Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants

Dr. Angela R. Bielefeldt University of Colorado Dr. Tissa Illangasekare, CSM Camille McEachern, Rosanna LaPlante T. Butler, M. Grant, D. Park

Motivation

- Types of contaminants found at Air Force Sites
 - Fuel spills (LNAPLs)
 - Aircraft De-Icing Fluids (ADF)
- Could bioclogging be significant under field conditions?
- Should bioclogging effects be incorporated into natural attenuation/remediation models?
 - Bioscreen, Bioplume, etc.

Comparison of Contaminants Delcing Chemicals Fuel Spills - ADF, PG, - PAHs, alkanes, ... surfactants, AdPack - Readily biodegraded - Readily biodegraded under range of redox under range of redox – LNAPL Continuous - Intermittent input substrate source - High concentrations - Low/slow carbon • <300,000 mg/L availability • <100s mg/L

Field Characteristics of Potential Importance

- · Porous media type/size distribution
- Groundwater flowrates
- Groundwater chemistry
 - Electron acceptors $[O_2, NO_3, Fe(III), SO_4]$
 - Nutrient concentrations [N, P]
 - pH, temperature, etc.

These affect biokinetics, cell yield, EPS production...

Overview of Results

- 1D fuel spill
- 1D de-icing fluid
- Mini 2-D diesel fuel spill
- 2D tanks with fuel or PG assoc. biogrowth

General Methods

- · Well-characterized homogeneous sands
- Uncharacterized mixed bacterial cultures
- Hydraulic conductivity (K) by head loss and Q
- Dispersivity (α) by bromide tracer test, best-fit to breakthrough curve
- "Bulk" measurement of total biofilm (dry mass carbon) in effluent water & final sand
- Contaminant/substrate depletion
- Biokinetics [Y, b, deg. rate coefficients] in batch tests or calculated from column data

Mini 2D: Diesel fuel						
	d ₅₀ cm	$rac{K_{bio}}{K_{clean}}$	$\underline{\alpha_{x,bio}}{\alpha_{x,clean}}$	$\frac{\alpha_{z,bio}}{\alpha_{z,clean}}$	$\frac{\text{mg VS}}{\text{g sand}}$	∆TOC mg/L
	0.32	0.87	8.7	>1	0.35	0.59
	0.19	0.90	2.6	>1	0.29	0.56

Implied effects on field scale

- Due to flow routing, overall effects on K
 may be minimal
 - Near well clogging may be significant
 - Biogrowth in well pack likely
- Due to microbial heterogeneity, may increase plume dispersion

Conclusions

- Biogrowth may have significant effects under many different conditions

 Nutrient limitation minimizes bioclogging
- Further testing on 2D scale may be most helpful to predict field effects
- Vadose zone important for attenuation of ADF & LNAPLs, but bioclogging effects less clear