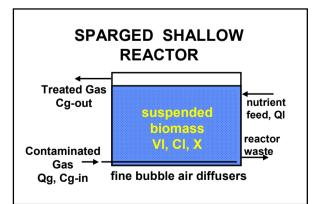
VOC TREATMENT AND ODOR CONTROL USING A SPARGED SHALLOW BIOREACTOR


Angela R. Bielefeldt University of Colorado, Boulder, CO

H. David Stensel and Mike Romain University of Washington, Seattle, WA

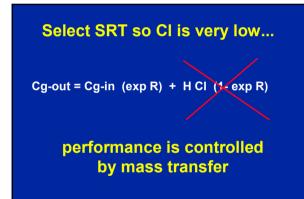
Contaminated gases

- odors from municipal wastewater treatment plants (WWTP)
- VOCs in industrial emissions
- SVE off-gas from site-remediation

- Odor and BTEX treatment
 demonstrated
- Excess biogrowth affects reliability
 - -potential media plugging
 - -potential gas short circuiting

- Evaluate for VOC (BTEX) & odor removal
- Investigate the effect of operating SRT & reactor depth

COMPARE TO A MASS TRANSFER & BIODEGRADATION MODEL

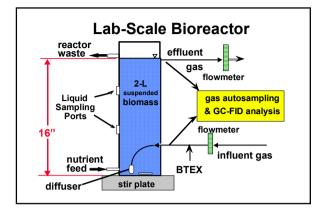

MODEL

Steady State Gas Treatment

Cg-out = Cg-in (exp R) + H CI (1-exp R)

where: R = <u>- Kla D</u> H (Qg/A) The VOC concentration in the reactor liquid is a function of the biodegradation kinetics: $CI = \frac{Ks (1 + b SRT)}{SRT (YK - b) - 1}$

SRT =
$$\frac{VI}{QI}$$


Depth is related to percent removal for mass transfer limited conditions:

Depth = - In (1 - %remov / 100) H Qg/A Kla

COMPOUNDS STUDIED				
VOC (BTEX)	S truc tu re	Henry's @ 25°C, L/L		
Benzene	\bigcirc	0.23		
Toluene	(Осн ₃	0.27		
Ethylbenz	О _{СН2} СН3	0.33		
o-Xylene	O ^{CH3} CH3	0.21		

BTEX Studies

- Reactor Performance
- Mass Transfer Experiments
 - Henry's coefficient
 - relate BTEX & O2 mass transfer (Kla)
- Biodegradation Kinetics
 - Michaelis Menten for individual compounds (K & Ks) & mixture effects

Key Operating Conditions

- Liquid Depth = 16 inches
- Liquid Volume = 2 L
- SRT = 1.7, 2.7, 9.2 days
- Oxygen Kla = 6 to 12 hr⁻¹
- Temperature = 20 to 24 °C
- Qg / A = 0.13 to 0.26 ft³/ft²-min
- Inlet Gas BTEX 2.3 4.3 mg/L

Average LongTerm Gas Treatment Results						
			BTEX	% non-		
SRT,	Lo ad,	VSS	In le t	Effl	dect in	
days	mg/L-hr	mg/L			effl gas	
1.7	15.3	444	4.32	0.01	80	
2.7	16.8	756	2.92	<0.01	98	
0.2	1/0	1327	2 20	0.04	66	

Model also predicted low steady-state effluent BTEX concentrations (0.01 - 0.03 mg/L)

Odor Treatment at a Municipal WWTP

- oxygen transfer in clean water (Kla)
- long term odor compound removal

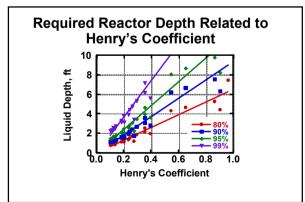
SRT 123 days, Temperature 11 to 22°C

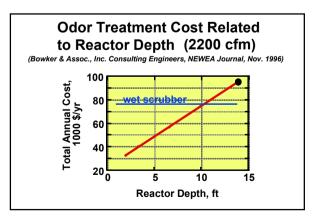
COMPOUNDS STUDIED				
Odor Compound	S truc ture	Henry's @ 25°C, L/L		
Ammonia	NH ₃	0.0025		
Hydrogen Sulfide	H ₂ S	0.39		
Indole		0.006		
S ka to le	CH ₃	0.055		
Methyl Mercaptan	CH₃SH	0.13		

Average Treatment Results for Odor Compounds over 2 months

	H_2S	Amines	$\rm NH_3$	R-SH
Influent Gas, ppm-v	2.7	0.6	0.2	0.3
Effluent Gas, ppm-v	<0.1	<0.1	<0.1	<0.1

* Detection limits 0.1 ppm-v for odor compounds


Effluent odor compound concs below detection at lower liquid depths


Liquid	Influent Gas Conc, ppm-v				Effluent
Depth	H_2S	Amines	NH ₃	R-SH	Concs, ppm-v
4'2"	4.0	0.1	0.1	0.4	<0.1
3'8"	2.0	0.3	0.3	0.3	<0.1
3'2"	1.8	0.2	0.3	0.3	<0.1
2'7"	5.0	0.2	0.2	0.4	<0.1
2'0"	4.0	0.1	0.1	0.5	<0.1

Modeled Odor Removal

- Ammonia:
 - H = 0.0025 L/L
 - correct Kla for gas film resistance
 - lit. values for nitrification kinetics

>99% removal at 3 to 12 inch liquid depths

CONCLUSIONS

- High treatment efficiency (>98%) of a BTEX mixture was achieved
 - 16 inch depth
 - loading 15-17 mg/L-hr
 - SRTs 1.7, 2.7, 9.2 days

- Odor compounds were removed to below detection limits (0.1 ppm-v)
 - 2 mo. at 4' 2" depth
 - short term at 2' to 4' 2" depth
 - ave loading approx. 0.22 mg/L-hr

- A mechanistic model including mass transfer & biodegradation accurately predicted reactor performance
- The model can be used to aid fullscale design
- For mass transfer limited operation, reactor depth is a function of H, Kla, Qg/A
- Treatment costs in sparged, suspended growth reactors are proportional to liquid depth

ACKNOWLEDGMENTS

- Funding
 - King County Metro Applied Wastewater Technology Program
 - Baltimore Gas & Electric
 - Mercury Seven Foundation
- Laboratory Assistance
 - Karl Huntzicker, Amy Groome