BIODEGRADATION OF BTEX-CONTAMINATED GAS IN A SPARGED SHALLOW LIQUID REACTOR

Angela R. Bielefeldt University of Colorado, Boulder, CO

H. David Stensel University of Washington, Seattle, WA

Sources of contaminated gases

- industrial emissions
- SVE off-gas from site-remediation

- activated carbon
- incineration
- Biological gas treatment reactors

- BTEX treatment demonstrated
- Excess biogrowth affects reliability
 - -potential media plugging
 - -potential gas short circuiting

DESIGN AND OPERATION OF A SPARGED REACTOR

- What liquid depth is required?
- What operating SRT ?

OBJECTIVES

- Investigate the ability to achieve high gas treatment efficiency for BTEX compounds
- Investigate the effect of operating SRT on gas treatment efficiency

DEVELOP A MASS TRANSFER & BIODEGRADATION MODEL

BTEX Mass Transfer Experiments

- Henry's coefficient
- relate BTEX & oxygen mass
 - transfer coefficients (Kla)

- BTEX Biodegradation Kinetics
 - Michaelis Menten model for individual compounds (K & Ks)
 - effect of mixtures

Key Operating Conditions

- Liquid Depth = 40 cm
- Liquid Volume = 2 L
- SRT = 1.7, 2.7, 9.2 days
- Oxygen Kla = 0.1 to 0.2 min⁻¹
- Temperature = 20 to 24 °C
- Qg / A = 4 to 8 cm/min
- Inlet Gas BTEX 2.3 4.3 mg/L

Average LongTerm Gas Treatment Results							
			BTEX, mg/L				
SRT, days	Load , mg/L-hr	VSS mg/ L	In le t	Effluent			
1.7	15.3	444	4.32	0.01			
2.7	16.8	756	2.92	<0.01			
9.2	14.9	1327	2.29	0.04			

BTEX Not Dectected in Effluent Gas During Many Analysis Periods

SRT	Percent Analysis Periods Not Detected				
days	Benz	Tol	EthylB	o-Xyl	
1.7	86	86	64	86	
2.7	100	96	96	100	
9.2	72	65	59	70	

Gas Treatment Efficiency							
SRT	Average Percent Removal						
days	Benz	Tol	Ethylb	o-Xyl			
1.7	99	99	99	99			
2.7	99	99	98	98			
9.2	98	97	97	98			

* non detected effluent gas concentrations were set at the method detection limit (0.01 mg/L)

Steady-State Reactor Performance vs. Model Predictions

- Using the two equations, solved simultaneously for Cg-out and Cl
- Predicted liquid concentrations ranged from 0.01 to 0.03 mg/L for each BTEX compound, which agreed with measured values (< 0.05 mg/L detection limit)
- Predicted removal efficiencies agreed well with measured values

When Gas Treatment Efficiency is Not Biodegradation Limited, Design Reactor Depth Using:

Depth = $\frac{-\ln (Cg-out / Cg-in)^* Qg/A * H}{Kla}$

CONCLUSIONS

- High treatment efficiency (>98%) of
 - a BTEX mixture was achieved
 - 40 cm depth
 - loading 15-17 mg/L-hr
 - SRTs 1.7, 2.7, 9.2 days

CONCLUSIONS

- A mechanistic model including mass transfer & biodegradation accurately predicted reactor performance
- The model can be used to aid fullscale design

CONCLUSIONS

- At all SRTs tested, liquid concentrations of BTEX were minimal, such that gas treatment was mass transfer limited
- For mass transfer limited designs, reactor depth is a function of H, Kla, Qg/A