Indigenous Microbial Transformation of Chromium VI in Soil Under Varying Redox Conditions

J. Tseng & A. Bielefeldt University of Colorado at Boulder

OUTLINE

- Background
- Literature Review
- Objectives
- Materials & Methods
- Results
- Conclusions
- Implications

Background

- Cr in natural water: < 200 μg/L
- Cr in natural soils (solids): <200 mg/kg
- Cr from anthropogenic sources:

 chrome plating, tanneries, wet scrubber wastewater from metal smelting, etc.
 CrVI ranked 16 by ATSDR for SF sites
- Drinking water standards:
 - total Cr US 100 μg/L, E.U. 50 μg/L
 - CrVI Switzerland 20 µg/L

Chemistry of Chromium

- CrIII
 - Exists in reducing environments
- Ppt as oxides & hydroxides, pH>5.5
- Strong adsorption onto solids
- Soluble when
- pH<3.6 – Less toxic
- CrVI

 Exists in oxidizing
 - environments
 - Soluble as chromate from pH, 2-14
 Weak adsorption in
 - vveak adsorption in acidic conditions
 - Mobile in soil
 - Toxic; carcinogen, mutagen

Biotransformation of CrVI to CrIII

- Direct biological reduction of Cr
 - Reductase under aerobic or anaer. conditions
 - Anaerobic, chromate is used as electron acceptor
- chemical reduction

Bio-induced

- Sulfate reducing
 - SO_4^{-2} to H_2S
 - Sulfide ppts
 - H2S oxidized
- Iron reducing
 Fe⁺³ to Fe⁺²

Reported Bench Studies for CrVI treatment

- Batch tests with enrichment cultures in liquid
 - Enzymatic Activity
 - Yeast, E. coli, Bacillus, Pseudomonas
 - 150 to 2 mg/L to 5 to <0.05 mg/L, 18-72 hrs
 Sulfate Reducing Activity
 - 100-1000 mg/L to 0.8-100 mg/L, 24-96 hrs
 - Biosorption, Yeast, 2mg/L to 1mg/L, 24hrs
- Indigenous Microbes in soil
 - Aerobic, 400 to 1840mg/L 33%-100%red., 15-21 days
 - Anaerobic, carbon added; 200 mg/L 60% red. 128days

Experimental Objectives

- Find optimal conditions for bioremediation of CrVI in site soil at 10°C
 - -Use microbes indigenous to site soil
 - -Effect of carbon addition
 - -Effect of redox conditions
 - Toxicity effects of high levels of chromium

Experimental Methods

Top Soil Samples

Low Cr Soil: ~1000 mg/kgHigh Cr Soil: >10,000 mg/kg

- Conditions in Batch Tests
 - 40-mL vials, 10 g soil, 20 mL groundwater

Duplicate vials
 10°C

Controls – autoclaved soil

Biotransformation Tests

- Low & High Contaminated Soil
- With & Without Carbon (500 mg/L)
- Non -Spiked & Spiked w/ 30 mg/L CrVI
- Six Redox Conditions
- CONTROLS for all conditions

Condition	Headspace	E-acceptors	Nutrients
Aerobic	Air		
Aerobic + N	Air		NH4 ⁺
Nitrate Reducing	N ₂	NO ₃ -	
Sulfate Reducing	N ₂	SO4-2	
Iron Reducing	N ₂	Fe ⁺³	
Anaerobic	N ₂		

Analytic Methods

- CrVI in aqueous samples – diphenylcarbazide (Standard Methods)
- Headspace Gas Composition
 GC/TCD for oxygen, nitrogen
- Ammonia

 Nessler method
- Nitrate
- Spectrophotometric abs (Standard Mths)
- Aq. Fe+2, sulfide not detected

Biotransformation of CrVI in Spiked Low Cr Soil

- Without Carbon
 - Aq. CrVI steady at 70-100% of controls
 - No signif. diff. betw. redox conditions
- With Carbon
 - Aerobic + NH4+
 - Complete CrVI removal in 9 weeks
 - Other redox
 - 15-40% removal in 1-9 wks

Conclusions

- Indigenous Microbes can be promoted to Transform CrVI in Soil
- Supplemental Carbon promotes CrVI reduction
- Supplemental Nitrogen helps aerobic microbes
- CrVI can be transformed under all conditions tested
- Aerobic + NH4 was the least impacted by CrVI toxicity at high concentrations

Acknowledgment

Power Engineering, Denver, CO