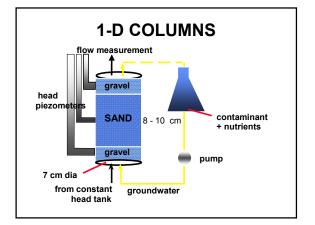
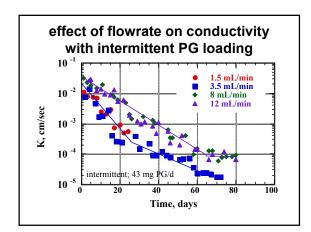
Biodegradation of De-Icing Compounds in Columns Simulating Natural Conditions

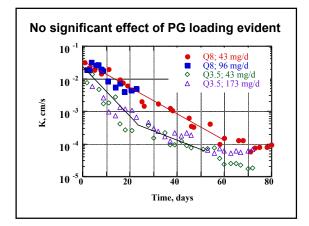
Angela Bielefeldt, Tissa Illangasekare, & Megan Grant Univ. of Colorado & Colorado School of Mines

De-Icers

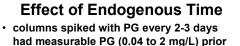

- 88% glycol, 2.5% surfactants & corrosion inhibitors, water
- glycol readily degradable under a variety of electron acceptor conditions, other additives may be toxic
- fate of the compounds in near-runway
 environment of interest

Effects of Biofilm Growth in Soil

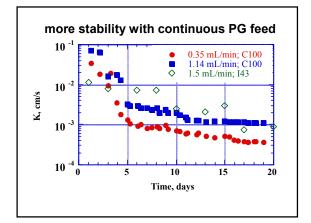

- Biomass plugs the pore spaces, changing the hydraulic characteristics
- Plugging may in turn limit availability of electron acceptors and nutrients to the bacteria
- With de-icers, effects of intermittent exposure to the chemicals is of interest

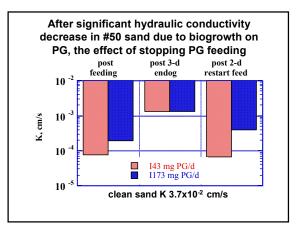

Experiments

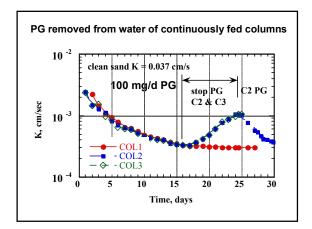
- Column tests
 - effect of groundwater flowrate
 - effect of chemical concentration
 - intermittent versus continuous loading
- 2-dimensional tank experiments – effect of biomass growth on tracer flow

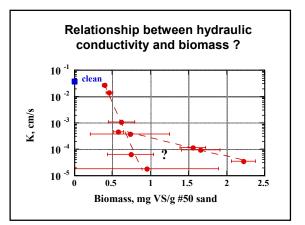


- Columns seeded with bacteria enriched from soil from Denver International Airport
- Bacteria grown long-term on PG under aerated conditions, mixed with sand prior to packing the columns
- Initially 0.13 to 0.2 mg VS/g sand

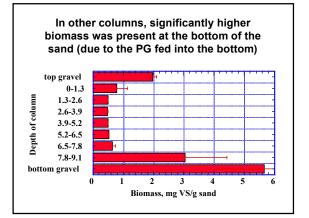


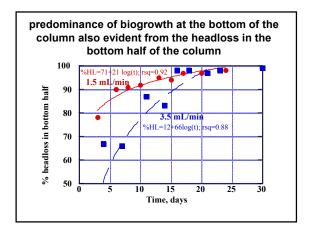


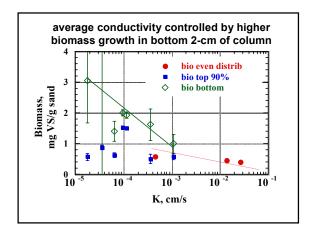

Effluent PG			
Flow rate mL/min 0.35	Max Inlet PG, mg/L 160	Avg Daily Load, mg/d 80	Effluent PG, mg/L 0 - 4.4
1.1	100	110	0 - 12.4
1.5	400	43	0.50 ± 0.27
3.5	400	43	1.3 ± 0.9
3.5	1600	172	1.7 ± 0.8
8	400	43	0.44 ± 0.37
12	400	43	$5.44 \rightarrow 0.04$

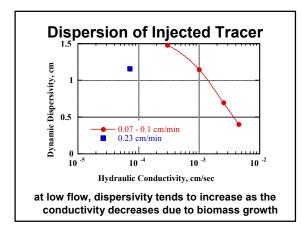


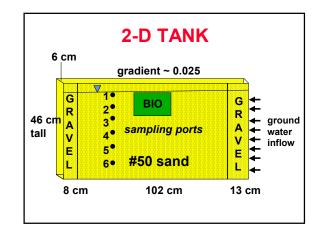
- to respike; not endogenous
 no significant immediate increase in hydraulic conductivity when biomass without PG
- after 3 to 5 days endogenous without PG, significant increase in hydraulic conductivity
- reapplication of PG causes fast recovery of biogrowth, evident by fast decrease in hydraulic conductivity to previous levels

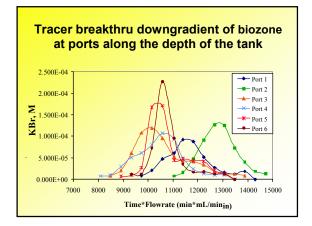


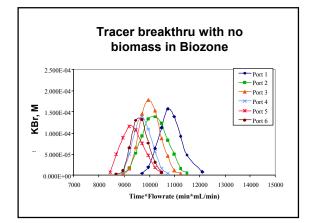


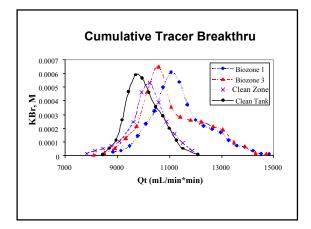


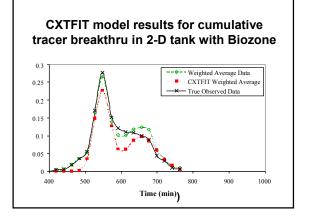












CONCLUSIONS

- Ability to naturally attenuate PG in porous media via attached biofilms
- Significant reduction in hydraulic conductivity occurs and changes the groundwater flow characteristics in both 1-D and 2-D systems
- Intermittent use of de-icers may minimize plugging effects
- Work on the effects of the de-icer mixture vs. PG alone, higher loading, and electron acceptor availability are underway