
CHAPTER VII

AXIOMS FOR A MATHEMATICAL MODEL
OF EXPERIMENTAL SCIENCE

This chapter is a diversion from the main subject of this book, and it
can be skipped without affecting the material that follows. However,
we believe that the naive approach taken in this chapter toward the
axiomatizing of experimental science serves as a good motivation for the
mathematical theory developed in the following four chapters.

We describe here a set of axioms, first introduced by G.W. Mackey,
to model experimental investigation of a system in nature. We suppose
that we are studying a phenomenon in terms of various observations of it
that we might make. We postulate that there exists a nonempty set S of
what we shall call the possible states of the system, and we postulate that
there is a nonempty set O of what we shall call the possible observables
of the system. We give two examples.

(1) Suppose we are investigating a system that consists of a single
physical particle in motion on an infinite straight line. Newtonian me-
chanics (f = ma) tells us that the system is completely determined for
all future time by the current position and velocity, i.e., by two real
numbers. Hence, the states of this system might well be identified with
points in the plane. Two of the (many) possible observables of this sys-
tem can be described as position and velocity observables. We imagine
that there is a device which indicates where the particle is and another
device that indicates its velocity. More realistically, we might have many
yes/no devices that answer the observational questions: “Is the particle
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between a and b?” “Is the velocity of the particle between c and d?”
Quantum mechanical models of this single particle are different from

the Newtonian one. They begin by assuming that the (pure) states of
this one-particle system are identifiable with certain square-integrable
functions and the observables are identified with certain linear transfor-
mations. This model seems quite mysterious to most mathematicians,
and Mackey’s axioms form one attempt at justifying it.

(2) Next, let us imagine that we are investigating a system in which
three electrical circuits are in a black box and are open or closed ac-
cording to some process of which we are not certain. The states of this
system might well be described as all triples of 0’s and 1’s (0 for open
and 1 for closed). Suppose that we have only the following four devices
for observing this system. First, we can press a button b0 and determine
how many of the three circuits are closed. However, when we press this
button, it has the effect of opening all three circuits, so that we have
no hope of learning exactly which of the three were closed. (Making
the observation actually affects the system.) In addition, we have three
other buttons b1, b2, b3, bi telling whether circuit i is open or closed.
Again, when we press button bi, all three circuits are opened, so that
we have no way of determining if any of the circuits other than the ith
was closed. This is a simple example in which certain simultaneous ob-
servations appear to be impossible, e.g., determining whether circuits 1
and 2 are both closed.

The axioms we introduce are concerned with the concept of interpret-
ing what it means to make a certain observation of the system when the
system is in a given state. The result of such an observation should be a
real number, with some probability, depending on the state and on the
observable.

AXIOM 1. To each state α ∈ S and observable A ∈ O there corre-
sponds a Borel probability measure µα,A on R.

REMARK. The probability measure µα,A contains the information
about the probability that the observation A will result in a certain
value, when the system is in the state α.

EXERCISE 7.1. Write out in words, from probability theory, what
the following symbols mean.

(a) µα,A([3, 5]) = 0.9.
(b) µα,A({0}) = 1.

AXIOM 2. (a) If A,B are observables for which µα,A = µα,B for
every state α ∈ S, then A = B.
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(b) If α, β are states for which µα,A = µβ,A for every observable
A ∈ O, then α = β.

EXERCISE 7.2. Discuss the intuitive legitimacy of Axiom 2.

AXIOM 3. If α1, . . . αn are states, and t1, . . . tn are nonnegative real
numbers for which

∑n
i=1 ti = 1, then there exists a state α for which

µα,A =
n∑

i=1

tiµαi,A

for every observable A. This axiom can be interpreted as asserting that
the set S of states is closed under convex combinations. If the αi’s
are not all identical, we call this state α a mixed state and we write
α =

∑n
i=1 tiαi.

We say that a state α ∈ S is a pure state if it is not a mixture of other
states. That is, if α =

∑n
i=1 tiαi, with each ti > 0 and

∑n
i=1 ti = 1,

then αi = α for all i.

EXERCISE 7.3. Discuss the intuitive legitimacy of Axiom 3. Think
of a physical system, like a beaker of water, for which there are what we
can interpret as pure states and mixed states.

AXIOM 4. If A is an observable, and f : R → R is a Borel function,
then there exists an observable B such that

µα,B(E) = µα,A(f−1(E))

for every state α and every Borel set E ⊆ R. We denote this observable
B by f(A).

EXERCISE 7.4. Discuss the intuitive legitimacy of Axiom 4. Show
that, if f is 1-1, the system is in the state α and the observable A results
in a value t with probability p, the observable B = f(A) results in the
value f(t) with the same probability p.

EXERCISE 7.5. (a) Prove that there exists an observable A such
that µα,A(−∞, 0) = 0 for every state α. That is, A is an observable that
is nonnegative with probability 1 independent of the state of the system.
HINT: Use f(t) = t2 for example.

(b) Given a real number t, show that there exists an observable A
such that µα,A = δt for every state α. That is, A is an observable that
equals t with probability 1, independent of the state of the system.
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(c) Show that the set of observables is closed under scalar multiplica-
tion. That is, if A is an observable and c is a nonzero real number, then
there exists an observable B such that

µα,B(E) = µα,A((1/c)E).

We may then write B = cA.
(d) If A and B are observables, does there have to be an observable

C that we could think of as the sum A + B?
(e) In what way must we alter the descriptions of the systems in

Example 1 and Example 2 in order to incorporate these first four axioms
(particularly Axioms 3 and 4)?

DEFINITION. We say that two observables A and B are compat-
ible, pairwise compatible, or simultaneously observable if there exists
an observable C and Borel functions f and g such that A = f(C) and
B = g(C). A sequence {Ai} is called mutually compatible if there exists
an observable C and Borel functions {fi} such that Ai = fi(C) for all i.

EXERCISE 7.6. Is there a difference between a sequence {Ai} of
observables being pairwise compatible and being mutually compatible?
In particular, is it possible that there could exist observables A,B,C,
such that A and B are compatible, B and C are compatible, A and C
are compatible, and yet A, B, C are not mutually compatible? HINT:
Try to modify Example 2.

EXERCISE 7.7. (a) If A,B are observables, what should it mean
to say that an observable C is the sum A + B of A and B? Discuss why
we do not hypothesize that there always exists such an observable C.

(b) If A and B are compatible, can we prove that there exists an
observable C that can be regarded as A + B?

DEFINITION. An observable q is called a question or a yes/no
observable if, for each state α, the measure µα,q is supported on the
two numbers 0 and 1. We say that the result of observing q, when the
system is in the state α, is “yes” with probability µα,q({1}), and it is
“no” with probability µα,q({0}).

THEOREM 7.1. Let A be an observable.

(1) For each Borel subset E in R, the observable χE(A) is a question.
(2) If g is a real-valued Borel function on R, for which g(A) is a

question, then there exists a Borel set E such that g(A) = χE(A).
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(Note that condition 2 does not assert that g necessarily equals χE .)

PROOF. For each Borel set E, we have

µα,χE(A)({1}) = µα,A(χ−1
E ({1}))

= µα,A(E),

and
µα,χE(A)({0}) = µα,A(χ−1

E ({0}))
= µα,A(Ẽ)

= 1− µα,A(E),

which proves that µα,χE(A) is supported on the two points 0 and 1 for
every α, whence χE(A) is a question and so part 1 is proved.

Given a g for which q = g(A) is a question, set E = g−1({1}), and
observe that for any α ∈ S we have

µα,q({1}) = µα,g(A)({1})
= µα,A(E)

= µα,χE(A)({1}).

Since both q and χE(A) are questions, it follows from the preceding
paragraph that

µα,q({0}) = µα,χE(A)({0}),

showing that
µα,q = µα,χE(A)

for every state α. Then, by Axiom 2, we have that

g(A) = q = χE(A).

We now define some mathematical structure on the set Q of all ques-
tions. This set will form the fundamental ingredient of our model.

DEFINITION. Let Q denote the set of all questions. For each ques-
tion q ∈ Q, define a real-valued function mq on the set S of states by

mq(α) = µα,q({1}).

If p and q are questions, we say that p ≤ q if mp(α) ≤ mq(α) for all
α ∈ S.
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If p, q and r are questions, for which mr = mp + mq, we say that p
and q are summable and that r is the sum of p and q. We then write
r = p + q. More generally, if {qi} is a countable (finite or infinite) set of
questions, we say that the qi’s are summable if there exists a question q
such that

mq(α) =
∑

i

mqi(α)

for every α ∈ S. In such a case, we write q =
∑

i qi.
Finally, a countable set {qi} is called mutually summable if every

subset of the qi’s is summable.

REMARK. As mentioned above, the set Q will turn out to be the
fundamental ingredient of our model, in the sense that everything else
will be described in terms of Q.

THEOREM 7.2.

(1) The set Q is a partially ordered set with respect to the ordering
≤ defined above.

(2) There exists a question q1 ∈ Q, which we shall often simply call
1, for which q ≤ q1 for every q ∈ Q. That is, Q has a maximum
element q1.

(3) There exists a question q0 ∈ Q, which we shall often simply call
0, for which q0 ≤ q for every q ∈ Q. That is, Q has a minimum
element q0.

(4) For each question q, there exists a question q̃ such that

mq + mq̃ = q1 = 1.

That is, every question has a complementary question.

PROOF. That Q is a partially ordered set is clear.
If A is any observable, and f is the identically 1 function, then the

question q1 = f(A) satisfies

mq1(α) = µα,q1({1})
= µα,f(A)({1})
= µα,A(f−1({1}))
= µα,A(R)

= 1

for all α, and clearly then q ≤ q1 for every q ∈ Q.
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Taking f to be the identically 0 function, we may define the question
q0 to be f(A).

Finally, if f is the function defined by f(t) = 1− t, and if q ∈ Q, then
f(q) is the desired question q̃. Indeed,

µα,f(q)({1}) = µα,q(f−1({1}))
= µα,q({0}),

and
µα,f(q)({0}) = µα,q(f−1({0}))

= µα,q({1}),

proving that f(q) is a question and showing also that

mf(q)(α) = 1−mq(α)

for every α, as desired.

DEFINITION. Two questions p and q are called orthogonal if p ≤ q̃
or (equivalently) q ≤ p̃. That is, p and q are orthogonal if mp + mq ≤ 1.

REMARK. Clearly, if p and q are summable, then they are orthog-
onal, but the converse need not hold. Even if mp + mq ≤ 1, there may
not be a question r such that mr = mp + mq. We have no axiom that
ensures this.

Our next goal is to describe the observables in terms of the set Q.

THEOREM 7.3. Let A be an observable. For each Borel set E ⊆ R,
put

qA
E = χE(A).

Then, the mapping E → qA
E satisfies:

(1) qA
R = 1 and qA

∅ = 0.

(2) If {Ei} is a sequence of pairwise disjoint Borel sets, then {qA
Ei
} is

a sequence of mutually compatible, mutually summable, (pairwise
orthogonal) questions, and

qA
∪iEi

=
∑

i

qA
Ei

.

(3) If A and B are observables, for which qA
E = qB

E for every Borel
set E, then A = B.
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PROOF. Since χR is the identically 1 function, it follows that qA
R =

1. Similarly, qA
∅ = 0.

If {Fi} is any (finite or infinite) sequence of pairwise disjoint Borel
sets, set F = ∪Fi. Then, clearly the questions {qA

Fi
} are mutually com-

patible, since they are all functions of the observable A. Also, for any
state α we have

mqA
F
(α) = µα,qA

F
({1})

= µα,χF (A)({1})
= µα,A(F )

= µα,A(∪Fi)

=
∑

i

µα,A(Fi)

=
∑

i

µα,χFi
(A)({1})

=
∑

i

mqA
Fi

(α).

Now let {Ei} be a sequence of pairwise disjoint Borel sets. The preced-
ing calculation, as applied to every subset of the Ei’s, shows that the
questions {qA

Ei
} are mutually summable and that

qA
E =

∑
qA
Ei

.

And, in particular, since the qA
Ei

’s are pairwise summable, they are pair-
wise orthogonal.

Finally, if A and B are distinct observables, then, by Axiom 2, there
exists a state α such that µα,A 6= µα,B . Hence, there is a Borel set E
such that

µα,A(E) 6= µα,B(E),

or
µα,χE(A)({1}) 6= µα,χE(B)({1}),

or qA
E 6= qB

E , as desired.

DEFINITION. A mapping E → qE , from the σ-algebra B of Borel
sets into Q, which satisfies the two properties below, is called a question-
valued measure.

(1) qR = 1 and q∅ = 0.
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(2) If {Ei} is a sequence of pairwise disjoint Borel sets, then {qEi}
is a sequence of mutually compatible, mutually summable, (pairwise
orthogonal) questions, and

q∪Ei
=

∑
i

qEi
.

REMARK. Theorem 7.3 asserts that each observable A determines
a question-valued measure qA and that the assignment A → qA is 1-1.

EXERCISE 7.8. Let E → qE be a question-valued measure.
(a) Prove that if E ⊆ F, then qE ≤ qF ; i.e., E → qE is order-

preserving.
(b) Show that qẼ = q̃E ; i.e., E → qE is complement-preserving.

AXIOM 5. If E → qE is a question-valued measure, then there exists
an observable A such that qE = qA

E for all Borel sets E.

EXERCISE 7.9. Discuss the intuitive legitimacy of Axiom 5.

EXERCISE 7.10. Let {q1, q2, . . . } be a mutually summable set of
questions for which

∑
i qi = 1. Prove that the qi’s are mutually com-

patible. HINT: Define a question-valued measure E → qE by setting
q{i} = qi for each i = 1, 2, . . . , and define

qE =
∑
i∈E

q{i}.

then use Axiom 5.

THEOREM 7.4. Let p and q be questions. Then p and q are com-
patible if and only if there exist mutually summable questions r1, r2, r3

and r4 satisfying:
(1) p = r1 + r2.
(2) q = r2 + r3.
(3) r1 + r2 + r3 + r4 = 1.

PROOF. If p and q are compatible, let A be an observable and let f
and g be Borel functions such that p = f(A) and q = g(A). By Theorem
7.1, we may assume that f = χE and g = χF , where E and F are Borel
sets in R. Define four pairwise disjoint Borel sets as follows:

E1 = E − F, E2 = E ∩ F, E3 = F − E, E4 = R− (E ∪ F ).
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Now, define ri = χEi(A). The desired properties of the ri’s follow di-
rectly. For example,

mp(α) = µα,χE(A)({1})
= µα,A(E)

= µα,A(E1 ∪ E2)

= µα,A(E1) + µα,A(E2)

= µα,χE1 (A)({1}) + µα,χE2 (A)({1})
= mr1(α) + mr2(α),

showing that p = r1 + r2 as desired. We leave the other verifications to
the exercise that follows.

Conversely, given r1, . . . , r4 satisfying the conditions in the statement
of the theorem, define a mapping E → qE of the σ-algebra B of Borel
sets into Q as follows:

qE =
∑
i∈E

ri,

with the convention that qE = 0 if E does not contain any of the numbers
1,2,3,4. Then E → qE is a question-valued measure. (See the preceding
exercise.) By Axiom 5, there exists an observable A such that qE = qA

E

for all E, and clearly p = χ[1,2](A) and q = χ[2,3](A) are both functions
of A, as desired.

EXERCISE 7.11. Verify that q = r1+r3 and that r1+r2+r3+r4 = 1
in the first part of the preceding proof.

EXERCISE 7.12. (a) Prove that the map q → mq is 1-1.
(b) Show, by identifying q with mq, that the set Q can be given a

natural Hausdorff topology.
(c) Let q be a question. Show that the set of all questions p, for which

p ≤ q, and the set of all questions p such that p is orthogonal to q are
closed subsets of Q in the topology from part b.

(d) Prove that the map q → q̃ is continuous with respect to the
topology on Q from part b.

REMARK. We equip the set Q of all questions with the topology
from the preceding exercise. That is, we identify each question q with
the corresponding function mq and use the topology of pointwise con-
vergence of these functions. In this way, the set Q is a partially-ordered
Hausdorff topological space having a maximum element and a minimum



MATHEMATICAL MODEL OF EXPERIMENTAL SCIENCE 137

element. In addition to these topological and order structures on Q,
there are notions of complement, of orthogonality, of summability, and
of compatibility. We shall be interested in finding a mathematical object
having these attributes.

EXERCISE 7.13. (a) Show that the closed interval [0, 1] has all the
properties of Q. That is, show that [0, 1] is a partially-ordered topological
space having a maximum and a minimum, and show that there is a
notion of summability (not the usual one) on [0, 1] such that each element
has a complement. Finally, prove that any two elements of [0, 1] that
are summable are compatible. In a way, [0, 1] is the simplest model for
Q. HINT: Use the characterization of compatibility in Theorem 7.4.

(b) Is the unit circle a possible model for Q?

Having described the set O of observables as question-valued mea-
sures, we turn next to the set S of states. We want to describe the
states also in terms of the set Q.

DEFINITION. By an automorphism of Q we mean a 1-1 map φ of
Q onto itself that satisfies:

(1) If p ≤ q, then φ(p) ≤ φ(q); i.e., φ is order-preserving.
(2) φ(q̃) = φ̃(q) for all q ∈ Q; i.e., φ is complement-preserving.
(3) If {qi} is a summable set of questions, then {φ(qi)} is a summable

set of questions, and

φ(
∑

i

qi) =
∑

i

φ(qi).

If φ and φ−1 are Borel maps of the topological space Q, then φ is
called a Borel automorphism.

By a character of the set Q of questions, we mean a continuous func-
tion µ : Q → [0, 1] that satisfies:

(1) If p ≤ q, then µ(p) ≤ µ(q); i.e., µ is order-preserving.
(2) µ(q̃) = 1− µ(q); i.e., µ is complement-preserving.
(3) If {qi} is a summable sequence of questions, then µ(

∑
qi) =∑

µ(qi); i.e., µ is additive when possible.

DEFINITION. For each state α, define a function µα on Q by

µα(q) = mq(α) = µα,q({1}).

EXERCISE 7.14. (a) Show that each function µα is a continuous
order-preserving map of Q into [0,1].
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(b) Show that µα(q̃) = 1− µα(q) for all q ∈ Q and all α ∈ S.
(c) If {qi} is a summable sequence of questions with q =

∑
qi, show

that
µα(q) =

∑
µα(qi).

(d) Conclude that each function µα is a continuous character of Q.
(e) Show that the composition of a character of Q (e.g., µα) and a

question-valued measure E → qE defines a probability measure on the
Borel subsets of R.

(f) Show that the map α → µα is 1-1 on S. Show further that if α is
a mixed state, say α =

∑n
i=1 tiαi, then

µα =
n∑

i=1

tiµαi
;

i.e., α → µα is an affine map on S.

REMARK. We give to S the Hausdorff topology obtained by iden-
tifying α with the continuous function µα on Q and considering this
space of functions as topologized by the topology of pointwise conver-
gence. Thus, we identify the set S of states of our system with certain
continuous functions (characters) from the set Q of questions into [0, 1].
Of course, not every continuous function f : Q → [0, 1] need correspond
to a state. Indeed, the functions corresponding to states must be char-
acters.

We turn now to the evolution of the system in time. The axiom we
take assumes that the system has always existed and will always exist.
That is, the system can be thought of as evolving backward in time as
well as forward. See part d of Exercise 7.15.

AXIOM 6. (Time Evolution of the System) For each nonnegative
real number t, there exists a 1-1 transformation φt of S onto itself that
describes the evolution of the system in time. In addition, for each non-
negative real number t, there exists a corresponding 1-1 transformation
φ′t, of the set Q onto itself, so that

(1) φt+s = φt ◦ φs for all nonnegative s, t.
(2) For all α ∈ S, q ∈ Q, and t ≥ 0, we have

µφt(α),q = µα,φ′
t(q)

.

(3) The map (t, α) → φt(α) is a Borel map of [0,∞)× S into S.
(4) The map (t, q) → φ′t(q) is a Borel map of [0,∞)×Q into Q.
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EXERCISE 7.15. (a) Discuss the intuitive legitimacy of Axiom 6.
In particular, what is the interpretation of the transformation φ′t?

(b) Show that φ′t+s = φ′t ◦ φ′s for all nonnegative t and s.
(c) Show that φ′t is uniquely determined by φt and that φt is uniquely

determined by φ′t.
(d) Suppose α is a state. Given t > 0, show that there exists a unique

state β such that if the system is in the state α now, then it was in the
state β t units of time ago. (In other words, the evolution of the system
can be reversed in time.)

REMARK. Of course, the primary goal of experimental investiga-
tion is to discover how to predict what will happen to a system as time
goes by. In our development, then, we would want to discover the evo-
lution transformations φt of S into itself.

Next, we turn to the notion of a symmetry of the system.

DEFINITION. If g denotes a (possibly hypothetical) 1-1 transfor-
mation of space, of the observer, of the system, etc., and if α ∈ S and
A ∈ O are given, we write µg

α,A for the probability measure obtained
by assuming that this transformation g has been performed, supposing
that the system is in the state α, and by making the observation A. The
transformation g is called a symmetry of the system if each µg

α,A = µα,A,
i.e., if the “measurements” of the system are unchanged by performing
the transformation g.

REMARK. We assume that the set G of all symmetries forms a
group of transformations.

AXIOM 7. To each symmetry g of the system there corresponds a
1-1 transformation πg of S onto itself and a 1-1 transformation π′g of Q
onto itself such that

(1) πg1g2 = πg1 ◦ πg2 for all g1, g2 ∈ G.
(2) For all α ∈ S and all q ∈ Q, we have

µπg(α),q = µα,π′
g(q).

(3) If a subgroup H of the group of all symmetries has some “natural”
topological structure, then the maps (h, α) → πh(α) and (h, q) → π′h(q)
are Borel maps from H × S into S and H ×Q into Q respectively.

(4) πg commutes with each evolution transformation φt; i.e., πg ◦φt =
φt ◦ πg for all t ≥ 0 and all g ∈ G.
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EXERCISE 7.16. (a) Discuss the intuitive legitimacy of Axiom 7.
In particular, what is the interpretation of the assumption that each πg

commutes with each evolution transformation φt?
(b) Show that each π′g is uniquely determined by πg, and that π′g1g2

=
π′g1

◦ π′g2
for all g1, g2 ∈ G.

(c) Prove that each transformation π′g commutes with each evolution
transformation φ′t.

THEOREM 7.5. Each of the time evolution transformations φ′t and
each of the symmetry transformations π′g are Borel automorphisms of the
set Q. That is,

(1) φ′t, π′g, and their inverses are Borel maps of Q onto itself.
(2) if p ≤ q, then φ′t(p) ≤ φ′t(q) and π′g(p) ≤ π′g(q).

(3) φ′t(q̃) = φ̃′t(q) and π′g(q̃) = π̃′g(q).
(4) If {qi} is a summable sequence of questions, then {φ′t(qi)} and

{π′g(qi)} are summable sequences of questions, and

φ′t(
∑

qi) =
∑

φ′t(qi)

and
π′g(

∑
qi) =

∑
π′g(qi).

PROOF. Suppose p ≤ q are questions. We have then for any α that

mφ′
t(q)

(α) = µα,φ′
t(q)

({1})
= µφt(α),q({1})
= mq(φt(α))

≥ mp(φt(α))

= mφ′
t(p)(α),

showing that φ′t(q) ≥ φ′t(p). An analogous computation shows that
π′g(q) ≥ π′g(p).

We leave the rest of the proof to the exercise that follows.

EXERCISE 7.17. Complete the proof to the preceding theorem.

We summarize the ingredients in our model as follows:
(1) There exists a Hausdorff space Q that is a partially ordered set,

having a maximum element 1 and a minimum element 0. There are
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notions of compatibility, orthogonality, and summability for certain of
the elements of Q. Compatibility is characterized in Theorem 7.4.

(2) Each q ∈ Q has a complementary element q̃ satisfying q + q̃ = 1.
(3) The set S of states is represented as a set of continuous homomor-

phisms (characters) µ of Q into [0,1]. Each of these homomorphisms is
continuous, order-preserving, additive when possible, and complement-
preserving. This set S of states is a topological space and is closed under
convex combinations.

(4) The set O of observables is identified with the set of Q-valued
measures.

(5) The time evolution of the system is described by a one-parameter
semigroup φ′t of Borel transformations (automorphisms) of Q. These
transformations are additive when possible, complement-preserving, and
order-preserving.

(6) To each symmetry g of the system there corresponds a 1-1 trans-
formation (automorphism) π′g of Q onto itself. The transformation π′g is
Borel, preserves order, addition when possible, and complements. Each
symmetry transformation π′g commutes with each evolution transforma-
tion φ′t.

The goal is to find concrete mathematical examples of the objects
Q,S, φ′t and π′g. Initially, we will select a model for Q, and this selection
will depend very much on which particular system we are studying. The
set S is then a subset of the characters of Q, which, in any particular case,
we can hope to describe concretely. Of course, the ultimate aim is to
determine the evolution transformations φt of S into itself. Sometimes it
is possible to describe the symmetry transformations π′g by using group
theory. If so, we may be able to describe the evolution transformations
φ′t by examining what transformations commute with the concrete π′g’s
we have. However, our first task is to find an appropriate model for Q,
and this we do in the next chapter.

We mention next some possibly less intuitively acceptable axioms.
From a mathematical point of view, however, they are technically sim-
plifying.

AXIOM 8. If {αi} is a sequence of states, and if {ti} is a sequence
of positive real numbers for which

∑
ti = 1, then there exists a state α,

which we denote by
∑

tiαi, such that

µα,A =
∑

tiµαi,A

for every observable A.
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AXIOM 9. If {qi} is a net of questions, such that the net {mqi} of
functions converges pointwise to a function m on S, then there exists a
question q such that mq = m.

AXIOM 10. If {αi} is a net of states, for which the net {µαi
} of

characters on Q converges pointwise to a character µ, then there exists
a state α such that µα = µ.

AXIOM 11. If µ is a character of Q, then there exists a state α for
which µα = µ.

EXERCISE 7.18. Discuss the intuitive legitimacy of Axioms 8, 9,
10, and 11.

AXIOM 12. If p and q are (compatible) questions, such that p ≤ q
and p ≤ q̃, then p = 0.

EXERCISE 7.19. (a) Discuss the intuitive legitimacy of Axiom 12.
(b) Suppose that for each nonzero question q there exists a state α

such that mq(α) > 1/2. Show that Axiom 12 must then be valid.


