
CHAPTER X

THE SPECTRAL THEOREM OF GELFAND

DEFINITION A Banach algebra is a complex Banach space A on which
there is defined an associative multiplication × for which:

(1) x× (y + z) = x× y + x× z and (y + z)× x = y × x + z × x for
all x, y, z ∈ A.

(2) x× (λy) = λx× y = (λx)× y for all x, y ∈ A and λ ∈ C.
(3) ‖x× y‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.

We call the Banach algebra commutative if the multiplication in A is
commutative.

An involution on a Banach algebra A is a map x → x∗ of A into itself
that satisfies the following conditions for all x, y ∈ A and λ ∈ C.

(1) (x + y)∗ = x∗ + y∗.
(2) (λx)∗ = λx∗.
(3) (x∗)∗ = x.
(4) (x× y)∗ = y∗ × x∗.
(5) ‖x∗‖ = ‖x‖.

We call x∗ the adjoint of x. A subset S ⊆ A is called selfadjoint if x ∈ S
implies that x∗ ∈ S.

A Banach algebra A on which there is defined an involution is called
a Banach *-algebra.

An element of a Banach *-algebra is called selfadjoint if x∗ = x. If a
Banach *-algebra A has an identity I, then an element x ∈ A, for which
x × x∗ = x∗ × x = I, is called a unitary element of A. A selfadjoint
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element x, for which x2 = x, is called a projection in A. An element x
that commutes with its adjoint x∗ is called a normal element of A.

A Banach algebra A is a C∗-algebra if it is a Banach *-algebra, and
if the equation

‖x× x∗‖ = ‖x‖2

holds for all x ∈ A. A sub C∗-algebra of a C∗-algebra A is a subalgebra
B of A that is a closed subset of the Banach space A and is also closed
under the adjoint operation.

REMARK. We ordinarily write xy instead of x × y for the multi-
plication in a Banach algebra. It should be clear that the axioms for
a Banach algebra are inspired by the properties of the space B(H) of
bounded linear operators on a Hilbert space H.

EXERCISE 10.1. (a) Let A be the set of all n×n complex matrices,
and for M = [aij ] ∈ A define

‖M‖ =

√√√√ n∑
i=1

n∑
j=1

|aij |2.

Prove that A is a Banach algebra with identity I. Verify that A is a
Banach ∗-algebra if M∗ is defined to be the complex conjugate of the
transpose of M. Give an example to show that A is not a C∗-algebra.

(b) Suppose H is a Hilbert space. Verify that B(H) is a C∗-algebra.
Using as H the Hilbert space C2, give an example of an element x ∈
B(H) for which ‖x2‖ 6= ‖x‖2. Observe that this example is not the same
as that in part a. (The norms are different.)

(c) Verify that L1(R) is a Banach algebra, where multiplication is
defined to be convolution. Show further that, if f∗(x) is defined to be
f(−x), then L1(R) is a Banach *-algebra. Give an example to show that
L1(R) is not a C∗-algebra.

(d) Verify that C0(∆) is a Banach algebra, where ∆ is a locally com-
pact Hausdorff space, the algebraic operations are pointwise, and the
norm on C0(∆) is the supremum norm. Show further that C0(∆) is a
C∗-algebra, if we define f∗ to be f. Show that C0(∆) has an identity if
and only if ∆ is compact.

(e) Let A be an arbitrary Banach algebra. Prove that the map
(x, y) → xy is continuous from A×A into A.

(f) Let A be a Banach algebra. Suppose x ∈ A satisfies ‖x‖ < 1.
Prove that 0 = limn xn.
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(g) Let M be a closed subspace of a Banach algebra A, and assume
that M is a two-sided ideal in (the ring) A; i.e., xy ∈ M and yx ∈ M if
x ∈ A and y ∈ M. Prove that the Banach space A/M is a Banach algebra
and that the natural map π : A → A/M is a continuous homomorphism
of the Banach algebra A onto the Banach algebra A/M.

(h) Let A be a Banach algebra with identity I and let x be an element
of A. Show that the smallest subalgebra B of A that contains x coincides
with the set of all polynomials in x, i.e., the set of all elements y of the
form y =

∑n
j=0 ajx

j , where each aj is a complex number and x0 = I. We
denote this subalgebra by [x] and call it the subalgebra of A generated
by x.

(i) Let A be a Banach *-algebra. Show that each element x ∈ A can
be written uniquely as x = x1 + ix2, where x1 and x2 are selfadjoint.
Show further that if A contains an identity I, then I∗ = I. If A is a
C∗-algebra with identity, and if U is a unitary element in A, show that
‖U‖ = 1.

(j) Let x be a selfadjoint element of a C∗-algebra A. Prove that ‖xn‖ =
‖x‖n for all nonnegative integers n. HINT: Do this first for n = 2k.

EXERCISE 10.2. (Adjoining an Identity) Let A be a Banach alge-
bra, and let B be the complex vector space A×C. Define a multiplication
on B by

(x, λ)× (x′, λ′) = (xx′ + λx′ + λ′x , λλ′),

and set ‖(x, λ)‖ = ‖x‖+ |λ|.
(a) Prove that B is a Banach algebra with identity.
(b) Show that the map x → (x, 0) is an isometric isomorphism of the

Banach algebra A onto an ideal M of B. Show that M is of codimension
1; i.e., the dimension of B/M is 1. (This map x → (x, 0) is called the
canonical isomorphism of A into B.)

(c) Conclude that every Banach algebra is isometrically isomorphic
to an ideal of codimension 1 in a Banach algebra with identity.

(d) Suppose A is a Banach algebra with identity, and let B be the
Banach algebra A × C constructed above. What is the relationship, if
any, between the identity in A and the identity in B?

(e) If A is a Banach ∗-algebra, can A be imbedded isometrically and
isomorphically as an ideal of codimension 1 in a Banach ∗-algebra?

THEOREM 10.1. Let x be an element of a Banach algebra A with
identity I, and suppose that ‖x‖ = α < 1. Then the element I − x is



192 CHAPTER X

invertible in A and

(I − x)−1 =
∞∑

n=0

xn.

PROOF. The sequence of partial sums of the infinite series
∑∞

n=0 xn

forms a Cauchy sequence in A, for

‖
j∑

n=0

xn −
k∑

n=0

xn‖ = ‖
j∑

n=k+1

xn‖

≤
j∑

n=k+1

‖xn‖

≤
j∑

n=k+1

‖x‖n

=
j∑

n=k+1

αn.

We write

y =
∞∑

n=0

xn = lim
j

j∑
n=0

xn = lim
j

Sj .

Then
(I − x)y = lim

j
(I − x)Sj

= lim
j

(I − x)
j∑

n=0

xn

= lim
j

(I − xj+1)

= I,

by part f of Exercise 10.1, showing that y is a right inverse for I − x.
That y also is a left inverse follows similarly, whence y = (I − x)−1, as
desired.

EXERCISE 10.3. Let A be a Banach algebra with identity I.
(a) If x ∈ A satisfies ‖x‖ < 1, show that I + x is invertible in A.
(b) Suppose y ∈ A is invertible, and set δ = 1/‖y−1‖. Prove that x is

invertible in A if ‖x− y‖ < δ. HINT: Write x = y(I + y−1(x− y)).
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(c) Conclude that the set of invertible elements in A is a nonempty,
proper, open subset of A.

(d) Prove that the map x → x−1 is continuous on its domain. HINT:
y−1 − x−1 = y−1(x− y)x−1.

(e) Let x be an element of A. Show that the infinite series

∞∑
n=0

xn/n!

converges to an element of A. Define

ex =
∞∑

n=0

xn/n!.

Show that
ex+y = exey

if xy = yx. Compare with part c of Exercise 8.13.
(f) Suppose in addition that A is a Banach *-algebra and that x is

a selfadjoint element of A. Prove that eix is a unitary element of A.
Compare with part d of Exercise 8.13.

THEOREM 10.2. (Mazur’s Theorem) Let A be a Banach algebra
with identity I, and assume further that A is a division ring, i.e., that
every nonzero element of A has a multiplicative inverse. Then A consists
of the complex multiples λI of the identity I, and the map λ → λI is a
topological isomorphism of C onto A.

PROOF. Assume false, and let x be an element of A that is not a
complex multiple of I. This means that each element xλ = x − λI has
an inverse.

Let f be an arbitrary element of the conjugate space A∗ of A, and
define a function F of a complex variable λ by

F (λ) = f(x−1
λ ) = f((x− λI)−1).

We claim first that F is an entire function of λ. Thus, let λ be fixed. We
use the factorization formula

y−1 − z−1 = y−1(z − y)z−1.
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We have
F (λ + h)− F (λ) = f(x−1

λ+h)− f(x−1
λ )

= f(x−1
λ+h(xλ − xλ+h)x−1

λ )

= hf(x−1
λ+hx−1

λ ).

So,

lim
h→0

F (λ + h)− F (λ)
h

= f(x−2
λ ),

and F is differentiable everywhere. See part d of Exercise 10.3.
Next, observe that

lim
λ→∞

F (λ) = lim
λ→∞

f((x− λI)−1)

= lim
λ→∞

(1/λ)f(((x/λ)− I)−1)

= 0.

Therefore, F is a bounded entire function, and so by Liouville’s Theorem,
F (λ) = 0 identically. Consequently, f(x−1

0 ) = f(x−1) = 0 for all f ∈ A∗.
But this would imply that x−1 = 0, which is a contradiction.

We introduce next a dual object for Banach algebras that is analogous
to the conjugate space of a Banach space.

DEFINITION. Let A be a Banach algebra. By the structure space
of A we mean the set ∆ of all nonzero continuous algebra homomor-
phisms (linear and multiplicative) φ : A → C. The structure space is a
(possibly empty) subset of the conjugate space A∗, and we think of ∆
as being equipped with the inherited weak* topology.

THEOREM 10.3. Let A be a Banach algebra, and let ∆ denote its
structure space. Then ∆ is locally compact and Hausdorff. Further, if A
is a separable Banach algebra, then ∆ is second countable and metrizable.
If A contains an identity I, then ∆ is compact.

PROOF. ∆ is clearly a Hausdorff space since the weak* topology on
A∗ is Hausdorff.

Observe next that if φ ∈ ∆, then ‖φ‖ ≤ 1. Indeed, for any x ∈ A, we
have

|φ(x)| = |φ(xn)|1/n ≤ ‖φ‖1/n‖x‖ → ‖x‖,

implying that ‖φ‖ ≤ 1, as claimed. It follows then that ∆ is contained
in the closed unit ball B1 of A∗. Since the ball B1 in A∗ is by Alaoglu’s
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Theorem compact in the weak* topology, we could show that ∆ is com-
pact by verifying that it is closed in B1. This we can do if A contains
an identity I. Thus, let {φα} be a net of elements of ∆ that converges
in the weak* topology to an element φ ∈ B1. Since this convergence is
pointwise convergence on A, it follows that φ(xy) = φ(x)φ(y), for all
x, y ∈ A, whence φ is a homomorphism of the algebra A into C. Also,
since every nonzero homomorphism of A must map I to 1, it follows
that φ(I) = 1, whence φ is not the 0 homomorphism. Hence, φ ∈ ∆, as
desired.

We leave the proof that ∆ is always locally compact to the exercises.
Of course, if A is separable, then the weak* topology on B1 is compact

and metrizable, so that ∆ is second countable and metrizable in this case,
as desired.

EXERCISE 10.4. Let A be a Banach algebra.
(a) Suppose that the elements of the structure space ∆ of A separate

the points of A. Prove that A is commutative.
(b) Suppose A is the algebra of all n×n complex matrices as defined

in part a of Exercise 10.1. Prove that the structure space ∆ of A is the
empty set if n > 1.

(c) If A has no identity, show that ∆ is locally compact. HINT: Show
that the closure of ∆ in B1 is contained in the union of ∆ and {0},
whence ∆ is an open subset of a compact Hausdorff space.

(d) Let B be the Banach algebra with identity constructed from A
as in Exercise 10.2, and identify A with its canonical isomorphic image
in B. Prove that every element φ in the structure space ∆A of A has
a unique extension to an element φ′ in the structure space ∆B of B.
Show that there exists a unique element φ0 ∈ ∆B whose restriction
to A is identically 0. Show further that the above map φ → φ′ is a
homeomorphism of ∆A onto ∆B − {φ0}.

DEFINITION. Let A be a Banach algebra and let ∆ be its structure
space. For each x ∈ A, define a function x̂ on ∆ by

x̂(φ) = φ(x).

The map x → x̂ is called the Gelfand transform of A, and the function
x̂ is called the Gelfand transform of x.

EXERCISE 10.5. Let A be the Banach algebra L1(R) of part c of
Exercise 10.1, and let ∆ be its structure space.
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(a) If λ is any real number, define φλ : A → C by

φλ(f) =
∫

f(x)e−2πiλx dx.

Show that φλ is an element of ∆.
(b) Let φ be an element of ∆, and let h be the L∞ function satisfying

φ(f) =
∫

f(x)h(x) dx.

Prove that h(x + y) = h(x)h(y) for almost all pairs (x, y) ∈ R2. HINT:
Show that∫ ∫

f(x)g(y)h(x + y) dydx =
∫ ∫

f(x)g(y)h(x)h(y) dydx

for all f, g ∈ L1(R).
(c) Let φ and h be as in part b, and let f be an element of L1(R) for

which φ(f) 6= 0. Write fx for the function defined by fx(y) = f(x + y).
Show that the map x → φ(fx) is continuous, and that

h(x) = φ(f−x)/φ(f)

for almost all x. Conclude that h may be chosen to be a continuous
function in L∞(R), in which case h(x + y) = h(x)h(y) for all x, y ∈ R.

(d) Suppose h is a bounded continuous map of R into C, which is
not identically 0 and which satisfies h(x + y) = h(x)h(y) for all x and
y. Show that there exists a real number λ such that h(x) = e2πiλx for
all x. HINT: If h is not identically 1, show that there exists a smallest
positive number δ for which h(δ) = 1. Show then that h(δ/2) = −1
and h(δ/4) = ±i. Conclude that λ = ±(1/δ) depending on whether
h(δ/4) = i or −i.

(e) Conclude that the map λ → φλ of part a is a homeomorphism
between R and the structure space ∆ of L1(R). HINT: To prove that the
inverse map is continuous, suppose that {λn} does not converge to λ.
Show that there exists an f ∈ L1(R) such that

∫
f(x)e−2πiλnx dx does

not approach
∫

f(x)e−2πiλx dx.
(f) Show that, using the identification of ∆ with R in part e, that the

Gelfand transform on L1(R) and the Fourier transform on L1(R) are
identical. Conclude that the Gelfand transform is 1-1 on L1(R).
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THEOREM 10.4. Let A be a Banach algebra. Then the Gelfand
transform of A is a norm-decreasing homomorphism of A into the Ba-
nach algebra C(∆) of all continuous complex-valued functions on ∆.

EXERCISE 10.6. (a) Prove Theorem 10.4.
(b) If A is a Banach algebra without an identity, show that each

function x̂ in the range of the Gelfand transform is an element of C0(∆).
HINT: The closure of ∆ in B1 is contained in the union of ∆ and {0}.

DEFINITION. Let A be a Banach algebra with identity I, and let
x be an element of A. By the resolvent of x we mean the set resA(x)
of all complex numbers λ for which λI − x has an inverse in A. By the
spectrum spA(x) of x we mean the complement of the resolvent of x;
i.e., spA(x) is the set of all λ ∈ C for which λI − x does not have an
inverse in A. We write simply res(x) and sp(x) when it is unambiguous
what the algebra A is.

By the spectral radius (relative to A) of x we mean the extended real
number ‖x‖sp defined by

‖x‖sp = sup
λ∈spA(x)

|λ|.

EXERCISE 10.7. Let A be a Banach algebra with identity I, and
let x be an element of A.

(a) Show that the resolvent resA(x) of x is open in C, whence the
spectrum spA(x) of x is closed.

(b) Show that the spectrum of x is nonempty, whence the spectral
radius of x is nonnegative. HINT: Make an argument similar to the
proof of Mazur’s theorem.

(c) Show that ‖x‖sp ≤ ‖x‖, whence the spectrum of x is compact.
HINT: If λ 6= 0, then λI − x = λ(I − (x/λ)).

(d) Show that there exists a λ ∈ spA(x) such that ‖x‖sp = |λ|; i.e.,
the spectral radius is attained.

(e) (Spectral Mapping Theorem) If p(z) is any complex polynomial,
show that

spA(p(x)) = p(spA(x));

i.e., µ ∈ spA(p(x)) if and only if there exists a λ ∈ spA(x) such that
µ = p(λ). HINT: Factor the polynomial p(z)− µ as

p(z)− µ = c
n∏

i=1

(z − λi),
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whence

p(x)− µI = c
n∏

i=1

(x− λiI).

Now, the left hand side fails to have an inverse if and only if some one
of the factors on the right hand side fails to have an inverse.

THEOREM 10.5. Let A be a commutative Banach algebra with
identity I, and let x be an element of A. Then the spectrum spA(x) of x
coincides with the range of the Gelfand transform x̂ of x. Consequently,
we have

‖x‖sp = ‖x̂‖∞.

PROOF. If there exists a φ in the structure space ∆ of A for which
x̂(φ) = λ, then

φ(λI − x) = λ− φ(x) = λ− x̂(φ) = 0,

from which it follows that λI − x cannot have an inverse. Hence, the
range of x̂ is contained in sp(x).

Conversely, let λ be in the spectrum of x. Let J be the set of all
multiples (λI − x)y of λI − x by elements of A. Then J is an ideal in
A, and it is a proper ideal since λI − x has no inverse (I is not in J).
By Zorn’s Lemma, there exists a maximal proper ideal Mcontaining J.
Now the closure of M is an ideal. If this closure of M is all of A, then
there must exist a sequence {mn} of elements of M that converges to I.
But, since the set of invertible elements in A is an open set, it must be
that some mn is invertible. But then M would not be a proper ideal.
Therefore, M is proper, and since M is maximal it follows that M is
itself closed.

Now A/M is a Banach algebra by part g of Exercise 10.1. Also,
since M is maximal, we have that A/M is a field. By Mazur’s Theorem
(Theorem 10.2), we have that A/M is topologically isomorphic to the
set of complex numbers. The natural map π : A → A/M is then a
continuous nonzero homomorphism of A onto C, i.e., π is an element of
∆. Further, π(λI − x) = 0 since λI − x ∈ J ⊆ M. Hence, x̂(π) = λ,
showing that λ belongs to the range of x̂.

EXERCISE 10.8. Suppose A is a commutative Banach algebra with
identity I, and let ∆ be its structure space. Assume that x is an element
of A for which the subalgebra [x] generated by x is dense in A. (See part
h of Exercise 10.1.) Prove that x̂ is a homeomorphism of ∆ onto the
spectrum spA(x) of x.
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THEOREM 10.6. Let A be a commutative C∗-algebra with identity
I. Then, for each x ∈ A, we have x̂∗ = x̂.

PROOF. The theorem will follow if we show that x̂ is real-valued
if x is selfadjoint. (Why?) Thus, if x is selfadjoint, and if U = eix =∑∞

n=0(ix)n/n!, then we have seen in part f of Exercise 10.2 and part i of
Exercise 10.1 that U is unitary and that ‖U‖ = ‖U−1‖ = 1. Therefore,
if φ is an element of the structure space ∆ of A, then |φ(U)| ≤ 1 and
1/|φ(U)| = |φ(U−1)| ≤ 1, and this implies that |φ(U)| = 1. On the other
hand,

φ(U) =
∞∑

n=0

(iφ(x))n/n! = eiφ(x).

But |eit| = 1 if and only if t is real. Hence, x̂(φ) = φ(x) is real for every
φ ∈ ∆.

The next result is an immediate consequence of the preceding theo-
rem.

THEOREM 10.7. If x is a selfadjoint element of a commutative
C∗-algebra A with identity, then the spectrum spA(x) of x is contained
in the set of real numbers.

EXERCISE 10.9. (A Formula for the Spectral Radius) Let A be a
Banach algebra with identity I, and let x be an element of A. Write
sp(x) for spA(x).

(a) If n is any positive integer, show that µ ∈ sp(xn) if and only if
there exists a λ ∈ sp(x) such that µ = λn, whence

‖x‖sp = ‖xn‖1/n
sp .

Conclude that
‖x‖sp ≤ lim inf ‖xn‖1/n.

(b) If f is an element of A∗, show that the function λ → f((λI−x)−1)
is analytic on the (open) resolvent res(x) of x. Show that the resolvent
contains all λ for which |λ| > ‖x‖sp.

(c) Let f be in A∗. Show that the function F (µ) = µf((I −µx)−1) is
analytic on the disk of radius 1/‖x‖sp around 0 in C. Show further that

F (µ) =
∞∑

n=0

f(xn)µn+1
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on the disk of radius 1/‖x‖ and hence also on the (possibly) larger disk
of radius 1/‖x‖sp.

(d) Using the Uniform Boundedness Principle, show that if |µ| <
1/‖x‖sp, then the sequence {µn+1xn} is bounded in norm, whence

lim sup ‖xn‖1/n ≤ 1/|µ|

for all such µ. Show that this implies that

lim sup ‖xn‖1/n ≤ ‖x‖sp.

(e) Derive the spectral radius formula:

‖x‖sp = lim ‖xn‖1/n.

(f) Suppose that A is a C∗-algebra and that x is a selfadjoint element
of A. Prove that

‖x‖ = sup
λ∈sp(x)

|λ| = ‖x‖sp.

THEOREM 10.8. (Gelfand’s Theorem) Let A be a commutative
C∗-algebra with identity I. Then the Gelfand transform is an isomet-
ric isomorphism of the Banach algebra A onto C(∆), where ∆ is the
structure space of A.

PROOF. We have already seen that x → x̂ is a norm-decreasing
homomorphism of A into C(∆). We must show that the transform is an
isometry and is onto.

Now it follows from part f of Exercise 10.9 and Theorem 10.4 that
‖x‖ = ‖x̂‖∞ whenever x is selfadjoint. For an arbitrary x, write y = x∗x.
Then

‖x‖ =
√
‖y‖

=
√
‖ŷ‖∞

=
√
‖x̂∗x‖∞

=
√
‖x̂∗x̂‖∞

=
√
‖|x̂|2‖∞

=
√
‖x̂‖2∞

= ‖x̂‖∞,
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showing that the Gelfand transform is an isometry.
By Theorem 10.6, we see that the range Â of the Gelfand transform

is a subalgebra of C(∆) that separates the points of ∆ and is closed
under complex conjugation. Then, by the Stone-Weierstrass Theorem,
Â must be dense in C(∆). But, since A is itself complete, and the Gelfand
transform is an isometry, it follows that Â is closed in C(∆), whence is
all of C(∆).

EXERCISE 10.10. Let A be a commutative C∗-algebra with iden-
tity I, and let ∆ denote its structure space. Verify the following prop-
erties of the Gelfand transform on A.

(a) x is invertible if and only if x̂ is never 0.
(b) x = yy∗ if and only if x̂ ≥ 0.
(c) x is a unitary element of A if and only if |x̂| ≡ 1.
(d) A contains a nontrivial projection if and only if ∆ is not connected.

EXERCISE 10.11. Let A and B be commutative C∗-algebras, each
having an identity, and let ∆A and ∆B denote their respective structure
spaces. Suppose T is a (not a priori continuous) homomorphism of the
algebra A into the algebra B. If φ is any linear functional on B, define
T ′(φ) on A by

T ′(φ) = φ ◦ T.

(a) Suppose φ is a positive linear functional on B; i.e., φ(xx∗) ≥ 0
for all x ∈ B. Show that φ is necessarily continuous.

(b) Prove that T ′ is a continuous map of ∆B into ∆A.

(c) Show that x̂(T ′(φ)) = T̂ (x)(φ) for each x ∈ A.
(d) Show that ‖T (x)‖ ≤ ‖x‖ and conclude that T is necessarily con-

tinuous.
(e) Prove that T ′ is onto if and only if T is 1-1. HINT: T is not 1-1

if and only if there exists a nontrivial continuous function on ∆A that
is identically 0 on the range of T ′.

(f) Prove that T ′ is 1-1 if and only if T is onto.
(g) Prove that T ′ is a homeomorphism of ∆B onto ∆A if and only if

T is an isomorphism of A onto B.

EXERCISE 10.12. (Independence of the Spectrum)
(a) Suppose B is a commutative C∗-algebra with identity I, and that

A is a sub-C∗-algebra of B containing I. Let x be an element of A. Prove
that spA(x) = spB(x). HINT: Let T be the injection map of A into B.

(b) Suppose C is a (not necessarily commutative) C∗-algebra with
identity I, and let x be a normal element of C. Suppose A is the smallest
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sub-C∗-algebra of C that contains x, x∗, and I. Prove that spA(x) =
spC(x). HINT: If λ ∈ spA(x), and λI − x has an inverse in C, let B be
the smallest sub-C∗-algebra of C containing x, I, and (λI − x)−1. Then
use part a.

(c) Let H be a separable Hilbert space, and let T be a normal element
of B(H). Let A be the smallest sub-C∗-algebra of B(H) containing T,
T ∗, and I. Show that the spectrum sp(T ) of the operator T coincides
with the spectrum spA(T ) of T thought of as an element of A.

THEOREM 10.9. (Spectral Theorem) Let H be a separable Hilbert
space, let A be a separable, commutative, sub-C∗-algebra of B(H) that
contains the identity operator I, and let ∆ denote the structure space
of A. Write B for the σ-algebra of Borel subsets of ∆. Then there exists
a unique H-projection-valued measure p on (∆,B) such that for every
operator S ∈ A we have

S =
∫

Ŝ dp.

That is, the inverse of the Gelfand transform is the integral with respect
to p.

PROOF. Since A contains I, we know that ∆ is compact and metriz-
able. Since the inverse T of the Gelfand transform is an isometric iso-
morphism of the Banach algebra C(∆) onto A, we see that T satisfies
the three conditions of Theorem 9.7.

(1) T (fg) = T (f)T (g) for all f, g ∈ C(∆).
(2) T (f) = [T (f)]∗ for all f ∈ C(∆).
(3) T (1) = I.

The present theorem then follows immediately from Theorem 9.7.

THEOREM 10.10. (Spectral Theorem for a Bounded Normal Op-
erator) Let T be a bounded normal operator on a separable Hilbert space
H. Then there exists a unique H-projection-valued measure p on (C,B)
such that

T =
∫

f dp =
∫

f(λ) dp(λ),

where f(λ) = λ. (We also use the notation T =
∫

λ dp(λ).) Furthermore,
psp(T ) = I; i.e., p is supported on the spectrum of T.

PROOF. Let A0 be the set of all elements S ∈ B(H) of the form

S =
n∑

i=0

m∑
j=0

aijT
iT ∗j ,
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where each aij ∈ C, and let A be the closure in B(H) of A0. We have
that A is the smallest sub-C∗-algebra of B(H) that contains T, T ∗, and
I. It follows that A is a separable commutative sub-C∗-algebra of B(H)
that contains I. If ∆ denotes the structure space of A, then, by Theorem
10.9, there exists a unique projection-valued measure q on (∆,B) such
that

S =
∫

Ŝ dq =
∫

Ŝ(φ) dq(φ)

for every S ∈ A.
Note next that the function T̂ is 1-1 on ∆. For, if T̂ (φ1) = T̂ (φ2), then

T̂ ∗(φ1) = T̂ ∗(φ2), and hence Ŝ(φ1) = Ŝ(φ2) for every S ∈ A0. Therefore,
Ŝ(φ1) = Ŝ(φ2) for every S ∈ A, showing that φ1 = φ2. Hence, T̂ is a
homeomorphism of ∆ onto the subset spA(T ) of C. By part c of Exercise
10.12, spA(T ) = sp(T ).

Define a projection-valued measure p = T̂∗q on sp(T ) by

pE = T̂∗qE = qT̂−1(E).

See part c of Exercise 9.3. Then p is a projection-valued measure on
(C,B), and p is supported on sp(T ).

Now, let f be the identity function on C, i.e., f(λ) = λ. Then, by
Exercise 9.13, we have that∫

λ dp(λ) =
∫

f dp

=
∫

(f ◦ T̂ ) dq

=
∫

T̂ dq

= T,

as desired.
Finally, let us show that the projection-valued measure p is unique.

Suppose p′ is another projection-valued measure on (C,B), supported
on sp(T ), such that

T =
∫

λ dp′(λ) =
∫

λ dp(λ).

It follows also that

T ∗ =
∫

λ̄ dp′(λ) =
∫

λ̄ dp(λ).
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Then, for every function P of the form

P (λ) =
n∑

i=1

m∑
j=1

cijλ
iλ̄j ,

we have ∫
P (λ) dp′(λ) =

∫
P (λ) dp(λ).

Whence, by the Stone-Weierstrass Theorem,∫
f(λ) dp′(λ) =

∫
f(λ) dp(λ)

for every continuous complex-valued function f on sp(T ). If q′ = T̂−1
∗ p′

is the projection-valued measure on ∆ defined by

q′E = p′
T̂ (E)

,

then, for any continuous function g on ∆, we have∫
g dq′ =

∫
(g ◦ T̂−1) dp′

=
∫

(g ◦ T̂−1) dp

=
∫

(g ◦ T̂−1 ◦ T̂ ) dq

=
∫

g dq.

So, by the uniqueness assertion in the general spectral theorem, we have
that q′ = q. But then

p′ = T̂∗q
′ = T̂∗q = p,

and the uniqueness is proved.

DEFINITION. The projection-valued measure p, associated as in
the above theorem to a normal operator T, is called the spectral measure
for T.

The next result is an immediate consequence of the preceding theo-
rem.
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THEOREM 10.11. (Spectral Theorem for a Bounded Selfadjoint
Operator) Let H be a separable Hilbert space, and let T be a selfadjoint
element in B(H). Then there exists a unique projection-valued measure
p on (R,B) for which T =

∫
λ dp(λ). Further, p is supported on the

spectrum of T.

REMARK. A slightly different notation is frequently used to indi-
cate the spectral measure for a selfadjoint operator. Instead of writing
T =

∫
λ dp(λ), one often writes T =

∫
λ dEλ. Also, such a projection-

valued measure is sometimes referred to as a resolution of the identity.

EXERCISE 10.13. Let T be a normal operator in B(H) and let p
be its spectral measure.

(a) If U is a nonempty (relatively) open subset of sp(T ), show that
pU 6= 0. If U is an infinite set, show that the range of pU is infinite
dimensional.

(b) Show that if E is a closed subset of C for which pE = I, then
E contains sp(T ). Conclude that the smallest closed subset of C that
supports p is the spectrum of T.

(c) If T is invertible, show that the function 1/λ is bounded on sp(T )
and that T−1 =

∫
(1/λ) dp(λ).

(d) If sp(T ) contains at least two distinct points, show that T = T1 +
T2, where T1 and T2 are both nonzero normal operators and T1 ◦T2 = 0.

(e) Suppose S is a bounded operator on H that commutes with both
T and T ∗. Prove that S commutes with every projection pE for E a
Borel subset of sp(T ). HINT: Do this first for open subsets of sp(T ),
and then consider the collection of all sets E for which pES = SpE . (It
is a monotone class.)

(f) Suppose S is a bounded operator that commutes with T. Let
E = sp(T ) ∩ Bε(λ0), where ε > 0 and λ0 is a complex number. Show
that, if x belongs to the range of pE , then S(x) also belongs to the
range of pE , implying that S commutes with pE . (Use part b of Exercise
9.11.) Deduce the Fuglede-Putnam-Rosenbloom Theorem: If a bounded
operator S commutes with a bounded normal operator T, then S also
commutes with T ∗.

EXERCISE 10.14. Let T be a normal operator on a separable
Hilbert space H, let A be a sub-C∗-algebra of B(H) that contains T
and I, let f be a continuous complex-valued function on the spectrum
sp(T ) of T, and suppose S is an element of A for which Ŝ = f ◦ T̂ .

(a) Show that the spectrum sp(S) of S equals f(sp(T )). Compare this
result with the spectral mapping theorem (part e of Exercise 10.7).
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(b) Let pT denote the spectral measure for T and pS denote the
spectral measure for S. In the notation of Exercises 9.3 and 9.13, show
that

pS = f∗(pT ).

HINT: Show that S =
∫

λ df∗(pT )(λ), and then use the uniqueness as-
sertion in the Spectral Theorem for a normal operator.

(c) Apply parts a and b to describe the spectral measures for S = q(T )
for q a polynomial and S = eT .

EXERCISE 10.15. Let p be an H-projection-valued measure on the
Borel space (S,B). If f is an element of L∞(p), define the essential range
of f to be the set of all λ ∈ C for which

pf−1(Bε(λ)) 6= 0

for every ε > 0.
(a) Let f be an element of L∞(p). If T is the bounded normal operator∫

f dp, show that the spectrum of T coincides with the essential range
of f. See part e of Exercise 9.10.

(b) Let f be an element of L∞(p), and let T =
∫

f dp. Prove that
the spectral measure q for T is the projection-valued measure f∗p. See
Exercises 9.3 and 9.13.

EXERCISE 10.16. Let (S, µ) be a σ-finite measure space. For each
f ∈ L∞(µ), let mf denote the multiplication operator on L2(µ) given
by mfg = fg. Let p denote the canonical projection-valued measure on
L2(µ).

(a) Prove that the operator mf is a normal operator and that

mf =
∫

f dp.

Find the spectrum sp(mf ) of mf .
(b) Using S = [0, 1] and µ as Lebesgue measure, find the spectrum

and spectral measures for the following mf ’s:
(1) f = χ[0,1/2],
(2) f(x) = x,
(3) f(x) = x2,
(4) f(x) = sin(2πx), and
(5) f is a step function f =

∑n
i=1 aiχIi

, where the ai’s are complex
numbers and the Ii’s are disjoint intervals.
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(c) Let S and µ be as in part b. Compute the spectrum and spectral
measure for mf if f is the Cantor function.

DEFINITION. We say that an operator T ∈ B(H) is diagonalizable
if it can be represented as the integral of a function with respect to a
projection-valued measure. That is, if there exists a Borel space (S,B)
and an H-projection-valued measure p on (S,B) such that T =

∫
f dp

for some bounded B-measurable function f. A collection B of operators
is called simultaneously diagonalizable if there exists a projection-valued
measure p on a Borel space (S,B) such that each element of B can be
represented as the integral of a function with respect to p.

REMARK. Theorem 10.11 and Theorem 10.10 show that selfadjoint
and normal operators are diagonalizable. It is also clear that simultane-
ously diagonalizable operators commute.

EXERCISE 10.17. (a) Let H be a separable Hilbert space. Suppose
B is a commuting, separable, selfadjoint subset of B(H). Prove that the
elements of B are simultaneously diagonalizable.

(b) Let H be a separable Hilbert space. Show that a separable, selfad-
joint collection S of operators in B(H) is simultaneously diagonalizable
if and only if S is contained in a commutative sub-C∗-algebra of B(H).

(c) Let A be an n × n complex matrix for which aij = aji. Use the
Spectral Theorem to show that there exists a unitary matrix U such
that UAU−1 is diagonal. That is, use the Spectral Theorem to prove
that every Hermitian matrix can be diagonalized.

One of the important consequences of the spectral theorem is the
following:

THEOREM 10.12. (Stone’s Theorem) Let t → Ut be a map of R
into the set of unitary operators on a separable Hilbert space H, and
suppose that this map satisfies:

(1) Ut+s = Ut ◦ Us for all t, s ∈ R.
(2) The map t → (Ut(x), y) is continuous for every pair x, y ∈ H.

Then there exists a unique projection-valued measure p on (R,B) such
that

Ut =
∫

e−2πiλt dp(λ)

for each t ∈ R.
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PROOF. For each f ∈ L1(R), define a map Lf from H ×H into C
by

Lf (x, y) =
∫

R
f(s)(Us(x), y) ds.

It follows from Theorem 8.5 (see the exercise below) that for each f ∈
L1(R) there exists a unique element Tf ∈ B(H) such that

Lf (x, y) = (Tf (x), y)

for all x, y ∈ H. Let B denote the set of all operators on H of the form
Tf for f ∈ L1(R). Again by the exercise below, it follows that B is a
separable commutative selfadjoint subalgebra of B(H).

We claim first that the subspace H0 spanned by the vectors of the
form y = Tf (x), for f ∈ L1(R) and x ∈ H, is dense in H. Indeed, if
z ∈ H is orthogonal to every element of H0, then

0 = (Tf (z), z)

=
∫

R
f(s)(Us(z), z) ds

for all f ∈ L1(R), whence

(Us(z), z) = 0

for almost all s ∈ R. But, since this is a continuous function of s, it
follows that

(Us(z), z) = 0

for all s. In particular,

(z, z) = (U0(z), z) = 0,

proving that H0 is dense in H as claimed.
We let A denote the smallest sub-C∗-algebra of B(H) that contains

B and the identity operator I, and we denote by ∆ the structure space
of A. We see that A is the closure in B(H) of the set of all elements
of the form λI + Tf , for λ ∈ C and f ∈ L1(R). So A is a separable
commutative C∗-algebra. Again, by Exercise 10.18 below, we have that
the map T that sends f ∈ L1(R) to the operator Tf is a norm-decreasing
homomorphism of the Banach ∗-algebra L1(R) into the C∗-algebra A.
Recall from Exercise 10.5 that the structure space of the Banach algebra
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L1(R) is identified, specifically as in that exercise, with the real line R.
With this identification, we define T ′ : ∆ → R by

T ′(φ) = φ ◦ T.

Because the topologies on the structures spaces of A and L1(R) are the
weak∗ topologies, it follows directly that T ′ is continuous. For each
f ∈ L1(R) we have the formula

f̂(T ′(φ)) = [T ′(φ)](f) = φ(Tf ) = T̂f (φ).

By the general Spectral Theorem, we let q be the unique projection-
valued measure on ∆ for which

S =
∫

Ŝ(φ) dq(φ)

for all S ∈ A, and we set p = T ′∗q. Then p is a projection-valued measure
on (R,B), and we have∫

f̂ dp =
∫

(f̂ ◦ T ′) dq

=
∫

f̂(T ′(φ)) dq(φ)

=
∫

T̂f (φ) dq(φ)

= Tf

for all f ∈ L1(R).
Now, for each f ∈ L1(R) and each real t we have

(Ut(Tf (x)), y) =
∫

R
f(s)(Ut(Us(x)), y) ds

=
∫

R
f(s)(Ut+s(x), y) ds

=
∫

R
f−t(s)(Us(x), y) ds

= (Tf−t
(x), y)

= ([
∫

f̂−t(λ) dp(λ)](x), y)

= ([
∫

e−2πiλtf̂(λ) dp(λ)](x), y)

= ([
∫

e−2πiλt dp(λ)](Tf (x)), y),
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where f−t is defined by f−t(x) = f(x− t). So, because the set H0 of all
vectors of the form Tf (x) span a dense subspace of H,

Ut =
∫

e−2πiλt dp(λ),

as desired.
We have left to prove the uniqueness of p. Suppose p̃ is a projection-

valued measure on (R,B) for which Ut =
∫

e−2πiλt dp̃(λ) for all t. Now
for each vector x ∈ H, define the two measures µx and µ̃x by

µx(E) = (pE(x), x)

and
µ̃x(E) = (p̃E(x), x).

Our assumption on p̃ implies then that∫
e−2πiλt dµx(λ) =

∫
e−2πiλt dµ̃x(λ)

for all real t. Using Fubini’s theorem we then have for every f ∈ L1(R)
that ∫

f̂(λ) dµx(λ) =
∫ ∫

f(t)e−2πiλt dtdµx(λ)

=
∫

f(t)
∫

e−2πiλt dµx(λ) dt

=
∫

f(t)
∫

e−2πiλt dµ̃x(λ) dt

=
∫

f̂(λ) dµ̃x(λ).

Since the set of Fourier transforms of L1 functions is dense in C0(R), it
then follows that ∫

g dµx =
∫

g dµ̃x

for every g ∈ C0(R). Therefore, by the Riesz representation theorem,
µx = µ̃x. Consequently, p = p̃ (see part d of Exercise 9.2), and the proof
is complete.

EXERCISE 10.18. Let the map t → Ut be as in the theorem above.
(a) Prove that U0 is the identity operator on H and that U∗

t = U−t

for all t.
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(b) If f ∈ L1(R), show that there exists a unique element Tf ∈ B(H)
such that ∫

R
f(s)(Us(x), y) ds = (Tf (x), y)

for all x, y ∈ H. HINT: Use Theorem 8.5.
(c) Prove that the assignment f → Tf defined in part b satisfies

‖Tf‖ ≤ ‖f‖1

for all f ∈ L1(R),
Tf∗g = Tf ◦ Tg

for all f, g ∈ L1(R) and
Tf∗ = T ∗f

for all f ∈ L1(R), where

f∗(s) = f(−s).

(d) Conclude that the set of all Tf ’s, for f ∈ L1(R), is a separable
commutative selfadjoint algebra of operators.

EXERCISE 10.19. Let H be a separable Hilbert space, let A be a
separable, commutative, sub-C∗-algebra of B(H), assume that A con-
tains the identity operator I, and let ∆ denote the structure space of A.
Let x be a vector in H, and let M be the closure of the set of all vectors
T (x), for T ∈ A. That is, M is a cyclic subspace for A. Prove that there
exists a finite Borel measure µ on ∆ and a unitary operator U of L2(µ)
onto M such that

U−1 ◦ T ◦ U = mT̂

for every T ∈ A. HINT: Let G denote the inverse of the Gelfand trans-
form of A. Define a positive linear functional L on C(∆) by L(f) =
([G(f)](x), x), use the Riesz Representation Theorem to get a measure
µ, and then define U(f) = [G(f)](x) on the dense subspace C(∆) of
L2(µ).


