
CHAPTER XI

APPLICATIONS OF SPECTRAL THEORY

Let H be a separable, infinite-dimensional, complex Hilbert space. We
exploit properties of the Spectral Theorem to investigate and classify
operators on H. As usual, all Hilbert spaces considered will be assumed
to be complex and separable, even if it is not explicitly stated.

If T is an element of the C∗-algebra B(H), recall that the resolvent
of T is the set res(T ) of all complex numbers λ for which λI − T has a
two-sided inverse in B(H). The spectrum sp(T ) of T is the complement
of the resolvent of T. That is, λ belongs to sp(T ) if λI−T does not have
a bounded two-sided inverse.

THEOREM 11.1. (Existence of Positive Square Roots of Positive
Operators) Let H be a Hilbert space, and let T be a positive operator
in B(H); i.e., (T (x), x) ≥ 0 for all x ∈ H. Then:

(1) There exists an element R in B(H) such that T = R∗R.
(2) There exists a unique positive square root of T, i.e., a unique

positive operator S such that T = S2. Moreover, S belongs to
the smallest sub-C∗-algebra of B(H) that contains T and I.

(3) If T is invertible, then its positive square root S is also invertible.

PROOF. We know that a positive operator T is necessarily selfad-
joint. Hence, writing T =

∫
R λ dp(λ), let us show that p(−∞,0) = 0. That

is, the spectrum of T is contained in the set of nonnegative real numbers.
If not, there must exist a δ > 0 such that p(−∞,−δ] 6= 0. If x is a nonzero
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vector in the range of p(−∞,−δ], then

(T (x), x) = (T (p(−∞,−δ](x)), x)

=
∫ −δ

−∞
λ dµx(λ)

≤ −δ‖x‖2

< 0.

But this would imply that T is not a positive operator. Hence, p is
supported on [0,∞). Clearly then T = S2 = S∗S, where

S =
∫ √

λ dp(λ).

Setting R = S gives part 1.
Since S is the integral of a nonnegative function with respect to a

projection-valued measure, it follows that S is a positive operator, so
that S is a positive square root of T. We know from the Weierstrass
Theorem that the continuous function

√
λ is the uniform limit on the

compact set sp(T ) of a sequence of polynomials in λ. It follows that S is
an element of the smallest sub-C∗-algebra A of B(H) containing T and
I.

Now, if S′ is any positive square root of T, then S′ certainly commutes
with T = S′

2
. Hence, S′ commutes with every element of the algebra A

and hence in particular with S. Let A′ be the smallest sub-C∗-algebra
of B(H) that contains I, T and S′. Then A′ is a separable commutative
C∗-algebra with identity, and S and S′ are two positive elements of A′

whose square is T. But the Gelfand transform on A′ is 1-1 and, by part
1 of this theorem and part b of Exercise 10.10, sends both S and S′ to
the function

√
T̂ . Hence, S = S′, completing the proof of part 2.

Finally, if T is invertible, say TU = I, then S(SU) = I, showing that
S has a right inverse. Also, (US)S = I, showing that S also has a left
inverse so is invertible.

EXERCISE 11.1. (a) Let T be a selfadjoint element of B(H). Prove
that there exist unique positive elements T+ and T− such that T = T+−
T−, T+ and T− commute with T and with each other, and T+T− = 0.
HINT: Use the Gelfand transform. T+ and T− are called the positive
and negative parts of the selfadjoint operator T.
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(b) Let T, T+, and T− be as in part a. Verify that, for any x ∈ H,
we have

‖T (x)‖2 = ‖T+(x)‖2 + ‖T−(x)‖2.

Show further that
√
T 2 = T+ + T−. How are T+ and T− represented

in terms of the spectral measure for T? Conclude that every element
T ∈ B(H) is a complex linear combination of four positive operators.

(c) Suppose T is a positive operator, and let p denote its spectral
measure. Suppose 0 ≤ a < b <∞ and that x is an element of the range
of p[a,b]. Show that a‖x‖ ≤ ‖T (x)‖ ≤ b‖x‖.

(d) If U is a unitary operator, prove that there exists a selfadjoint
operator T ∈ B(H) for which U = eiT . HINT: Show that the function
Û = eir for some bounded real-valued Borel function r.

(e) If T is a positive operator, show that I + T is invertible.
(f) Suppose T and S are invertible positive operators that commute.

Assume that S − T is a positive operator, i.e., that S ≥ T. Prove that
T−1 − S−1 is a positive operator, i.e., that T−1 ≥ S−1.

(g) Suppose T is a positive operator and that S is a positive invertible
operator not necessarily commuting with T. Prove that S+T is positive
and invertible.

DEFINITION. Let M be a subspace of a Hilbert space H. By a
partial isometry of M into H we mean an element V of B(H) that is an
isometry on M and is 0 on the orthogonal complement M⊥ of M.

EXERCISE 11.2. Let V be a partial isometry of M into H.
(a) Show that (V (x), V (y)) = (x, y) for all x, y ∈ M̄.
(b) Show that V ∗V is the projection pM̄ of H onto M̄ and that V V ∗

is the projection p
V (M)

of H onto V (M).
(c) Show that V ∗ is a partial isometry of V (M) into H.
(d) Let H be the set of square-summable sequences {a1, a2, . . . }, and

let M be the subspace determined by the condition a1 = 0. Define
V : M → H by [V ({an})]n = an+1. Show that V is a partial isometry
of M into H. Compute V ∗. (This V is often called the unilateral shift.)

THEOREM 11.2. (Polar Decomposition Theorem) LetH be a Hilbert
space, and let T be an element of B(H). Then there exist unique oper-
ators P and V satisfying:

(1) P is a positive operator, and V is a partial isometry from the
range of P into H.

(2) T = V P and P = V ∗T.
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Moreover, if T is invertible, then P is invertible and V is a unitary
operator.

PROOF. Let P =
√
T ∗T . Then P is positive. Observe that ‖P (x)‖ =

‖T (x)‖ for all x, whence, if P (x) = 0 then T (x) = 0. Indeed,

(P (x), P (x)) = (P 2(x), x) = (T ∗T (x), x) = (T (x), T (x)).

Therefore, the map V, that sends P (x) to T (x), is an isometry from the
range M of P onto the range of T. Defining V to be its unique isometric
extension to M̄ on all of M̄ and to be 0 on the orthogonal complement
M⊥ of M, we have that V is a partial isometry of M into H. Further,
T (x) = V (P (x)), and T = V P, as desired. Further, from the preceding
exercise, V ∗V is the projection onto the closure M̄ of the range M of P,
so that V ∗T = V ∗V P = P.

If Q is a positive operator and W is a partial isometry of the range
of Q into H for which T = WQ and Q = W ∗T, then W ∗W is the
projection onto the closure of the range of Q. Hence,

T ∗T = QW ∗WQ = Q2,

whence Q = P since positive square roots are unique. But then V = W,
since they are both partial isometries of the range of P into H, and
they agree on the range of P. Therefore, the uniqueness assertion of the
theorem is proved.

Finally, if T is invertible, then P is invertible, and the partial isometry
V = TP−1 is invertible. An isometry that is invertible is of course a
unitary operator.

DEFINITION. The operator P =
√
T ∗T of the preceding theorem

is called the absolute value of T and is often denoted by |T |.

REMARK. We have defined the absolute value of an operator T to
be the square root of the positive operator T ∗T. We might well have
chosen to define the absolute value of T to be the square root of the
(probably different) positive operator TT ∗. Though different, either of
these choices would have sufficed for our eventual purposes. See part c
of the following exercise.

EXERCISE 11.3. Let T be an operator in B(H).
(a) Prove that ‖|T |(x)‖ = ‖T (x)‖ for every x ∈ H.
(b) If T is a selfadjoint operator, and we write T = T+ − T− (as in

Exercise 11.1), show that |T | = T+ + T−.
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(c) Show that there exists a unique positive operator P ′ and a unique
partial isometry V ′ of the range of T ∗ into H such that T = P ′V ′ and
P ′ = TV ′

∗
. Is either P ′ or V ′ identical with the P and V of the preceding

theorem?

We introduce next a number of definitions concerning the spectrum
of an operator.

DEFINITION. Let T be a normal operator, and let p be its spectral
measure.

(1) A complex number λ is said to belong to the point spectrum
spp(T ) of T if p{λ} 6= 0. In this case we say that the multiplicity of λ is
the dimension m(λ) of the range of p{λ}.

(2) An element λ of the spectrum of T, which is not in the point
spectrum, is said to belong to the continuous spectrum spc(T ) of T. The
multiplicity m(λ) of an element λ of the continuous spectrum is defined
to be 0.

(3) A complex number λ is said to belong to the discrete spectrum
spd(T ) of T if {λ} is an isolated point in the compact set sp(T ). Note
that if λ ∈ spd(T ), then {λ} is a relatively open subset of sp(T ). It
follows then from part a of Exercise 10.13 that spd(T ) ⊆ spp(T ).

(4) A complex number λ is said to belong to the essential spectrum
spe(T ) if it is not an element of the discrete spectrum with finite multi-
plicity.

(5) T is said to have purely atomic spectrum if p is supported on a
countable subset of C.

EXERCISE 11.4. (Characterization of the Point Spectrum) Sup-
pose T is a normal operator, that p is its spectral measure, and that v
is a unit vector for which T (v) = 0. Write µv for the measure on sp(T )
given by µv(E) = (pE(v), v).

(a) Prove that 0 ∈ sp(T ).
(b) Show that

∫
λn dµv(λ) = 0 for all positive integers n.

(c) Prove that
∫
f(λ) dµv(λ) = f(0) for all f ∈ C(sp(T )).

(d) Show that µv = δ0, whence p{0} 6= 0.
(e) Let T be an arbitrary normal operator. Prove that λ0 ∈ spp(T )

if and only if λ0 is an eigenvalue for T. HINT: Write S = T − λ0I, and
use Exercise 10.14.

EXERCISE 11.5. Let H be the Hilbert space l2 consisting of the
square summable sequences {a1, a2, . . . }. Let r1, r2, . . . be a sequence
of (not necessarily distinct) numbers in the interval [0,1], and define an
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operator T on l2 by

T ({an}) = {rnan}.

(a) Prove that T is a selfadjoint operator–even a positive operator.
(b) Show that the point spectrum of T is the set of rn’s.
(c) Find the spectrum of T.
(d) Find the discrete spectrum of T.
(e) Find the essential spectrum of T.
(f) Choose the sequence {rn} so that spd(T ) ⊂ spp(T ) and spe(T ) ⊂

sp(T ).
(g) Construct a sequence {Tj} of positive operators that converges in

norm to a positive operator T, but for which the sequence {spd(Tj)} of
subsets of R in no way converges to spd(T ). Test a few other conjectures
concerning the continuity of the map T → sp(T ).

THEOREM 11.3. Let H be a separable Hilbert space, and let T be
a normal operator in B(H). Then the following are equivalent:

(1) T has purely atomic spectrum.
(2) There exists an orthonormal basis for H consisting of eigenvec-

tors for T.
(3) There exists a sequence {pi} of pairwise orthogonal projections

and a sequence {λi} of complex numbers such that

I =
∞∑
i=1

pi

and

T =
∞∑
i=1

λipi.

PROOF. If T has purely atomic spectrum, and if λ1, λ2, . . . denotes
a countable set on which the spectral measure p is concentrated, let
pi = p{λi}. Then the pi’s are pairwise orthogonal, and

I =
∞∑
i=1

pi,
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and

T =
∫
λ dp(λ)

=
∞∑
i=1

λip{λi}

=
∞∑
i=1

λipi,

showing that 1 implies 3.
Next, suppose T =

∑∞
i=1 λipi, where {pi} is a sequence of pairwise

orthogonal projections for which I =
∑
pi. We may make an orthonor-

mal basis for H by taking the union of orthonormal bases for the ranges
Mpi

of the pi’s. Clearly, each vector in this basis is an eigenvector for
T, whence, 3 implies 2.

Finally, suppose there exists an orthonormal basis for H consisting of
eigenvectors for T, and let {λ1, λ2, . . . } be the set of distinct eigenvalues
for T. Because T is a bounded operator, this set of λi’s is a bounded
subset of C. For each i = 1, 2, . . . , letMi be the eigenspace corresponding
to the eigenvalue λi, and write pi for the projection onto Mi. Then the
pi’s are pairwise orthogonal, and I =

∑
pi.

Now, for each subset E ⊆ C, define

pE =
∑
λi∈E

pi.

Then E → pE is a projection-valued measure supported on the compact
set {λi}, and we let S be the normal operator given by S =

∫
λ dp(λ).

If v ∈Mi, then v belongs to the range of p{λi}, whence v = p{λi}(v). It
follows then that

T (v) = λiv

= λip{λi}(v)

= [
∫
λχ{λi}(λ) dp(λ)](v)

= [
∫
λ dp(λ)]([

∫
χ{λi}(λ) dp(λ)](v))

= S(p{λi}(v))

= S(v).
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Since this holds for each i, we have that T = S, showing that 2 implies
1.

The next theorem describes a subtle but important distinction be-
tween the spectrum and the essential spectrum. However, the true
essence of the essential spectrum is only evident in Theorem 11.9.

THEOREM 11.4. Let T be a normal operator on a separable Hilbert
space H. Then

(1) λ0 ∈ sp(T ) if and only if there exists a sequence {vn} of unit
vectors in H such that

lim ‖T (vn)− λ0vn‖ = 0.

(2) λ0 ∈ spe(T ) if and only if there exists an infinite sequence {vn}
of orthonormal vectors for which

lim ‖T (vn)− λ0vn‖ = 0.

PROOF. (1) If λ0 belongs to the point spectrum of T, then there
exists a unit vector v (any unit vector in the range of p{λ0}) such that
T (v)− λ0v = 0. Therefore, the constant sequence vn ≡ v satisfies

lim ‖T (vn)− λ0vn‖ = 0.

(2) If λ0 belongs to the point spectrum of T, and the multiplicity
m(λ0) is infinity, then there exists an infinite orthonormal sequence {vn}
in the range of p{λ0} such that T (vn)− λ0vn ≡ 0.

(3) Suppose λ0 ∈ sp(T ) but λ0 /∈ spd(T ). For each positive integer
k, let Uk = sp(T ) ∩B1/k(λ0). Then each Uk is a nonempty open subset
of sp(T ), whence pUk

6= 0 for all k. In fact, since λ0 is not a discrete
point in the spectrum of T, there exists an increasing sequence {kn} of
positive integers such that pFn

6= 0 for every n, where Fn = Ukn
−Ukn+1 .

(Why?) Choosing vn to be a unit vector in the range of the projection
pFn , we see that the sequence {vn} is infinite and orthonormal. Further,
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we have

‖T (vn)− λ0vn‖ = ‖T (pFn(vn))− λ0pFn(vn)‖

= ‖[
∫
λχFn

(λ) dp(λ)](vn)− [
∫
λ0χFn

(λ) dp(λ)](vn)‖

= ‖[
∫

(λ− λ0)χFn
(λ) dp(λ)](vn)‖

≤ sup
λ∈Fn

|λ− λ0|

≤ sup
λ∈Ukn

|λ− λ0|

≤ 1/kn.

This shows that limn ‖T (vn)− λ0vn‖ = 0.
(4) If λ0 /∈ sp(T ), then T − λ0I is invertible in B(H). So, if {vn}

were a sequence of unit vectors, for which limn(T (vn) − λ0vn) = 0,
then lim vn = lim(T − λ0I)−1((T − λ0I)(vn)) = 0, which would be a
contradiction.

The completion of this proof is left to the exercise that follows.

EXERCISE 11.6. Use results 1-4 above to complete the proof of
Theorem 11.4.

We next introduce some important classes of operators on an infinite
dimensional Hilbert space. Most of these classes are defined in terms of
the spectral measures of their elements.

DEFINITION. Let H be an infinite-dimensional separable Hilbert
space.

(1) An element T ∈ B(H) is a finite rank operator if its range is finite
dimensional.

(2) A positive operator T is a compact operator if it has purely atomic
spectrum, and this spectrum consists of a (possibly finite) strictly de-
creasing sequence {λi} of nonnegative numbers, such that 0 = limλi,
and such that the multiplicity m(λi) is finite for every λi > 0 ∈ sp(T ).
(If the sequence λ1, λ2, . . . is finite, then the statement 0 = limλi means
that λN = 0 for some (the last) N. Evidently each positive element λi
of this spectrum is a discrete point, whence each positive λi of the spec-
trum is an eigenvalue for T.) A selfadjoint element T = T+−T− ∈ B(H)
is a compact operator if its positive and negative parts T+ and T− are
compact operators, and a general element T = T1 + iT2 ∈ B(H) is a
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compact operator if its real and imaginary parts T1 and T2 are compact
operators.

(3) A positive operator T is a trace class operator if it is a compact
operator, with positive eigenvalues λ1, λ2, . . . , for which∑

λim(λi) <∞.

A selfadjoint element T = T+ − T− ∈ B(H) is a trace class operator if
its positive and negative parts T+ and T− are trace class operators, and
a general T = T1 + iT2 ∈ B(H) is a trace class operator if its real and
imaginary parts T1 and T2 are trace class operators.

(4) A positive operator T is a Hilbert-Schmidt operator if it is a
compact operator, with positive eigenvalues λ1, λ2, . . . , for which∑

λ2
im(λi) <∞.

A selfadjoint element T = T+ − T− ∈ B(H) is a Hilbert-Schmidt oper-
ator if its positive and negative parts T+ and T− are Hilbert-Schmidt
operators, and a general T = T1 + iT2 ∈ B(H) is a Hilbert-Schmidt
operator if its real and imaginary parts T1 and T2 are Hilbert-Schmidt
operators.

EXERCISE 11.7. Let H be a Hilbert space.
(a) Let T be in B(H). Prove that the closure of the range of T is the

orthogonal complement of the kernel of T ∗. Conclude that T is a finite
rank operator if and only if T ∗ is a finite rank operator.

(b) Show that the set of finite rank operators forms a two-sided self-
adjoint ideal in B(H).

(c) Show that T is a finite rank operator if and only if |T | is a finite
rank operator.

(d) Show that every finite rank operator is a trace class operator, and
that every trace class operator is a Hilbert-Schmidt operator.

(e) Using multiplication operators on l2 (see Exercise 11.5), show that
the inclusions in part d are proper. Show also that the set of Hilbert-
Schmidt operators is a proper subset of the set of compact operators on
l2 and that the set of compact operators is a proper subset of B(l2).

(f) Prove that every normal compact operator T has purely atomic
spectrum. Conclude that, if T is a compact normal operator, then there
exists an orthonormal basis of H consisting of eigenvectors for T.
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THEOREM 11.5. (Characterization of Compact Operators) Sup-
pose T is a bounded operator on a separable infinite-dimensional Hilbert
space H. Then the following properties are equivalent:

(1) T is a compact operator.
(2) If {xn} is any bounded sequence of vectors in H, then {T (xn)}

has a convergent subsequence.
(3) T (B1) has a compact closure in H.
(4) If {xn} is a sequence of vectors in H that converges weakly to 0,

then the sequence {T (xn)} converges in norm to 0.
(5) T is the limit in B(H) of a sequence of finite rank operators.

PROOF. Let us first show that 1 implies 5. It will suffice to show
this for T a positive compact operator. Thus, let {λ1, λ2, . . . } be the
strictly decreasing (finite or infinite) sequence of positive elements of
sp(T ). Using the Spectral Theorem and the fact that T has purely atomic
spectrum, write

T =
∫
λ dp(λ) =

∑
i

λip{λi}.

Evidently, if there are only a finite number of λi’s, then T is itself a
finite rank operator, since the dimension of the range of each p{λi}, for
λi > 0, is finite, and 5 follows. Hence, we may assume that the sequence
{λi} is infinite. Define a sequence {Tk} of operators by

Tk =
k∑
i=1

λip{λi}

=
∫
χ[λk,∞)(λ)λ dp(λ).

Then each Tk is a finite rank operator. Further,

‖T − Tk‖ = ‖
∫
χ[0,λk)(λ)λ dp(λ)‖ ≤ λk.

Hence, T = limTk in norm, giving 5.
We show next that 5 implies 4. Suppose then that T = limTk in norm,

where each Tk is a finite rank operator. Let {xn} be a sequence in H
that converges weakly to 0, and let ε > 0 be given. Then, by the Uniform
Boundedness Theorem, the sequence {xn} is uniformly bounded, and

‖T (xn)‖ ≤ ‖(T − Tk)xn‖+ ‖Tk(xn)‖.
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Choose k so that ‖(T −Tk)(xn)‖ < ε/2 for all n. For this k, the sequence
{Tk(xn)} is contained in the finite dimensional subspace M that is the
range of Tk, and converges weakly to 0 there. Since all vector space
topologies are identical on a finite dimensional space, we have that, for
this fixed k, the sequence {Tk(xn)} also converges to 0 in norm. Choose
N so that ‖Tk(xn)‖ < ε/2 for all n ≥ N. Then ‖T (xn)‖ < ε if n ≥ N,
and the sequence {T (xn)} converges to 0 in norm, as desired.

We leave to the exercises the fact that properties 2,3, and 4 are equiv-
alent (for any element of B(H)). Let us show finally that 4 implies 1.
Thus, suppose T satisfies 4. Then T ∗ also satisfies 4. For, if the sequence
{xn} converges to 0 weakly, then the sequence {T ∗(xn)} also converges
to 0 weakly. Hence, the sequence {T (T ∗(xn))} converges to 0 in norm.
Since

‖T ∗(xn)‖2 = (T ∗(xn), T ∗(xn)) = (T (T ∗(xn)), xn) ≤ ‖T (T ∗(xn))‖‖xn‖,

it follows that the sequence {T ∗(xn)} converges to 0 in norm. Conse-
quently, the real and imaginary parts T1 and T2 of T satisfy 4, and we
may assume that T is selfadjoint. Write T = T+ − T− in terms of its
positive and negative parts. By part b of Exercise 11.1, we see that
both T+ and T− satisfy 4, so that we may assume that T is a positive
operator. Let p be the spectral measure for T, and note that for each
positive ε, we must have that the range of p(ε,∞) must be finite dimen-
sional. Otherwise, there would exist an orthonormal sequence {xn} in
this range. Such an orthonormal sequence converges to 0 weakly, but,
by part b of Exercise 9.11, ‖T (xn)‖ ≥ ε for all n, contradicting 4. Hence,
sp(T )∩ (ε,∞) is a finite set for every positive ε, whence the spectrum of
T consists of a decreasing sequence of nonnegative numbers whose limit
is 0. It also follows as in the above that each p{λ}, for λ > 0 ∈ sp(T ),
must have a finite dimensional range, whence T is a compact operator,
completing the proof that 4 implies 1.

EXERCISE 11.8. (Completing the Proof of the Preceding Theo-
rem) Let T be an arbitrary element of B(H).

(a) Assume 2. Show that T (B1) is totally bounded in H, and then
conclude that 3 holds. (A subset E of a metric space X is called totally
bounded if for every positive ε the set E is contained in a finite union
of sets of diameter less than ε.)

(b) Prove that 3 implies 4.
(c) Prove that 4 implies 2.

EXERCISE 11.9. (Properties of the Set of Compact Operators)
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(a) Prove that the set K of all compact operators forms a proper
closed two-sided selfadjoint ideal in the C∗-algebra B(H).

(b) Prove that an element T ∈ B(H) is a compact operator if and
only if |T | is a compact operator.

(c) Show that no compact operator can be invertible.
(d) Show that the essential spectrum of a normal compact operator

is singleton 0.

THEOREM 11.6. (Characterization of Hilbert-Schmidt Operators)
Let H be a separable infinite-dimensional Hilbert space.

(1) If T is any element of B(H), then the extended real number∑
i

‖T (φi)‖2

is independent of which orthonormal basis {φi} is used. Further,∑
i

‖T (φi)‖2 =
∑
i

‖T ∗(φi)‖2.

(2) An operator T is a Hilbert-Schmidt operator if and only if∑
i

‖T (φi)‖2 <∞

for some (hence every) orthonormal basis {φi} of H.
(3) The set of all Hilbert-Schmidt operators is a two-sided selfadjoint

ideal in the algebra B(H).

PROOF. Suppose T ∈ B(H) and that there exists an orthonormal
basis {φi} such that ∑

i

‖T (φi)‖2 = M <∞.

Let {ψi} be another orthonormal basis.
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Then ∑
i

‖T (ψi)‖2 =
∑
i

∑
j

|(T (ψi), φj)|2

=
∑
i

∑
j

|(ψi, T ∗(φj))|2

=
∑
j

‖T ∗(φj)‖2

=
∑
j

∑
i

|(T ∗(φj), φi)|2

=
∑
j

∑
i

|(φj , T (φi))|2

=
∑
i

‖T (φi)‖2,

which completes the proof of part 1.
Next, suppose T is a Hilbert-Schmidt operator. We wish to show that∑

i

‖T (φi)‖2 <∞

for some orthonormal basis {φi} of H. Since T is a linear combination
of 4 positive Hilbert-Schmidt operators, and since

‖
4∑
i=1

Ti(φ)‖2 ≤ 16
4∑
i=1

‖Ti(φ)‖2,

it will suffice to show the desired inequality under the assumption that
T itself is a positive operator. Thus, let {λn} be the spectrum of T,
and recall that the nonzero λn’s are the eigenvalues for T. Since T has
a purely atomic spectrum, there exists an orthonormal basis {φi} for H
consisting of eigenvectors for T. Then,∑

i

‖T (φi)‖2 =
∑
n

λ2
nm(λn) <∞.

Conversely, let T be in B(H) and suppose there exists an orthonormal
basis {φi} such that the inequality in part 2 holds for T = T1 + iT2. It
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follows from part 1 that the same inequality holds as well for T ∗ =
T1− iT2. It then follows that the inequality holds for the real and imag-
inary parts T1 = (T + T ∗)/2 and T2 = (T − T ∗)/2i of T. It will suffice
then to assume that T is selfadjoint, and we write T = T+−T− in terms
of its positive and negative parts. Now, from part b of Exercise 11.1, it
follows that the inequality in part 2 must hold for T+ and T−, so that it
will suffice in fact to assume that T is positive. We show first that T is
a compact operator. Thus, let {vk} be a sequence of vectors in H that
converges weakly to 0, and write

vk =
∑
i

akiφi.

Note that for each i, we have 0 = limk(vk, φi) = limk aki. Let M be an
upper bound for the sequence {‖vk‖}. Then, given ε > 0, there exists an
N such that

∑∞
i=N ‖T (φi)‖2 < (ε/2M)2. Then, there exists a K such

that |aki| ≤ ε/2N‖T‖ for all 1 ≤ i ≤ N − 1 and all k ≥ K. Then,

‖T (vk)‖ = ‖T (
∑
i

akiφi)‖

= ‖
∑
i

akiT (φi)‖

≤
N−1∑
i=1

|aki|‖T (φi)‖+
∞∑
i=N

|aki|‖T (φi)‖

< ε/2 +

√√√√ ∞∑
i=N

|aki|2 ×

√√√√ ∞∑
i=N

‖T (φi)‖2

< ε/2 + ‖vk‖ × ε/2M

≤ ε,

showing that the sequence {T (vk)} converges to 0 in norm. Hence, T is
a (positive) compact operator. Now, using part 1 and an orthonormal
basis of eigenvectors for T, we have that∑

i

λ2
im(λi) <∞,

whence T is a Hilbert-Schmidt operator. This completes the proof of
part 2.
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We leave the verification of part 3 to an exercise.

EXERCISE 11.10. (The Space of All Hilbert-Schmidt Operators)
(a) If T is a Hilbert-Schmidt operator and S is an arbitrary element

of B(H), show that TS and ST are Hilbert-Schmidt operators.
(b) Show that T is a Hilbert-Schmidt operator if and only if |T | is a

Hilbert-Schmidt operator.
(c) Prove part 3 of the preceding theorem.
(d) For T and S Hilbert-Schmidt operators, show that∑

i

(T (φi), S(φi)) =
∑
i

(S∗T (φi), φi)

exists and is independent of which orthonormal basis {φi} is used.
(e) Let Bhs(H) denote the complex vector space of all Hilbert-Schmidt

operators on H, and on Bhs(H)×Bhs(H) define

(T, S) =
∑
i

(S∗T (φi), φi),

where {φi} is an orthonormal basis. Verify that (T, S) is a well-defined
inner product on Bhs(H), and that Bhs(H) is a Hilbert space with re-
spect to this inner product. This inner product is called the Hilbert-
Schmidt inner product.

(f) If T is a Hilbert-Schmidt operator, define the Hilbert-Schmidt
norm ‖T‖hs of T by

‖T‖hs =
√

(T, T ) =
√∑

‖T (φi)‖2.

Prove that ‖T‖ ≤ ‖T‖hs. Show further that, if T is a Hilbert-Schmidt
operator and S is an arbitrary element of B(H), then

‖ST‖hs ≤ ‖S‖‖T‖hs.

(g) Show that Bhs(H) is a Banach ∗-algebra with respect to the
Hilbert-Schmidt norm.

THEOREM 11.7. (The Space of Trace Class Operators)
(1) An operator T ∈ B(H) is a trace class operator if and only if∑

i

|(T (ψi), φi)| <∞
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for every pair of orthonormal sets {ψi} and {φi}.
(2) The set of all trace class operators is a two-sided selfadjoint ideal

in the algebra B(H).
(3) An operator T is a trace class operator if and only if there exist

two Hilbert-Schmidt operators S1 and S2 such that T = S1 ◦S2.

PROOF. Since every trace class operator is a linear combination of
four positive trace class operators, it will suffice, for the “only if” part
of 1, to assume that T is positive. Thus, let {ηn} be an orthonormal
basis of eigenvectors for T, and write

M =
∑
n

(T (ηn), ηn) =
∑
i

λim(λi),

where the λi’s are the eigenvalues for T. If {ψi} and {φi} are any or-
thonormal sets, write

ψi =
∑
n

aniηn,

where ani = (ψi, ηn), and

φi =
∑
n

bniηn,

where bni = (φi, ηn). Then∑
i

|(T (ψi), φi)| =
∑
i

|
∑
n

∑
m

anibmi(T (ηn), ηm)|

=
∑
i

|
∑
n

anibni(T (ηn), ηn)|

≤
∑
n

(T (ηn), ηn)×
√∑

i

|ani|2 ×
√∑

i

|bni|2

=
∑
n

(T (ηn), ηn)×
√∑

i

|(ηn, ψi)|2 ×
√∑

i

|(ηn, φi)|2

≤
∑
n

(T (ηn), ηn)‖ηn‖‖ηn‖

= M,

showing that the condition in 1 holds. We leave the converse to the
exercises.
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It clearly follows from part 1 that the set of trace class operators forms
a vector space, and it is equally clear that if T is a trace class operator,
i.e., satisfies the inequality in 1, then T ∗ is also a trace class operator.
To see that the trace class operators form a two-sided selfadjoint ideal,
it will suffice then to show that ST is a trace class operator whenever
S ∈ B(H) and T is a positive trace class operator. Thus, let {ηn} be
an orthonormal basis of eigenvectors for T, and let {ψi} and {φi} be
arbitrary orthonormal sets. Write

ψi =
∑
n

aniηn

and
S∗(φi) =

∑
n

bmiηm.

Then∑
i

|(ST (ψi), φi)| =
∑
i

|
∑
n

∑
m

anibmi(T (ηn), ηm)|

=
∑
i

|
∑
n

anibni(T (ηn), ηn)|

≤
∑
i

∑
n

|anibni|(T (ηn), ηn)

≤
∑
n

(T (ηn), ηn)

×
√∑

i

|ani|2
√∑

k

|bnk|2

=
∑
n

(T (ηn), ηn)

×
√∑

i

|(ηn, ψi)|2
√∑

k

|(ηn, S∗(φk))|2

=
∑
n

(T (ηn), ηn)‖ηn‖‖S(ηn)‖

≤ ‖S‖
∑
n

(T (ηn), ηn)

<∞,

showing, by part 1, that ST is trace class. This completes the proof of
part 2.
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We leave the proof of part 3 to the following exercise.

EXERCISE 11.11. (Completing the Preceding Proof)
(a) Suppose T is a positive operator. Show that∑

j

(T (ψj), ψj) =
∑
n

(T (φn), φn)

for any pair of orthonormal bases {ψj} and {φn}. Suppose next that∑
n

(T (φn), φn) <∞.

Prove that
√
T is a Hilbert-Schmidt operator, and deduce from this that

T is a trace class operator.
(b) Suppose T is a selfadjoint operator, and write T = T+ − T− in

terms of its positive and negative parts. Assume that
∑
n |(T (φn), φn)| <

∞ for every orthonormal set {φn}. Prove that T is a trace class operator.
HINT: Choose the orthonormal set to be a basis for the closure of the
range of T+.

(c) Prove the rest of part 1 of the preceding theorem.
(d) Prove that T is a trace class operator if and only if |T | is a trace

class operator.
(e) Prove part 3 of the preceding theorem.

EXERCISE 11.12. (The Space of Trace Class Operators)
(a) If T is a trace class operator, define

‖T‖tr = sup
{ψn},{φn}

∑
n

|(T (ψn), φn)|,

where the supremum is taken over all pairs of orthonormal sets {ψn}
and {φn}. Prove that the assignment T → ‖T‖tr is a norm on the set
Btr(H) of all trace class operators. This norm is called the trace class
norm.

(b) If T is a trace class operator and {φn} is an orthonormal basis,
show that the infinite series

∑
(T (φn), φn) is absolutely summable. Show

further that ∑
n

(T (φn), φn) =
∑
n

(T (ψn), ψn),

where {φn} and {ψn} are any two orthonormal bases. We define the
trace tr(T ) of a trace class operator T by

tr(T ) =
∑
n

(T (φn), φn),
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where {φn} is an orthonormal basis.
(c) Let T be a positive trace class operator. Show that ‖T‖tr =

tr(T ). For an arbitrary trace class operator T, show that ‖T‖tr = tr(|T |).
HINT: Expand everything in terms of an orthonormal basis consisting
of eigenvectors for |T |.

(d) Let T be a trace class operator and S be an element of B(H).
Prove that

‖ST‖tr ≤ ‖S‖‖T‖tr.

(e) Show that Btr(H) is a Banach *-algebra with respect to the norm
defined in part a.

EXERCISE 11.13. (a) Let (S, µ) be a σ-finite measure space. Show
that if a nonzero multiplication operator mf on L2(µ) is a compact
operator, then µ must have some nontrivial atomic part. That is, there
must exist at least one point x ∈ S such that µ({x}) > 0.

(b) Suppose µ is a purely atomic σ-finite measure on a set S. Describe
the set of all functions f for which mf is a compact operator, a Hilbert-
Schmidt operator, a trace class operator, or a finite rank operator.

(c) Show that no nonzero convolution operator Kf on L2(R) is a
compact operator. HINT: Examine the operator U ◦ Kf ◦ U−1, for U
the L2 Fourier transform.

(d) Let (S, µ) be a σ-finite measure space. Suppose k(x, y) is a kernel
on S×S, and assume that k ∈ L2(µ×µ). Prove that the integral operator
K, determined by the kernel k, is a Hilbert-Schmidt operator, whence is
a compact operator.

(e) Let (S, µ) be a σ-finite measure space, and let T be a positive
Hilbert-Schmidt operator on L2(µ). Suppose {φ1, φ2, . . . } is an orthonor-
mal basis of L2(µ) consisting of eigenfunctions for T, and let λi denote
the eigenvalue corresponding to φi. Define a kernel k(x, y) on S × S by

k(x, y) =
∞∑
i=1

λiφi(x)φi(y).

Show that k ∈ L2(µ×µ) and that T is the integral operator determined
by the kernel k. Show in general that, if T is a Hilbert-Schmidt operator
on L2(µ), then there exists an element k ∈ L2(µ× µ) such that

Tf(x) =
∫
k(x, y)f(y) dµ(y)
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for all f ∈ L2(µ). Conclude that there is a linear isometry between the
Hilbert space L2(µ×µ) and the Hilbert space Bhs(L2(µ)) of all Hilbert-
Schmidt operators on L2(µ).

(f) Let S be a compact topological space, let µ be a finite Borel
measure on S, and let k be a continuous function on S × S. Suppose
φ ∈ L2(µ) is an eigenfunction, corresponding to a nonzero eigenvalue,
for the integral operator T determined by the kernel k. Prove that φ may
be assumed to be continuous, i.e., agrees with a continuous function µ
almost everywhere. Give an example to show that this is not true if µ
is only assumed to be σ-finite.

(g) (Mercer’s Theorem) Let S, µ, k, and T be as in part f. Suppose T
is a positive trace class operator. Prove that

tr(T ) =
∫
S

k(x, x) dµ(x).

We turn next to an examination of “unbounded selfadjoint” opera-
tors. Our definition is derived from a generalization of the properties of
bounded selfadjoint operators as described in Theorem 8.7.

DEFINITION. A linear transformation T from a subspace D of a
Hilbert space H into H is called an unbounded selfadjoint operator on
H if

(1) D is a proper dense subspace of H.
(2) T is not continuous on D.
(3) T is symmetric on D; i.e., (T (x), y) = (x, T (y)) for all x, y ∈ D.
(4) Both I + iT and I − iT map D onto H.

If, in addition, (T (x), x) ≥ 0 for all x ∈ D, then T is called an unbounded
positive operator on H.

The subspace D is called the domain of T.

REMARK. Observe, from Theorem 9.8, that if p is anH-projection-
valued measure on a Borel space (S,B), then

∫
f dp is an unbounded

selfadjoint operator on H for every real-valued Borel function f on S
that is not in L∞(p).

THEOREM 11.8. (Spectral Theorem for Unbounded Selfadjoint
Operators) Let H be a (separable and complex) Hilbert space.

(1) If T is an unbounded selfadjoint operator on H, then there ex-
ists a unique H-projection-valued measure p on (R,B) such that
T is the integral with respect to p of the unbounded function
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f(λ) = λ; i.e., T =
∫
λ dp(λ). See Theorem 9.8. Further, p is not

supported on any compact interval in R.
(2) If p is an H-projection-valued measure on (R,B), that is not

supported on any compact interval in R, then T =
∫
λ dp(λ) is

an unbounded selfadjoint operator.
(3) The map p→

∫
λ dp(λ) of part 2 is a 1-1 correspondence between

the set of all H-projection-valued measures p on (R,B) that are
not supported on any compact interval in R and the set of all
unbounded selfadjoint operators T on H.

PROOF. Part 2 follows from Theorem 9.8. To see part 1, let T :
D → H be an unbounded selfadjoint operator, and note that I ± iT
is norm-increasing on D, whence is 1-1 and onto H. Define U = (I −
iT )(I + iT )−1. Then U maps Honto itself and is an isometry. For if
y = (I+ iT )−1(x), then x = (I+ iT )(y), whence ‖x‖2 = ‖y‖2 +‖T (y)‖2.
But then

‖U(x)‖2 = ‖(I − iT )(y)‖2

= ‖y‖2 + ‖T (y)‖2

= ‖x‖2.
Moreover,

I + U = (I + iT )(I + iT )−1 + (I − iT )(I + iT )−1 = 2(I + iT )−1,

showing that I + U maps H 1-1 and onto D. Similarly, we see that

I − U = 2iT (I + iT )−1,

whence
T = −i(I − U)(I + U)−1.

This unitary operator U is called the Cayley transform of T.
By the Spectral Theorem for normal operators, we have that U =∫
µdq(µ), where q is the spectral measure for U. Because U is unitary,

we know that q is supported on the unit circle T in C, and because
I + U = 2(I + iT )−1 is 1-1, we know that -1 is not an eigenvalue for U.
Therefore, q{−1} = 0, and the function h defined on T− {−1} by

h(µ) = −i(1− µ)/(1 + µ)

maps onto the real numbers R. Defining S =
∫
h(µ) dq(µ), we see from

Theorem 9.8 that S is an unbounded selfadjoint operator on H. By part
c of Exercise 9.15, we have that∫

(1/(1 + µ)) dq(µ) = (I + U)−1,
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and hence that
S = −i(I − U)(I + U)−1 = T.

Finally, let p = h∗(q) be the projection-valued measure defined on
(R,B) by

pE = h∗(q)E = qh−1(E).

From part e of Exercise 9.15, we then have that∫
λ dp(λ) =

∫
h(µ) dq(µ) = S = T,

as desired.
We leave the uniqueness of p to the exercise that follows. Part 3 is

then immediate from parts 1 and 2.

DEFINITION. Let T : D → H be an unbounded selfadjoint opera-
tor and let p be the unique projection-valued measure on (R,B) for which
T =

∫
λ dp(λ). The projection-valued measure p is called the spectral

measure for T.

EXERCISE 11.14. (a) Prove the uniqueness assertion in part 1 of
the preceding theorem.

(b) Let T : D → H be an unbounded selfadjoint operator, let p be its
spectral measure, and let U = (I−iT )(I+iT )−1 be its Cayley transform.
Prove that

U =
∫

[(1− iλ)/(1 + iλ)] dp(λ).

(c) Show that there is a 1-1 correspondence between the set of all
projection-valued measures on (R,B) and the set of all (bounded or
unbounded) selfadjoint operators on a Hilbert space H.

DEFINITION. Let T be an unbounded selfadjoint operator with
domain D. A complex number λ is said to belong to the resolvent of T if
the linear transformation λI−T maps D 1-1 and onto H and (λI−T )−1

is a bounded operator on H. The spectrum sp(T ) of T is the complement
of the resolvent of T.

If f is a real-valued (bounded or unbounded) Borel function on R, we
write f(T ) for the operator

∫
f(λ)dp(λ).

As in the case of a bounded normal operator, we make analogous
definitions of point spectrum, continuous spectrum, discrete spectrum,
and essential spectrum.
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The following exercise is the natural generalization of Exercise 11.4
and Theorem 11.4 to unbounded selfadjoint operators.

EXERCISE 11.15. Let T be an unbounded selfadjoint operator.
Verify the following:

(a) The spectral measure p for T is supported on the spectrum of T ;
the spectrum of T is contained in the set of real numbers; if E is a closed
subset of C for which pE = I, then E contains the spectrum of T.

(b) λ ∈ sp(T ) if and only if there exists a sequence {vn} of unit vectors
in H such that

lim ‖T (vn)− λvn‖ = 0.

(c) λ ∈ spp(T ) if and only if λ is an eigenvalue for T, i.e., if and only
if there exists a nonzero vector v ∈ D such that T (v) = λv.

(d) λ ∈ spe(T ) if and only if there exists a sequence {vn} of orthonor-
mal vectors for which

lim ‖T (vn)− λvn‖ = 0.

(e) T is an unbounded positive operator if and only if sp(T ) is a subset
of the set of nonnegative real numbers.

THEOREM 11.9. (Invariance of the Essential Spectrum under a
Compact Perturbation) Let T : D → H be an unbounded selfadjoint
operator on a Hilbert space H, and let K be a compact selfadjoint oper-
ator on H. Define T ′ : D → H by T ′ = T +K. Then T ′ is an unbounded
selfadjoint operator, and

spe(T ′) = spe(T ).

That is, the essential spectrum is invariant under “compact perturba-
tions.”

EXERCISE 11.16. Prove Theorem 11.9.

EXERCISE 11.17. (a) Let T be an unbounded selfadjoint operator
with domain D on a Hilbert space H. Prove that the graph of T is a
closed subset of H ×H.

(b) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
for which f(0) = f(1). Define T : D → H by T (f) = if ′. Prove that T
is an unbounded selfadjoint operator on H. HINT: To show that I ± iT
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is onto, you must find a solution to the first order linear differential
equation:

y′ ± y = f.

(c) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
for which f(0) = f(1) = 0. Define T : D → H by T (f) = if ′. Prove that
T is not an unbounded selfadjoint operator.

(d) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
for which f(0) = 0. Define T : D → H by T (f) = if ′. Prove that T is
not an unbounded selfadjoint operator.

We give next a different characterization of unbounded selfadjoint
operators. This characterization essentially deals with the size of the
domain D of the operator and is frequently given as the basic definition
of an unbounded selfadjoint operator. This characterization is also a
useful means of determining whether or not a given T : D → H is an
unbounded selfadjoint operator.

THEOREM 11.10. Let D be a proper dense subspace of a separable
Hilbert space H, and let T : D → H be a symmetric linear transforma-
tion of D into H. Then T is an unbounded selfadjoint operator if and
only if the following condition on the domain D holds: If x ∈ H is such
that the function y → (T (y), x) is continuous on D, then x belongs to
D.

PROOF. Suppose T : D → H is an unbounded selfadjoint operator
and that an x ∈ H satisfies the given condition. Then the map sending
y ∈ D to ((I + iT )(y), x) is continuous on D, and so has a unique
continuous extension to all of H. By the Riesz Representation Theorem
for Hilbert spaces, there exists a w ∈ H such that

((I + iT )(y), x) = (y, w)

for all y ∈ D. Since I − iT maps D onto H, there exists a v ∈ D such
that w = (I − iT )(v). Therefore,

((I + iT )(y), x) = (y, w)

= (y, (I − iT )(v))

= ((I + iT )(y), v)
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for all y ∈ D, showing that (z, x) = (z, v) for all z ∈ H, whence x = v,
and x ∈ D.

Conversely, assume that the condition holds. We must show that
T is an unbounded selfadjoint operator. We must verify that I ± iT
maps D onto H. We show first that the range of I + iT is dense. Thus,
let x be a vector orthogonal to the range of I + iT. Then the map y →
((I+iT )(y), x) is identically 0 onD, showing that (T (y), x) = i(y, x), and
therefore the map y → (T (y), x) is continuous on D. By the condition,
x ∈ D, and we have

0 = ((I + iT )(x), x) = (x, x) + i(T (x), x),

implying that ‖x‖2 = −i(T (x), x), which implies that x = 0 since
(T (x), x) is real. Hence, the range of I + iT is dense in H. Of course, a
similar argument shows that the range of I − iT is dense in H.

To see that the range of I + iT is closed, let y ∈ H, and suppose
y = lim yn, where each yn = (I + iT )(xn) for some xn ∈ D. Now
the sequence {yn} is a Cauchy sequence, and, since I + iT is norm-
increasing, it follows that the sequence {xn} also is a Cauchy sequence.
Let x = limxn. Then, for any z ∈ D, we have

(T (z), x) = lim(T (z), xn)

= lim(z, T (xn))

= lim(z, (1/i)(yn − xn))

= (z, (1/i)(y − x)),

which shows that the map z → (T (z), x) is a continuous function of z.
Therefore, x ∈ D, and

(z, T (x)) = (T (z), x) = (z, (1/i)(y − x)),

showing that T (x) = (1/i)(y − x), or (I + iT )(x) = y, and y belongs to
the range of I + iT. Again, a similar argument shows that the range of
I − iT is closed, and therefore T is an unbounded selfadjoint operator.

REMARK. We see from the preceding exercise and theorem that a
symmetric operator T : D → H can fail to be an unbounded selfadjoint
operator simply because its domain is not quite right. The following
exercise sheds some light on this observation and leads us to the notion
of “essentially selfadjoint” operators.
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EXERCISE 11.18. Let H be a separable Hilbert space, and let
T : D → H be a symmetric linear transformation from a dense subspace
D of H into H.

(a) Suppose D′ is a proper subspace of D. Show that T : D′ → H
can never be an unbounded selfadjoint operator. (No smaller domain
will do.)

(b) Let G denote the graph of T, thought of as a subset of H × H.
Prove that the closure Ḡ of G is the graph of a linear transformation
S : D′′ → H. Show further that D ⊆ D′′, that S is an extension of T,
and that S is symmetric on D′′. This linear transformation S is called
the closure of T and is denoted by T̄ . T is called essentially selfadjoint
if T̄ is selfadjoint.

(c) Suppose D ⊆ E and that V : E → H is an unbounded selfadjoint
operator. We say that V is a selfadjoint extension of T if V is an
extension of T. Prove that any selfadjoint extension of T is an extension
of T̄ . That is, T̄ is the minimal possible selfadjoint extension of T.

(d) Determine whether or not the operators in parts c and d of Exer-
cise 11.17 have selfadjoint extensions and/or are essentially selfadjoint.

EXERCISE 11.19. Let H be a separable Hilbert space.
(a) (Stone’s Theorem) Let t→ Ut be a homomorphism of the additive

group R into the group of unitary operators on H. Assume that for each
pair of vectors x, y ∈ H the function t→ (Ut(x), y) is continuous. Prove
that there exists a unique unbounded selfadjoint operatorA onH, having
spectral measure p, such that

Ut = eitA =
∫
eitλ dp(λ)

for all t ∈ R. The operator A is called the generator of the one-parameter
group Ut.

(b) Let A be an unbounded positive operator on H, having spectral
measure p, with domain D. For each nonnegative t define

Pt = e−tA =
∫
e−tλ dp(λ).

Prove that the Pt’s form a continuous semigroup of contraction opera-
tors. That is, show that each Pt is a bounded operator of norm ≤ 1 and
that Pt+s = Pt ◦ Ps for all t, s ≥ 0. Further, show that

A(x) = lim
t→0+

Pt(x)− x

−t
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for every x ∈ D.

We conclude this chapter by summarizing our progress toward find-
ing a mathematical model for experimental science. No proofs will be
supplied for the theorems we quote here, and we emphasize that this is
only a brief outline.

We have seen in Chapter VIII that the set P of all projections on an
infinite-dimensional complex Hilbert space H could serve as a model for
the set Q of all questions. Of course, many other sets also could serve
as a model for Q, but we use this set P.

Each observable A is identified with a question-valued measure, so in
our model the observables are represented by projection-valued measures
on R, and we have just seen that these projection-valued measures are
in 1-1 correspondence with all (bounded and unbounded) selfadjoint op-
erators. So, in our model, the observables are represented by selfadjoint
operators.

What about the states? How are they represented in this model? In
Chapter VII we have seen that each state α determines a character µα of
the set Q of questions. To see how states are represented in our model,
we must then determine what the characters of the set P are.

THEOREM 11.11. (Gleason’s Theorem) Let H be a separable in-
finite dimensional complex Hilbert space, and let P denote the set of all
projections on H. Suppose µ is a mapping of P into [0,1] that satisfies:

(1) If p ≤ q, then µ(p) ≤ µ(q).
(2) µ(I − p) = 1− µ(p) for every p ∈ P.
(3) If {pi} is a pairwise orthogonal (summable) sequence of projec-

tions, then µ(
∑
pi) =

∑
µ(pi).

Then there exists a positive trace class operator S on H, for which
‖S‖tr = tr(S) = 1, such that µ(p) = tr(Sp) for every p ∈ P.

Hence, the states are represented by certain positive trace class op-
erators. Another assumption we could make is that every positive trace
class operator of trace 1 corresponds, in the manner above, to a state.
Since each such positive trace class operator S with tr(S) = 1 is repre-
sentable in the form

S =
∑

λipi,

where
∑
λim(λi) = 1, we see that the pure states correspond to opera-

tors that are in fact projections onto 1-dimensional subspaces. Let α be
a pure state, and suppose it corresponds to the projection qv onto the
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1-dimensional subspace spanned by the unit vector v. Let A be an ob-
servable (unbounded selfadjoint operator), and suppose A corresponds
to the projection-valued measure E → pE . That is, A =

∫
λ dp(λ). Then

we have
µα,A(E) = µα,χE(A)({1})

= µα(χE(A))

= µα(qAE)

= µα(pE)

= tr(qvpE)

= (qvpE(v), v)

= (pE(v), v)

= µv(E).

If we regard the probability measure µv as being the probability distri-
bution corresponding to a random variable X, then

(A(v), v) = ([
∫
λ dp(λ)](v), v) =

∫
λ dµv(λ) = E[X],

where E[X] denotes the expected value of the random variable X. We
may say then that in our model (A(v), v) represents the expected value
of the observable A when the system is in the pure state corresponding
to the projection onto the 1-dimensional subspace spanned by v.

How are time evolution and symmetries represented in our model?
We have seen that these correspond to automorphisms φ′t and π′g of
the set Q. So, we must determine the automorphisms of the set P of
projections.

THEOREM 11.12. (Wigner’s Theorem) Let H be a separable infi-
nite dimensional complex Hilbert space, and let P denote the set of all
projections on H. Suppose η is a 1 − 1 mapping of P onto itself that
satisfies:

(1) If p ≤ q, then η(p) ≤ η(q).
(2) η(I − p) = I − η(p) for every p ∈ P.
(3) If {pi} is a pairwise orthogonal (summable) sequence of projec-

tions, then {η(pi)} is a pairwise orthogonal sequence of projec-
tions, and

η(
∑

pi) =
∑

η(pi).
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Then there exists a real-linear isometry U of H onto itself such that
η(p) = UpU−1 for all p ∈ P. Further, U either is complex linear or it is
conjugate linear.

Applying Wigner’s Theorem to the automorphisms φ′t, it follows that
there exists a map t → Ut from the set of nonnegative reals into the
set of real-linear isometries on H such that φ′t(p) = UtpU

−1
t for every

p ∈ P. Also, if G denotes a group of symmetries, then there exists a
map g → Vg of G into the set of real-linear isometries of H such that
π′g(p) = VgpV

−1
g for every p ∈ P.

THEOREM 11.13.

(1) The transformations Ut can be chosen to be (complex linear)
unitary operators that satisfy

Ut+s = Ut ◦ Us

for all t, s ≥ 0.
(2) The transformations Vg can be chosen to satisfy

Vg1g2 = σ(g1, g2)Vg1 ◦ Vg2

for all g1, g2 ∈ G, where σ(g1, g2) is a complex number of absolute
value 1. Such a map g → Vg is called a representation of G.

(3) The operators Ut commute with the operators Vg; i.e.,

Ut ◦ Vg = Vg ◦ Ut

for all g ∈ G and all t ≥ 0.

We have thus identified what mathematical objects will represent the
elements of our experimental science, but much remains to specify. De-
pending on the system and its symmetries, more precise descriptions of
these objects are possible. One approach is the following:

(1) Determine what the group G of all symmetries is.
(2) Study what kinds of mappings g → Vg, satisfying the conditions

in the preceding theorem, there are. Perhaps there are only a
few possibilities.

(3) Fix a particular representation g → Vg of G and examine what
operators commute with all the Vg’s. Perhaps this is a small set.

(4) Try to determine, from part 3, what the transformations Ut
should be.
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Once the evolution transformations φ′t are specifically represented by
unitary operators Ut, we will be in a good position to make predictions,
which is the desired use of our model. Indeed, if α is a state of the
system, and if α is represented in our model by a trace class operator S,
then the state of the system t units of time later will be the one that is
represented by the operator U−1

t SUt.


