
CHAPTER V

DUAL SPACES

DEFINITION Let (X, T ) be a (real) locally convex topological vector
space. By the dual space X∗, or (X, T )∗, of X we mean the set of all
continuous linear functionals on X.

By the weak topology on X we mean the weakest topology W on X
for which each f ∈ X∗ is continuous. In this context, the topology T is
called the strong topology or original topology on X.

EXERCISE 5.1. (a) Prove thatX∗ is a vector space under pointwise
operations.

(b) Show that W ⊆ T . Show also that (X,W) is a locally convex
topological vector space.

(c) Show that if X is infinite dimensional then every weak neigh-
borhood of 0 contains a nontrivial subspace M of X. HINT: If V =
∩n

i=1f
−1
i (Ui), and if M = ∩n

i=1 ker(fi), then M ⊆ V.
(d) Show that a linear functional f on X is strongly continuous if and

only if it is weakly continuous; i.e., prove that (X, T )∗ = (X,W)∗.
(e) Prove that X is finite dimensional if and only if X∗ is finite di-

mensional, in which case X and X∗ have the same dimension.

EXERCISE 5.2. (a) For 1 < p < ∞, let X be the normed linear
space Lp(R). For each g ∈ Lp′(R) (1/p + 1/p′ = 1), define a linear
functional φg on X by

φg(f) =
∫
f(x)g(x) dx.
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Prove that the map g → φg is a vector space isomorphism of Lp′(R)
onto X∗.

(b) By analogy to part a, show that L∞(R) is isomorphic as a vector
space to L1(R)∗.

(c) Let c0 be the normed linear space of real sequences {a0, a1, . . . } for
which lim an = 0 with respect to the norm defined by ‖{an}‖ = max |an|.
Show that c∗0 is algebraically isomorphic to l1, where l1 is the linear space
of all absolutely summable sequences {b0, b1, . . . }. HINT: If f ∈ c∗0,
define bn to be f(en), where en is the element of c0 that is 1 in the nth
position and 0 elsewhere.

(d) In each of parts a through c, show that the weak and strong
topologies are different. Exhibit, in fact, nets (sequences) which converge
weakly but not strongly.

(e) Let X = L∞(R). For each function g ∈ L1(R), define φg on X by
φg(f) =

∫
fg. Show that φg is an element of X∗. Next, for each finite

Borel measure µ on R, define φµ on X by φµ(f) =
∫
f dµ. Show that

φµ is an element of X∗. Conclude that, in this sense, L1(R) is a proper
subset of (L∞)∗.

(f) Let ∆ be a second countable locally compact Hausdorff space, and
let X be the normed linear space C0(∆) equipped with the supremum
norm. Identify X∗.

(g) Let X1, . . . , Xn be locally convex topological vector spaces. If
X =

⊕n
i=1Xi, show that X∗ is isomorphic to

⊕n
i=1X

∗
i .

THEOREM 5.1. (Relation between the Weak and Strong Topolo-
gies) Let (X, T ) be a locally convex topological vector space.

(1) Let A be a convex subset of X. Then A is strongly closed if and
only if it is weakly closed.

(2) If A is a convex subset of X, then the weak closure of A equals
the strong closure of A.

(3) If {xα} is a net in X that converges weakly to an element x,
then there exists a net {yβ}, for which each yβ is a (finite) con-
vex combination of some of the xα’s, such that {yβ} converges
strongly to x. If T is metrizable, then the net {yβ} can be chosen
to be a sequence.

PROOF. If A is a weakly closed subset, then it is strongly closed
since W ⊆ T . Conversely, suppose that A is a strongly closed convex
set and let x ∈ X be an element not in A. Then, by the Separation
Theorem, there exists a continuous linear functional φ on X, and a real
number s, such that φ(y) ≤ s for all y ∈ A and φ(x) > s. But then



DUAL SPACES 83

the set φ−1(s,∞) is a weakly open subset of X that contains x and is
disjoint from A, proving that A is weakly closed, as desired.

If A is a convex subset of X, and if B is the weak closure and C is the
strong closure, then clearly A ⊆ C ⊆ B. On the other hand, C is convex
and strongly closed, hence C is weakly closed. Therefore, B = C, and
part 2 is proved.

Now let {xα} be a weakly convergent net inX, and let A be the convex
hull of the xα’s. If x = limW xα, then x belongs to the weak closure of
A, whence to the strong closure of A. Let {yβ} be a net (sequence if T
is metrizable) of elements of A that converges strongly to x. Then each
yβ is a finite convex combination of certain of the xα’s, and part 3 is
proved.

DEFINITION. Let X be a locally convex topological vector space,
and let X∗ be its dual space. For each x ∈ X, define a function x̂ on X∗

by x̂(f) = f(x). By the weak∗ topology on X∗, we mean the weakest
topology W∗ on X∗ for which each function x̂, for x ∈ X, is continuous.

THEOREM 5.2. (Duality Theorem) Let (X, T ) be a locally convex
topological vector space, and let X∗ be its dual space. Then:

(1) Each function x̂ is a linear functional on X∗.
(2) (X∗,W∗) is a locally convex topological vector space. (Each x̂

is continuous on (X∗,W∗).)
(3) If φ is a continuous linear functional on (X∗,W∗), then there

exists an x ∈ X such that φ = x̂; i.e., the map x→ x̂ is a linear
transformation of X onto (X∗,W∗)∗.

(4) The map x → x̂ is a topological isomorphism between (X,W)
and ((X∗,W∗)∗,W∗).

PROOF. If x ∈ X, then

x̂(af + bg) = (af + bg)(x)

= af(x) + bg(x)

= ax̂(f) + bx̂(g),

proving part 1.
By the definition of the topologyW∗, we see that each x̂ is continuous.

Also, the set of all functions {x̂} separate the points of X∗, for if f, g ∈
X∗, with f 6= g, then f−g is not the 0 functional. Hence there exists an
x ∈ X for which (f−g)(x), which is x̂(f)− x̂(g), is not 0. Therefore, the
weak topology on X∗, generated by the x̂’s, is a locally convex topology.
See part c of Exercise 3.11.
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Now suppose φ is a continuous linear functional on (X∗,W∗), and let
M be the kernel of φ. If M = X∗, then φ is the 0 functional, which is 0̂.
Assume then that there exists an f ∈ X∗, for which φ(f) = 1, whence
f /∈ M. Since φ is continuous, M is a closed subset in X∗, and there
exists a weak* neighborhood V of f which is disjoint from M. Therefore,
by the definition of the topology W∗, there exists a finite set x1, . . . , xn

of elements of X and a finite set ε1, . . . , εn of positive real numbers such
that

V = {g ∈ X∗ : |x̂i(g)− x̂i(f)| < εi, 1 ≤ i ≤ n}.

Define a map R : X∗ → Rn by

R(g) = (x̂1(g), . . . , x̂n(g)).

Clearly R is a continuous linear transformation of X∗ into Rn. Now
R(f) /∈ R(M), for otherwise there would exist a g ∈M such that x̂i(g) =
x̂i(f) for all i. But this would imply that g ∈ V ∩ M, contradicting
the choice of the neighborhood V. Also, R(M) is a subspace of Rn, so
contains 0, implying then that R(f) 6= 0. Suppose R(M) is of dimension
j < n. Let α1, . . . , αn be a basis for Rn, such that α1 = R(f) and
αi ∈ R(M) for 2 ≤ i ≤ j + 1. We define a linear functional p on Rn by
setting p(α1) = 1 and p(αi) = 0 for 2 ≤ i ≤ n.

Now, p ◦ R is a continuous linear functional on X∗. If g ∈ M, then
(p ◦ R)(g) = p(R(g)) = 0, since R(g) ∈ R(M), which is in the span of
α2, . . . , αn. Also, (p◦R)(f) = p(R(f)) = 1, since R(f) = α1. So, p◦R is
a linear functional on X∗ which has the same kernel M as φ and agrees
with φ on f. Therefore, φ− p ◦R = 0 everywhere, and φ = p ◦R.

Let e1, . . . , en denote the standard basis for Rn, and let A be the
n×n matrix relating the bases e1, . . . , en and α1, . . . , αn. That is, ei =∑n

j=1Aijαj . Then, if α = (a1, . . . , an) =
∑n

i=1 aiei, we have

p(α) =
n∑

i=1

aip(ei)

=
n∑

i=1

ai

n∑
j=1

Aijp(αj)

=
n∑

i=1

aiAi1.
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Therefore,
φ(g) = p ◦R(g)

= p(R(g))

= p((x̂1(g), . . . , x̂n(g)))

=
n∑

i=1

Ai1x̂i(g)

= (
n∑

i=1

Ai1x̂i)(g)

=
n̂∑

i=1

Ai1xi(g)

= x̂(g),

where x =
∑n

i=1Ai1xi, and this proves part 3.
We leave the proof of part 4 to the exercises.

EXERCISE 5.3. Prove part 4 of the preceding theorem. HINT:
Show that a net {xα} converges in the weak topology of X to an ele-
ment x if and only if the net {x̂α} converges in the weak* topology of
(X∗,W∗)∗ to the element x̂.

DEFINITION. If T is a continuous linear transformation from a lo-
cally convex topological vector space X into a locally convex topological
vector space Y, we define the transpose T ∗ of T to be the function from
Y ∗ into X∗ given by

[T ∗(f)](x) = f(T (x)).

EXERCISE 5.4. If T is a continuous linear transformation from a
locally convex topological vector space X into a locally convex topolog-
ical vector space Y, show that the transpose T ∗ is a continuous linear
transformation from (Y ∗,W∗) into (X∗,W∗).

EXERCISE 5.5. (Continuous Linear Functionals on Dense Subspaces,
Part 1) Let X be a locally convex topological vector space, and let Y be
a dense subspace of X.

(a) Prove that Y is a locally convex topological vector space in the
relative topology.

(b) Let f be a continuous linear functional on Y, and let x be an
element of X that is not in Y. Let {yα} be a net of elements of Y for



86 CHAPTER V

which x = lim yα. Prove that the net {f(yα)} is a Cauchy net in R, and
hence converges.

(c) Let f be in Y ∗. Show that f has a unique extension to a continuous
linear functional f ′ on X. HINT: Show that f ′ is well-defined and is
bounded on a neighborhood of 0.

(d) Conclude that the map f → f ′ of part c is an isomorphism of the
vector space Y ∗ onto the vector space X∗. Compare with Exercise 4.11,
part a.

EXERCISE 5.6. (Continuous Linear Functionals on Dense Subspaces,
Part 2) Let Y be a dense subspace of a locally convex topological vector
space X, and equip Y with the relative topology. If Y is a proper sub-
space of X, show that the map f → f ′ of part c of the preceding exercise
is not a topological isomorphism of (Y ∗,W∗) and (X∗,W∗). HINT: Use
Theorem 5.2. Compare with part b of Exercise 4.11.

EXERCISE 5.7. (Weak Topologies and Metrizability) Let X be a
locally convex topological vector space, and let X∗ be its dual space.

(a) Show that the weak topology on X is the weakest topology for
which each fα is continuous, where the fα’s form a basis for the vector
space X∗. Similarly, show that the weak* topology on X∗ is the weakest
topology for which each x̂α is continuous, where the xα’s form a basis
for the vector space X.

(b) Show that the weak* topology on X∗ is metrizable if and only if,
as a vector space, X has a countable basis. Show also that the weak
topology on X is metrizable if and only if, as a vector space, X∗ has
a countable basis. HINT: For the “only if” parts, use the fact that in
a metric space each point is the intersection of a countable sequence of
neighborhoods, whereas, if X has an uncountable basis, then the inter-
section of any sequence of neighborhoods of 0 must contain a nontrivial
subspace of X.

(c) Let X be the locally convex topological vector space
∏∞

n=1 R.
Compute X∗, and verify that it has a countable basis. HINT: Show
that X∗ can be identified with the space of sequences {a1, a2, . . . } that
are eventually 0. That is, as a vector space, X∗ is isomorphic to cc =⊕∞

n=1 R.
(d) Conclude that the topological vector space X =

∏∞
n=1 R is a

Fréchet space that is not normable.

DEFINITION. Let S be Schwartz space, i.e., the countably normed
vector space of Exercise 3.10. Elements of the dual space S∗ of S are
called tempered distributions on R.
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EXERCISE 5.8. (Properties of Tempered Distributions)
(a) If h is a measurable function on R, for which there exists a positive

integer n such that h(x)/(1+ |x|n) is in L1, we say that h is a tempered
function. If h is a tempered function, show that the assignment f →∫∞
−∞ h(t)f(t) dt is a tempered distribution uh. Show further that h is

integrable over any finite interval and that the function k, defined by
k(x) =

∫ x

0
h(t) dt if x ≥ 0, and by k(x) = −

∫ 0

x
h(t) dt if x ≤ 0, also is a

tempered function. Show finally that, if g and h are tempered functions
for which ug = uh, then g(x) = h(x) almost everywhere.

(b) Show that h(x) = 1/x is not a tempered function but that the
assignment

f → lim
δ→0

∫
|t|≥δ

(1/t)f(t) dt

is a tempered distribution. (Integrate by parts and use the mean value
theorem.) Show further that h(x) = 1/x2 is not a tempered function,
and also that the assignment

f → lim
δ→0

∫
|t|≥δ

(1/t2)f(t) dt

is not a tempered distribution. (In fact, this limit fails to exist in gen-
eral.) In some sense, then, 1/x can be considered to determine a tem-
pered distribution but 1/x2 cannot.

(c) If µ is a Borel measure on R, for which there exists a positive
integer n such that

∫
(1/(1 + |x|n)) dµ(x) is finite, we say that µ is a

tempered measure. If µ is a tempered measure, show that the assignment
f →

∫∞
−∞ f(t) dµ(t) is a tempered distribution uµ.

(d) Show that the linear functional δ, defined on S by δ(f) = f(0)
(the so-called Dirac δ-function), is a tempered distribution, and show
that δ = uµ for some tempered measure µ.

(e) Show that the linear functional δ′, defined on S by δ′(f) = −f ′(0),
is a tempered distribution, and show that δ′ is not the same as any
tempered distribution of the form uh or uµ. HINT: Show that δ′ fails to
satisfy the dominated convergence theorem.

(f) Let u be a tempered distribution. Define a linear functional u′ on
S by u′(f) = −u(f ′). Prove that u′ is a tempered distribution. We call
u′ the distributional derivative of u. As usual, we write u(n) for the nth
distributional derivative of u. We have that

u(n)(f) = (−1)nu(f (n)).
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Verify that if h is a C∞ function on R, for which both h and h′ are tem-
pered functions, then the distributional derivative (uh)′ of uh coincides
with the tempered distribution uh′ , showing that distributional differen-
tiation is a generalization of ordinary differentiation. Explain why the
minus sign is present in the definition of the distributional derivative.

(g) If h is defined by h(x) = ln(|x|), show that h is a tempered
function, that h′ is not a tempered function, but that

(uh)′(f) = lim
δ→0

∫
|t|≥δ

(1/t)f(t) dt = lim
δ→0

∫
|t|≥δ

h′(t)f(t) dt.

Moreover, compute (uh)(2) and show that it cannot be interpreted in
any way as being integration against a function.

(h) If h is a tempered function, show that there exists a tempered
function k whose distributional derivative is h, i.e., u′k = uh.

(i) Suppose h is a tempered function for which the distributional
derivative u′h of the tempered distribution uh is 0. Prove that there
exists a constant c such that h(x) = c for almost all x. HINT: Verify
and use the fact that, if

∫ b

a
h(x)f(x) dx = 0 for all functions f that

satisfy
∫ b

a
f(x) dx = 0, then h agrees with a constant function almost

everywhere on [a, b].

The next result can be viewed as a kind of Riesz representation the-
orem for the continuous linear functionals on S.

THEOREM 5.3. (Representing a Tempered Distribution as the De-
rivative of a Function) Let u be a tempered distribution. Then there
exists a tempered function h and a nonnegative integer N such that u is

the Nth distributional derivative u
(N)
h of the tempered distribution uh.

We say then that every tempered distribution is the Nth derivative of a
tempered function.

PROOF. Let u ∈ S∗ be given. Recall that S is a countably normed
space, where the norms {ρn} are defined by

ρn(f) = sup
x

max
0≤i,j≤n

|xjf (i)(x)|.

We see then that ρn ≤ ρn+1 for all n. Therefore, according to part
e of Exercise 3.8, there exists an integer N and a constant M such
that |u(f)| ≤ MρN (f) for all f ∈ S. Now, for each f ∈ S, and each
nonnegative integer n, set

pn(f) = max
0≤i,j≤n

∫ ∞

−∞
|tjf (i)(t)| dt.
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There exists a point x0 and integers i0 and j0 such that

ρN (f) = |xj0
0 f

(i0)(x0)|

= |
∫ x0

−∞
j0t

j0−1f (i0)(t) + tj0f (i0+1)(t) dt|

≤
∫ ∞

−∞
j0|tj0−1f (i0)(t) + tj0f (i0+1)(t)| dt

≤ (N + 1)pN+1(f),

showing that |u(f)| ≤M(N + 1)pN+1(f) for all f ∈ S.

Let Y be the normed linear space S, equipped with the norm pN+1.
Let

X =
N+1⊕
i,j=0

L1(R),

and define a map F : Y → X by

[F (f)]i,j(x) = xjf (i)(x).

Then, using the max norm on the direct sum space X, we see that F is
a linear isometry of Y into X. Moreover, the tempered distribution u is
a continuous linear functional on Y and hence determines a continuous
linear functional ũ on the subspace F (Y ) of X. By the Hahn-Banach
Theorem, there exists a continuous linear functional φ on X whose re-
striction to F (Y ) coincides with ũ.

Now X∗ =
⊕N+1

i,j=0 L
∞(R), whence there exist L∞ functions vi,j such

that

φ(g) =
N+1∑
i=0

N+1∑
j=0

∫
gi,j(t)vi,j(t) dt
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for all g = {gi,j} ∈ X. Hence, for f ∈ S, we have

u(f) = ũ(F (f))

= φ(F (f))

=
N+1∑
i=0

N+1∑
j=0

∫
[F (f)]i,j(t)vi,j(t) dt

=
N+1∑
i=0

N+1∑
j=0

∫
tjf (i)(t)vi,j(t) dt

=
N+1∑
i=0

∫
f (i)(t)(

N+1∑
j=0

tjvi,j(t)) dt

=
N+1∑
i=0

∫
f (i)(t)vi(t) dt,

where vi(t) =
∑N+1

j=0 tjvi,j(t). Clearly, each vi is a tempered function,
and we let wi be a tempered function whose (N +1− i)th distributional
derivative is vi. (See part h of Exercise 5.8.) Then,

u(f) =
N+1∑
i=0

∫
f (i)(t)w(N+1−i)

i (t) dt

=
N+1∑
i=0

(−1)N+1−i

∫
f (N+1)(t)wi(t) dt

=
∫
f (N+1)(t)w(t) dt,

where w(t) =
∑N+1

i=0 (−1)N+1−iwi. Hence u(f) =
∫
f (N+1)w, or

u = (−1)N+1u(N+1)
w = uh(N + 1),

where h = (−1)N+1w, and this completes the proof.

DEFINITION. If f is a continuous linear functional on a normed
linear space X, define the norm ‖f‖ of f as in Chapter IV by

‖f‖ = sup
x∈X
‖x‖≤1

|f(x)|.
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DEFINITION. If X is a normed linear space, we define the conju-
gate space of X to be the dual space X∗ of X equipped with the norm
defined above.

EXERCISE 5.9. Let X be a normed linear space, and let X∗ be its
dual space. Denote by W∗ the weak* topology on X∗ and by N the
topology on X∗ defined by the norm.

(a) Show that the conjugate space X∗ of X is a Banach space.
(b) Show that, if X is infinite dimensional, then the weak topology

on X is different from the norm topology on X and that the weak*
topology on the dual space X∗ is different from the norm topology on
X∗. HINT: Use part c of Exercise 5.1. Note then that the two dual
spaces (X∗,W∗)∗ and (X∗,N )∗ ≡ X∗∗ may be different.

EXERCISE 5.10. (a) Show that the vector space isomorphisms of
parts a through c of Exercise 5.2 are isometric isomorphisms.

(b) Let X be a normed linear space and let X∗ denote its conjugate
space. Let X∗∗ denote the conjugate space of the normed linear space
X∗. If x ∈ X, define x̂ on X∗ by x̂(f) = f(x). Show that x̂ ∈ X∗∗.

(c) Again let X be a normed linear space and let X∗ denote its con-
jugate space. Prove that (X∗,W∗)∗ ⊆ X∗∗; i.e., show that every con-
tinuous linear functional on (X∗,W∗) is continuous with respect to the
norm topology on X∗.

(d) Let the notation be as in part b. Prove that the map x → x̂ is
continuous from (X,W) into (X∗∗,W∗).

THEOREM 5.4. Let X be a normed linear space.

(1) If Y is a dense subspace of X, then the restriction map g → g̃ of
X∗ into Y ∗ is an isometric isomorphism of X∗ onto Y ∗.

(2) The weak* topologyW∗ on X∗ is weaker than the topology defined
by the norm on X∗.

(3) The map x → x̂ is an isometric isomorphism of the normed
linear space X into the conjugate space X∗∗ of the normed linear
space X∗.

PROOF. That the restriction map g → g̃ is an isometric isomor-
phism of X∗ onto Y ∗ follows from part c of Exercise 5.5 and the defini-
tions of the norms.

If x ∈ X, then x̂ is a linear functional on X∗ and |x̂(f)| = |f(x)| ≤
‖x‖‖f‖, showing that x̂ is a continuous linear functional in the norm
topology of the Banach space X∗, and that ‖x̂‖ ≤ ‖x‖. Since the weak*



92 CHAPTER V

topology is the weakest making each x̂ continuous, it follows that W∗ is
contained in the norm topology on X∗.

Finally, given an x ∈ X, there exists by the Hahn-Banach Theorem
an f ∈ X∗ for which ‖f‖ = 1 and f(x) = ‖x‖. Therefore, x̂(f) = ‖x‖,
showing that ‖x̂‖ ≥ ‖x‖, and the proof is complete.

EXERCISE 5.11. (The Normed Linear Space of Finite Complex
Measures on a Second Countable Locally Compact Hausdorff Space,
Part 1) Let ∆ be a second countable locally compact Hausdorff space,
and let M(∆) be the complex vector space of all finite complex Borel
measures on ∆. Recall that a finite complex Borel measure on ∆ is a
map µ of the σ-algebra B of Borel subsets of ∆ into C satisfying:

(1) µ(∅) = 0.
(2) If {En} is a sequence of pairwise disjoint Borel sets, then the

series
∑
µ(En) is absolutely summable and µ(∪En) =

∑
µ(En).

See Exercise 1.12.
(a) If µ ∈M(∆), show that µ can be written uniquely as µ = µ1+iµ2,

where µ1 and µ2 are finite signed Borel measures on ∆. Show further
that each µi may be written uniquely as µi = µi1 − µi2, where each µij

is a finite positive Borel measure, and where µi1 and µi2 are mutually
singular.

(b) Let M(∆) be as in part a, and let µ be an element of M(∆). Given
a Borel set E and an ε > 0, show that there exists a compact set K and
an open set U for which K ⊆ E ⊆ U such that |µ(U −K)| < ε. HINT:
Use the fact that ∆ is σ-compact, and consider the collection of sets E
for which the desired condition holds. Show that this is a σ-algebra that
contains the open sets.

EXERCISE 5.12. (The Normed Linear Space of Finite Complex
Measures on a Second Countable Locally Compact Hausdorff Space,
Part 2) Let M(∆) be as in the previous exercise, and for each µ ∈M(∆)
define

‖µ‖ = sup
n∑

i=1

|µ(Ei)|,

where the supremum is taken over all partitions E1, . . . , En of ∆ into a
finite union of pairwise disjoint Borel subsets.

(a) Show that ‖µ‖ <∞.

(b) Prove that M(∆) is a normed linear space with respect to the
above definition of ‖µ‖. This norm is called the total variation norm.
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(c) If h is a bounded, complex-valued Borel function on ∆, and if
µ ∈M(∆), show that

|
∫
h dµ| ≤ ‖h‖∞‖µ‖.

HINT: Do this first for simple functions.
(d) For each µ ∈M(∆), define a linear functional φµ on the complex

Banach space C0(∆) by

φµ(f) =
∫
f dµ.

Prove that the map µ → φµ is a norm-decreasing isomorphism of the
normed linear space M(∆) onto C0(∆)∗.

(e) Let µ be an element of M(∆). Prove that

‖µ‖ = sup
n∑

i=1

|µ(Ki)|,

where the supremum is taken over all n-tuples K1, . . . ,Kn of pairwise
disjoint compact subsets of ∆.

(f) Let µ be an element of M(∆), and let φµ be the element of C0(∆)∗

defined in part d. Prove that ‖φµ‖ = ‖µ‖. Conclude that M(∆) is a
Banach space with respect to the norm ‖µ‖ and that it is isometrically
isomorphic to C0(∆)∗.

EXERCISE 5.13. Let X be the normed linear space c0. See part c
of Exercise 5.2.

(a) Compute the conjugate space c∗0.
(b) Compute c∗∗0 and (c∗0,W∗)∗. Conclude that (X∗,W∗)∗ can be

properly contained in X∗∗; i.e., there can exist linear functionals on X∗

that are continuous with respect to the norm topology but not continu-
ous with respect to the weak* topology.

DEFINITION. A Banach space X is called reflexive if the map
x→ x̂, defined in part b of Exercise 5.10, is an (isometric) isomorphism
of X onto X∗∗. In general, X∗∗ is called the second dual or second
conjugate of X.

EXERCISE 5.14. (Relation among the Weak, Weak*, and Norm
Topologies) Let X be a normed linear space. Let N denote the topology
on X∗ determined by the norm, let W denote the weak topology on the
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locally convex topological vector space (X∗,N ), and let W∗ denote the
weak* topology on X∗.

(a) If X is finite dimensional, show that all three topologies are the
same.

(b) If X is an infinite dimensional reflexive Banach space, show that
W∗ = W, and that W ⊂ N .

(c) If X is not reflexive, show that W∗ ⊆ W ⊂ N .
(d) Let X be a nonreflexive Banach space. Show that there exists a

subspace of X∗ which is closed in the norm topology N (whence also in
the weak topology W) but not closed in the weak* topology W∗, and
conclude then that W∗ ⊂ W. HINT: Let φ be a norm continuous linear
functional that is not weak* continuous, and examine its kernel.

(e) Suppose X is an infinite dimensional Banach space. Prove that
neither (X,W) nor (X∗,W∗) is metrizable. HINT: Use the Baire Cate-
gory Theorem to show that any Banach space having a countable vector
space basis must be finite dimensional.

DEFINITION. Let X and Y be normed linear spaces, and let T be
a continuous linear transformation from X into Y. The transpose T ∗ of
T is called the adjoint of T when it is regarded as a linear transformation
from the normed linear space Y ∗ into the normed linear space X∗.

THEOREM 5.5. Let T be a continuous linear transformation from
a normed linear space X into a normed linear space Y. Then:

(1) The adjoint T ∗ of T is a continuous linear transformation of the
Banach space Y ∗ into the Banach space X∗.

(2) If the range of T is dense in Y, then T ∗ is 1-1.
(3) Suppose X is a reflexive Banach space. If T is 1-1, then the

range of T ∗ is dense in X∗.

PROOF. That T ∗ is linear is immediate. Further,

‖T ∗(f)‖ = sup
x∈X
‖x‖≤1

|[T ∗(f)](x)|

= sup
x∈X
‖x‖≤1

|f(T (x))|

≤ sup
x∈X
‖x‖≤1

‖f‖‖T (x)‖

≤ ‖f‖‖T‖,

showing that T ∗ is continuous in the norm topologies.
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If T ∗(f) = 0, then f(T (x)) = 0 for all x ∈ X. If the range of T is
dense in Y, then f(y) = 0 for all y ∈ Y ; i.e., f is the 0 functional, which
implies that T ∗ is 1-1.

Now, if the range of T ∗ is not dense in X∗, then there exists a nonzero
continuous linear functional φ on X∗ such that φ is 0 on the range of
T ∗. (Why?) Therefore, φ(T ∗(f)) = 0 for all f ∈ Y ∗. If X is reflexive,
then φ = x̂ for some nonzero element x ∈ X. Therefore, x̂(T ∗(f)) =
[T ∗(f)](x) = f(T (x)) = 0 for every f ∈ Y ∗. But then T (x) belongs to
the kernel of every element f in Y ∗, whence T (x) is the zero vector,
which implies that T is not 1-1. Q.E.D.

THEOREM 5.6. Let X be a normed linear space, and let B1 denote
the closed unit ball in the conjugate space X∗ of X; i.e., B1 = {f ∈ X∗ :
‖f‖ ≤ 1}. Then:

(1) (Alaoglu) B1 is compact in the weak* topology on X∗.
(2) If X is separable, then B1 is metrizable in the weak* topology.

PROOF. By the definition of the weak* topology, we have that B1

is homeomorphic to a subset of the product space
∏

x∈X R. See part e
of Exercise 0.8. Indeed, the homeomorphism F is defined by

[F (f)]x = x̂(f) = f(x).

Since |f(x)| ≤ ‖x‖, for f ∈ B1, it follows in fact that

F (B1) ⊆
∏
x∈X

[−‖x‖, ‖x‖],

which is a compact topological spaceK. Hence, to see that B1 is compact
in the weak* topology, it will suffice to show that F (B1) is a closed subset
of K. Thus, if {fα} is a net of elements of B1, for which the net {F (fα)}
converges in K to an element k, then kx = lim[F (fα)]x = lim fα(x),
for every x; i.e., the function f on X, defined by f(x) = kx, is the
pointwise limit of a net of linear functionals. Therefore f is itself a linear
functional on X. Further, |f(x)| ≤ ‖x‖, implying that f is a continuous
linear functional on X with ‖f‖ ≤ 1, i.e., f ∈ B1. But then, the element
k ∈ K satisfies k = F (f), showing that F (B1) is closed in K, and this
proves part 1.

Now, suppose that {xn} is a countable dense subset of X. Then

K∗ =
∏
n

[−‖xn‖, ‖xn‖]
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is a compact metric space, and the map F ∗ : B1 → K∗, defined by

[F ∗(f)]n = f(xn),

is continuous and 1-1, whence is a homeomorphism of B1 onto a compact
metric space, and this completes the proof.

EXERCISE 5.15. (a) Prove that the closed unit ball in Lp is com-
pact in the weak topology, for 1 < p <∞.

(b) Show that neither the closed unit ball in L1(R) nor the closed
unit ball in c0 is compact in its weak topology (or, in fact, in any locally
convex vector space topology). HINT: Compact convex sets must have
extreme points.

(c) Show that neither L1(R) nor c0 is topologically isomorphic to the
conjugate space of any normed linear space. Conclude that not every
Banach space has a “predual.”

(d) Conclude from part c that neither L1(R) nor c0 is reflexive. Prove
this assertion directly for L1(R) using part e of Exercise 5.2.

(e) Show that the closed unit ball in an infinite dimensional normed
linear space is never compact in the norm topology.

THEOREM 5.7. (Criterion for a Banach Space to Be Reflexive) Let
X be a normed linear space, and let X∗∗ denote its second dual equipped
with the weak* topology. Then:

(1) X̂, i.e., the set of all x̂ for x ∈ X, is dense in (X∗∗,W∗).
(2) B̂1, i.e., the set of all x̂ for ‖x‖ < 1, is weak* dense in the closed

unit ball V1 of X∗∗.
(3) X is reflexive if and only if B1 is compact in the weak topology

of X.

PROOF. Suppose X̂ is a proper subspace of (X∗∗,W∗), and let φ
be an element of X∗∗ that is not in X̂. Since X̂ is a closed convex
subspace in the weak* topology on X∗∗, there exists a weak* continuous
linear functional η on (X∗∗,W∗) such that η(x̂) = 0 for all x ∈ X and
η(φ) = 1. By Theorem 5.2, every weak* continuous linear functional on
X∗∗ is given by an element of X∗. That is, there exists an f ∈ X∗ such
that

η(ψ) = f̂(ψ) = ψ(f)

for every ψ ∈ X∗∗. Hence,

f(x) = x̂(f) = η(x̂) = 0
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for every x ∈ X, implying that f = 0. But,

φ(f) = f̂(φ) = η(φ) = 1,

implying that f 6= 0. Therefore, we have arrived at a contradiction,
whence X̂ = X∗∗ proving part 1.

We show part 2 in a similar fashion. Thus, suppose that C = B̂1 is a
proper weak* closed (convex) subset of the norm closed unit ball V1 of
X∗∗, and let φ be an element of V1 that is not an element of C. Again,
since C is closed and convex, there exists by the Separation Theorem
(Theorem 3.9) a weak* continuous linear functional η on (X∗∗,W∗) and
a real number s such that η(c) ≤ s for all c ∈ C and η(φ) > s. Therefore,
again by Theorem 5.2, there exists an f ∈ X∗ such that

η(ψ) = ψ(f)

for all ψ ∈ X∗∗. Hence,

f(x) = x̂(f) = η(x̂) ≤ s

for all x ∈ B1, implying that

|f(x)| ≤ s

for all x ∈ B1, and therefore that ‖f‖ ≤ s. But, ‖φ‖ ≤ 1, and φ(f) =
η(φ) > s, implying that ‖f‖ > s. Again, we have arrived at the desired
contradiction, showing that B̂1 is dense in V1.

We have seen already that the map x→ x̂ is continuous from (X,W)
into (X∗∗,W∗). See part d of Exercise 5.10. So, if B1 is weakly compact,

then B̂1 is weak* compact in X∗∗, whence is closed in V1. But, by part
2, B̂1 is dense in V1, and so must equal V1. It then follows immediately
by scalar multiplication that X̂ = X∗∗, and X is reflexive.

Conversely, if X is reflexive, then the map x → x̂ is an isometric
isomorphism, implying that V1 = B̂1. Moreover, by Theorem 5.2, the
map x→ x̂ is a topological isomorphism of (X,W) and (X∗∗,W∗). Since
V1 is weak* compact by Theorem 5.6, it then follows that B1 is weakly
compact, and the proof is complete.

EXERCISE 5.16. Prove that every normed linear space is isomet-
rically isomorphic to a subspace of some normed linear space C(∆) of
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continuous functions on a compact Hausdorff space ∆. HINT: Use the
map x→ x̂.

We conclude this chapter by showing that Choquet’s Theorem (The-
orem 3.11) implies the Riesz Representation Theorem (Theorem 1.3)
for compact metric spaces. Note, also, that we used the Riesz theorem
in the proof of Choquet’s theorem, so that these two results are really
equivalent.

EXERCISE 5.17. (Choquet’s Theorem and the Riesz Representa-
tion Theorem) Let ∆ be a second countable compact topological space,
and let C(∆) denote the normed linear space of all continuous real-
valued functions on ∆ equipped with the supremum norm. Let K be
the set of all continuous positive linear functionals φ on C(∆) satisfying
φ(1) = 1.

(a) Show that K is compact in the weak* topology of (C(∆))∗.
(b) Show that the map x → δx is a homeomorphism of ∆ onto the

set of extreme points of K. (δx denotes the linear functional that sends
f to the number f(x).)

(c) Show that every positive linear functional on C(∆) is continuous.
(d) Deduce the Riesz Representation Theorem in this case from Cho-

quet’s Theorem; i.e., show that every positive linear functional I on
C(∆) is given by

I(f) =
∫

∆

f(x) dµ(x),

where µ is a finite Borel measure on ∆.


