.

We call the function f ∗ g the convolution of f andg.

EXERCISE 9.5. (a) Let f be the function defined on the real line by

f(x) =
{

1 − 1
2 ≤ x <

1
2

0 otherwise
.

Compute the convolution f ∗ f.
(b) Let f be defined by f(x) = e−πx

2
. Compute f ∗ f. You may want to consult

part (d) of Exercise 1.4.
(c) For each positive number t, let kt be the function given by

kt(x) =
1√
4πt

e−
x2
4t .

Compute kt ∗ ks. YOu should get kt+s. (We have called the functions {kt} the heat
kernel. Because of the calculation above, it is often called the heat semigroup.)
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THEOREM 9.5. The convolution of L1 functions has the following properties:
(1) Convolution is a binary operation on L1(R).
(2) f ∗ g = g ∗ f, i.e., the convolution is commutative.
(3) f ∗ (g ∗ h) = (f ∗ g) ∗ h, i.e., the convolution is associative.
(4) f ∗ (g + h) = f ∗ g + f ∗ h, i.e., convolution is distributive over addition.
(5) ‖f ∗ g‖ ≤ ‖f‖‖g‖, where the norm of a function f is given this time as the

L1 norm:
‖f‖ =

∫
R

|f(t)| dt.

PROOF. The proofs are analogous to the corresponding arguments given in the
proof of Theorem 9.3.

REMARK. The set L1(R) is another example of a normed algebra. It is a vector
space, and in addition it has a notion of multiplication. Finally, both addition and
multiplication are related to the norm by inequalities. As before, many questions
come up now about this convolution operation. Is there an identity? That is, is
there a function e such that f = f ∗ e for every f. Are there lots of functions
that satisfy f ∗ f = f? Can we solve polynomial equations in L2? That is, if
p(x) =

∑n
j=0 cjx

j is a polynomial, is there a function f in L1(R) such that

p(f) =
n∑
j=0

cjf
j = 0?

Of course, here we mean by f j the convolution product of f with itself j times.

THEOREM 9.6. (Convolution Theorem) Let f and g be L1 functions. Then

f̂ ∗ g = f̂ ĝ,

or more explicitly,
f̂ ∗ g(ω) = f̂(ω)ĝ(ω)

for all ω. Under the Fourier transform, the binary operation of convolution is con-
verted into the ordinary product of functions.

PROOF. We just compute. Watch for the mathematical subtleties.

f̂ ∗ g(ω) =
∫
R

f ∗ g(x)e−2πiωx dx

=
∫
R

∫
R

f(x− t)g(t) dte−2πiωx dx

=
∫
R

∫
R

f(x− t)g(t)e−2πiωx dtdx

=
∫
R

∫
R

f(x− t)g(t)e−2πiωx dxdt

=
∫
R

∫
R

f(x)g(t)e−2πiω(x+t) dxdt

=
∫
R

∫
R

f(x)e−2πixω dxg(t)e−2πitω dt

=
∫
R

f̂(ω)g(t)e−2πitω dt

= f̂(ω)ĝ(ω),
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as desired.

Let’s Solve Some Problems!

1. The heat equation on the circle.
Let f be a periodic, square-integrable function, and suppose that u(t, x) is a

solution to the heat equation on the circle having initial value f(x). Can we prove
that such a u exists? Can we prove it is unique? Can we find out exactly what u
is?

For each t ≥ 0, write ft for the function of x given by ft(x) = u(t, x). Note that
f0(x) = u(0, x) = f(x). Then for every t ≥ 0 ft is periodic and square-integrable.
So, we may write

u(t, x) = ft(x)

=
∞∑

n=−∞
f̂t(n)e2πinx

=
∞∑

n=−∞
cn(t)e2πinx,

where cn(t) is just another name for f̂t(n). (How do we know these formulas are
justified?) In particular, cn(0) = f̂0(n) = f̂(n).

So, assuming that a solution u exists, and writing u(t, x) as
∑
cn(t)e2πinx, what

is the derivative of u with respect to t? Be alert for the subtle mathematical steps
here.

∂u

∂t
u(t, x) =

d

dt
(
∞∑

n=−∞
cn(t)e2πinx)

=
∞∑

n=−∞
c′n(t)e2πinx.

And, what is the second derivative of u with respect to x?

∂2u

∂x2
u(t, x) = (

d

dx
)2(

∞∑
n=−∞

cn(t)e2πinx)

=
∞∑

n=−∞
cn(t)(−4π2n2)e2πinx.

Hence, for each t > 0, we an an equality between two Fourier series:
∞∑

n=−∞
c′n(t)e2πinx =

∞∑
n=−∞

cn(t)(−4π2n2)e2πinx,

from which it follows (why?) that for each integer n, we have

c′n(t) = cn(t)(−4π2n2).

Now we can solve this simple differential equation for the functions cn, using The-
orem 2.1 for instance. Indeed, we get that

cn(t) = cn(0)e−4π2n2t = f̂(n)e−4π2n2t.
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Now, for every t > 0, the sequence {e−4π2n2t} is square-summable, and by Theorem
7.4 we may define a function kt by kt(x) =

∑
n e
−4π2n2te2πinx. Recall also that

e−4π2n2t = k̂t(n).
Finally, a formula for the solution to the heat equation is given by

u(t, x) =
∞∑

n=−∞
cn(t)e2πinx

=
∞∑

n=−∞
f̂(n)e−4π2n2te2πinx

=
∞∑

n=−∞
f̂(n)k̂t(n)e2πinx

=
∞∑

n=−∞

∫ 1

0

f(s)e−2πins dsk̂t(n)e2πinx

=
∞∑

n=−∞

∫ 1

0

f(s)e−2πinsk̂t(n)e2πinx ds

=
∞∑

n=−∞

∫ 1

0

f(s)k̂t(n)e2πin(x−s) ds

=
∫ 1

0

∞∑
n=−∞

f(s)k̂t(n)e2πin(x−s) ds

=
∫ 1

0

f(s)
∞∑

n=−∞
k̂t(n)e2πin(x−s) ds

=
∫ 1

0

f(s)kt(x− s) ds

= f ∗ kt(x).

In this case, the parameterized family kt of functions is called the heat kernel on
the circle. Unfortunately, we do not have an explicit closed form expression for the
heat kernel kt in this case. Only the Fourier series for it is known.

EXERCISE 9.6. Verify that the argument above shows that, for any periodic,
square-integrable, initial value function f, there exists a unique solution to the
initial value problem for the heat equation on the circle. That is, show that the
formula above for u(t, x) really is a solution to the heat equation, and use the
arguments above to show that any solution of the heat equation on the circle has
to coincide with this one.

2. A Boundary Value Problem.
What conditions must real numbers a, b, and c satisfy in order that there be a

nontrivial, periodic solution to the differential equation

af ′
′ + bf ′ + cf = 0?

(Let’s assume that a 6= 0 to avoid trivial cases.) That is, we want a solution f to
this differential equation, and we want f to satisfy the boundary value condition
f(0) = f(1).



8

What is the transformed version of this differential equation? It is

−4π2n2af̂(n) + 2πinbf̂(n) + cf̂(n) = 0

for all n. Therefore, for every value of n for which f̂(n) 6= 0, we must have that the
integer n is a root of the quadratic equation

−4π2ax2 + 2πibx+ c = 0.

There can be at most two roots of this equation, So f̂(n) can be nonzero for at
most two integers n. Perhaps more interesting is what conditions on a, b, and c will
suffice to make a root of this quadratic equation be an integer. Using the quadratic
formula, we have that the roots are

x =
−2πib±

√
−4π2b2 + 16π2ac

−8π2a
.

If a root of this quadratic equation is an integer, hence a real number, then, to be
sure that there is no imaginary part of the root, either the coefficient b must be 0
or the coefficient c must be 0. In the latter case, i.e., when c = 0, the only real root
will be 0. Hence, in that case, f̂(n) = 0 except when n = 0, and this means that f
is a constant function.

Next, assuming that b = 0, we see that the solutions are

x = ±4π
√
ac

8π2a
= ± 1

2π

√
c

a
.

So, the only time this solution would be an integer n is if c/a = 4π2n2 for some n.
Hence, the only time the differential equation af ′

′ + bf ′ + cf = 0 has a periodic
solution is when f is a constant function, or b = 0 and c/a = 4π2n2, for some n. In
this case, the differential equation becomes

f ′
′ + 4π2n2f = 0,

and the solution is necessarily of the form

f(x) = αe2πinx + βe−2πinx.

EXERCISE 9.7. (a) Use Fourier analysis to solve the inhomogeneous differential
equation

f ′
′ + f ′ + f = sin(6πx).

Write down the transformed version of this differential equation, solve that equation
for f̂ , and then write down a formula for f.

(b) Use Fourier analysis to show that there exists a periodic solution to the
inhomogeneous differential equation

5f ′′(x) + 4f ′(x) + 3f(x) = frac12− x.

3. Questions about Convolution.
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Is there an identity for convolution. That is, is there a function e ∈ L2([0, 1)) for
which e ∗ f = f for all f. Suppose there is. Then, on the transform side, we would
have

ê(n)f̂(n) = f̂(n)

for all f and all n. This would imply that ê(n) = 1 for all n. (Why?) But this is
impossible because of the Riemann-Lebesgue Lemma.

EXERCISE 9.8. Is there an identity for convolution of L1 functions on the real
line? That is, is thee an L1 function e on R for which f = e ∗ f for all L1 functions
f?

Are there any square-integrable periodic functions f for which f = f ∗ f? Trans-
forming, we would ask are there any functions f̂ for which f̂(n) = f̂(n) × f̂(n) =
f̂2(n)? This happens if and only if f̂(n) is 0 or 1 for every n. There are lots of
such functions; any function whose Fourier coefficients are 0 or 1. What are some
examples? Every φn works. The Dirichlet kernel itself works. 2 cos(2πkx) for any
nonzero k works.

EXERCISE 9.9. Are there any L1 functions f on the real line such that f = f ∗ f?

Do any square-integrable periodic functions f have square roots with respect to
convolution? That is, are there any functions f for which f = g ∗ g for some g?

On the transform side, we would be asking if there are any functions f̂ such that
f̂ = ĝ2; i.e., f̂(n) = ĝ2(n) for all n. Well, these are just complex numbers, each of
which has a square root. So, given a periodic, square-integrable function f, Why
not define

g(x) =
∞∑

n=−∞

√
f̂(n)e2πinx?

Is this g a periodic, square-integrable function? When can we define a function by
means of a sequence {cn}? Again, think about Section 7, particularly Theorem 7.4.

EXERCISE 9.10. If p(x) =
∑n
j=0 cjx

j is a polynomial, when is there a function f

in L2 such that

p(f) =
n∑
j=0

cjf
j = 0?

Of course, here we mean by f j the convolution product of f with itself j times.


