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Abstract

Over the last ten years, the solar photovoltaic (PV) market has

grown rapidly due in part to government incentive programs. I esti-

mate a dynamic consumer demand model to evaluate the effects of

actual and counterfactual policies on residential solar installations.

My results indicate that with a $72 social cost of carbon, the sub-

sidy in California would be welfare neutral. This cost increases to

$124 if I account for the tax credits. When comparing the two most

frequently-used incentive schemes, I find that the upfront subsidy

encourages more adoptions than the production-based subsidy, but

the latter is more efficient. Overall, I find that the welfare costs

of encouraging prolific solar adoptions in a suboptimal location are

high.
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1 Introduction

”I’d put my money on the sun and solar energy. What a source of

power! I hope we don’t have to wait until oil and coal run out before

we tackle that.” -Thomas Edison, 1931

”Photovoltaics are threatening to become the costliest mistake in the

history of German energy policy.” -Der Spiegel, July 4, 2012

The solar power market has grown rapidly in the past decade, and solar

photovoltaic (PV) systems (henceforth solar power system) have been the

fastest growing renewable energy technology both in the U.S. and globally.

On the supply side, because of lower input costs, learning-by-doing, and

scale economies there is a sharp reduction in the costs of solar power.

The costs of PV modules, the main components of solar systems, have

halved during 2007-2012. However, even with this substantial decline in

costs, most solar power systems are still not economically competitive;

because the comparative electricity prices of coal and natural gas remain

lower. The solar power market has overcome this cost difference through

government incentive programs. In 2010 alone, the U.S. federal government

spent $14.67 billion on subsidizing renewable energy while Germany, the

world’s leader in solar adoptions, invested over $13 billion on renewable

subsidies in 2012.12

While various government entities in the U.S. and worldwide have spent

prodigious amounts subsidizing solar energy technology, the cost-effectiveness

and the net welfare costs associated with the subsidy programs remain un-

clear.3 Many incentive programs, as in California, provide upfront capacity-

based subsidies based on system size; other programs, as in Germany, pro-

vide production-based subsidies that depend on the amount of electricity

produced. The success in stimulating PV systems adoptions in Germany

1The U.S. federal spending figure includes direct expenditure to producers or con-
sumers, tax expenditures, R&D loans and loan guarantees. In particular, one billion
dollars are spent on solar subsidies while 6 billion dollars go towards subsidizing biofu-
els. (EIA, 2011)

2Germany has on average half of the solar resources, one-quarter of the population
and one-fifth of the GDP compared to the U.S. However its solar deployment (in cumu-
lative installed PV capacity) is six times higher than that in the U.S.

3Cost-effectiveness is defined as the greatest number of solar power system purchased
with the same amount of spendings.
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had led to many inconclusive discussions on whether production-based sub-

sidies are the best instruments for accelerating the diffusion of renewable

energy technologies (Stern, 2007; Couture and Gagnon, 2010; Menanteau,

et al., 2003; Ragwitz, et al., 2007; Butler and Neuhoff, 2008). It is impor-

tant to address these issues because interests in renewable energy sources

continue.

The quotes by Thomas Edison and the Spiegel magazine encompass the

conundrum in solar subsidies faced by policy makers. On the one hand,

there is consensus to expedite the transition from finite energy resources

to renewable resources, with their reduced level of criteria pollutants and

greenhouse gases. On the other hand, it is difficult to design and implement

sustainable policy that balances growth with spending.

This paper develops a dynamic consumer demand model for rooftop

solar power systems to examine such welfare implications of the subsidy

programs in this fast-changing market. Each household solves an opti-

mal stopping problem when making the investment decision in solar power

systems. In other words, the households decide not only whether to pur-

chase but also when to purchase. The model assumes that households can

perfectly foresee future system prices and subsidies while evaluating the

benefit of investing today versus the benefit of waiting.4 I use a nested

fixed-point maximum likelihood estimation on a 5-year data set from Cal-

ifornia to recover the underlying structural parameters in the consumer

demand function. The model then evaluates the impact of price, capacity-

based subsidies, tax credits, and the revenues raised by electricity produc-

tion. From the viewpoints of the households making installation decisions,

a production-based subsidy is equivalent to dollar for dollar decrease in

the price of electricity.5 I use a quasi-experimental setting with a preset

subsidy schedule and exploit the variations through geographical locations

and time to separately and jointly identify the impact of each variable.

I use this estimated model to answer questions concerning the economic

4The perfect foresight assumption can be easily relaxed by incorporating transition
probabilities.

5The critical assumption here is that the demand for solar electricity in the relevant
range is perfectly elastic such that there is no change to the equilibrium electricity
price. The total solar electricity generated in 2012 contributes to less than 1% of the
total generations.
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value of solar incentive programs. I find that the capacity-based subsidy en-

courages more solar investments on the per dollar basis. Regarding welfare,

however, production-based subsidies are more efficient as they encourage

more adoptions in optimal locations for solar electricity production. Ef-

ficiency in this context is measured by the cost of displacing one ton of

CO2 (henceforth the implied CO2 price). This efficiency result is particu-

larly prominent with large geographic disparity in solar resources. The first

force driving this result is that it requires a smaller amount of subsidies to

stimulate adoptions to occur in a sunny location where the revenue from

avoided electricity bills is higher compared to a less sunny location, hold-

ing everything else equal. Second, more CO2 is mitigated by the greater

amount of solar electricity production which drives the implied CO2 price

lower.

I also examine how households’ investment decisions change with var-

ious subsidy policies. These changes include varying the subsidy level so

that the implied CO2 price (from subsidies) matches the social cost of car-

bon6. The equivalent CO2 price of the CSI program subsidy during the

studied period is $62/ton to $82/ton. The welfare cost of the program is

relatively low compares to many other energy related programs that ranges

from $250-500 per ton C02 (Fowlie, Greenstone & Wolfram, 2015; Davis,

Fuchs & Gertler, 2014; Beresteanu & Li, 2013; Knittel, 2009;). Meanwhile,

the welfare cost considering both the California subsidy and the federal tax

credits is around $130. Jointly, the California program subsidy and the tax

credits contribute to 76% to 87% of the installations. Without accounting

for the change in consumer surplus, these costs can be 10-35% higher. An

optimal subsidy policy should match the social cost of carbon (SSC). In-

terestingly, I find that it is infeasible to achieve the $38/ton (Greenstone et

al., 2013) welfare cost in two of electricity rate cases. This is because there

are enough households who would choose to invest in solar power systems

even without any subsidies when electricity rates are high. In this case,

even an extremely small amount of subsidy would generate enough dead-

weight loss to exceed the $38 optimal condition. In the lowest electricity

6The social cost of carbon (SSC) measures the economic damage that is associated
with each additional ton of CO2 released into the atmosphere. It requires significant
assumptions that cover a wide range of fields which lead to a wide-ranging SSC value
of $5 to $3000.
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tier pricing model, lowering the aggregate subsidy to a level that matches

the SSC results in a detrimental reduction in solar investments. Regarding

the long-run elasticity, I find that demand elasticity is rather elastic (>3) at

the 2011 price level. The elasticity is non-constant as it reduces to around

two at the lower-end of the 2015 price level.7

Finally, I perform counterfactual analysis to consider the welfare loss

in encouraging solar in less sunny locations. I find that the implied CO2

price increased by about 50% when I introduce the solar radiation of Frank-

furt, Germany, which is 35% less sunny than California, into the estimated

model. This result is not immediately obvious since the number of invest-

ments and government spending reduces to a third of the original level.

The welfare cost doubles to triples when I increase the subsidy level to

reach the same level of investments as in the factual world.

The first contribution of this paper is to introduce a versatile model

into environmental economics that allows researchers to conduct policy

comparisons and welfare analysis in an environment where durable goods or

other intricate dynamics are present. The flexibility of the model accounts

for the change in consumer surplus from the infra-marginal consumers,

which is a salient component of the total welfare. The estimation routine

and the model are based on the single agent optimal stopping model as in

Rust (1987). I further expand on the model to include multiple agents with

observations at the aggregate market level, similar to Berry (1994). This

analysis is, in spirit, similar to that of Gallagher and Muehlegger (2011),

in which they examine how different forms of incentives affect consumers’

hybrid vehicles purchase decisions and find that sales tax waivers have

greater impact than tax credits. Beresteanu and Li (2011) uses a static

structural model to study the demand for hybrid vehicle and finds that the

rebate program costs less government revenue to achieve the same average

fuel-efficiency of new vehicle fleet in 2006 than tax credits.

In particular, this paper is among the first papers to study the different

outcomes under capacity-based subsidies versus production-based subsidies

evaluated by their efficacy and social welfare implications using empirical

data. The second contribution of this research is to improve understanding

7The average price at the end of 2011 is $6.2 per watt in the data and a large installer
in Arizona reported a price of $3.2 per Watt in mid-2015.
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of the demand side responses in the solar power market. Unlike Baker, et

al. (2013) and Borenstein(2008) who provide a thorough economic analysis

of the benefits and costs of solar from the supply side8, this paper com-

plements the studies of the solar home premium by Dastrup et al. (2012),

and the peer effects of Bollinger and Gillingham (2012) by studying the

consumer’s behavior response to solar adoptions. Hughes and Podolefsky

(2015) evaluate the effect of the capacity-based subsidy in California in a re-

duced form setting, which is the research most closely related to this paper.

Using a regression discontinuity design, their result finds that the subsidy

has a large effect on solar investments and a mild increase in subsidy (from

$5,600 to $6,070) would increase investments by 13%.9 A major difference

between this paper and Hughes and Podolefsky (2015) is that the dynamic

model capture consumer’s foreward looking behavior such that consumers

don’t merely respond to the current subsidy level but also respond to the

future system price and subsidy decline. This provides a much more com-

plete description of the consumer’s decision process in this fast-changing

environment. Section 3 provides evidence of this forward looking behavior.

The following section builds the structural model, and section 3 de-

scribes the data used in this study. Section 4 presents the results and

model validation. I present the counterfactual analysis in section 5 and

section 6 concludes. Interested readers can consult Appendix A1 for ad-

ditional information on solar power technologies and the development of

solar power market in California.

2 The Structural Model

Next, the household’s dynamic discrete choice model is developed. Each

household has an infinite horizon and discount the future at the rate β. I

proceed with constructing a general model with the least restrictions and

8Borenstein (2007) provides the economics of solar electricity from the households’
perspective on the impact of mandatory time-of-use electricity pricing.

9The equivalent elasticity of 1.2 from Hughes and Podolefsky (2015) is low compared
to estimates from this paper and two other recent papers, which may be explain by the
difference in short-run (less elastic) and long-run elasticity (more elastic). Gillingham
and Tsvetanov. (2016) use the 2008-2014 Connecticut data and find the demand elastic-
ity estimate of 1.76. Arino et al. (2016) exploits exogenous change in electricity prices
due to the Fukushima disaster to find the long-run demand elasticity of 1.5-2.3 in Japan.
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later impose the perfect foresight restriction in the empirical section.

In each time period, households observe the price of the rooftop solar

power system (p), the capacity-based subsidy (s), the net present value of

the 25-year production revenue associated with solar electricity generation

and the O&M cost (r), and the federal tax credits (τ).10 These are the

state variables observed both by households and econometricians. Denote

X := {p, s, r, τ}. Given X and the other state variable, ε, each household

decides whether to install an average size rooftop solar power system or

to stay with the existing utility setup. The ε is observed by households

but not by econometricians. The discrete choice in time t can be formally

expressed as, -p

dt =

{
1, install a solar power system

0, not install.

The household exits the market forever once choosing to adopt. Given the

states (X, ε), the action d and the household income Yi, the per-period

utility can be decomposed into two components based on observability to

econometricians - ν(X, d;θ) and ε(d). ν(X, d;θ) is the utility that a house-

hold receives from installing at state X where θ is a vector of parameters

to be estimated. Formally,

u(X, d, ε,θ) = ν(X, d,θ) + ε(d) (2.1)

where

ν(X, d,θ) =

{
θ0 + θ1(Yi − p) + θ2s+ θ3r + θ4τ, d = 1

θ1Yi, d = 0.
(2.2)

The random error term ε = {ε(0), ε(1)} is the idiosyncratic utility shock

each individual receives at each time period, and follows a type I extreme

value distribution. ε(1) is the unobserved component of installation cost.

A positive ε(1) could reflect the case that a concurrent house renovation

project reduces the cost of installing solar power systems, while a negative

ε(1) may be attributed to sub-ideal roofing condition. ε(0) is the unobserved

10This refers to the total cost including the installation cost.
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component of cost associated with staying with the existing utility setup.

A positive ε(0) corresponds to the case of hearing negative reviews of solar

power systems and a negative ε(0) can be the concern for climate change.

I assume the additively separable error term as in Rust (1987). Note that

in discrete choice models only the difference between choices matters so

the income term drops out under the linear specification. Assume that

households discount the future with a factor β ∈ (0, 1) and the states evolve

following a Markov process, (Xt+1, εt+1) = p(Xt, εt). Given the current

state (Xt, εt), the household makes a sequence of decisions to maximize

the sum of expected discounted values of future utilities over an infinite

horizon. These optimal choices then define the value function as

Vθ(X, ε) = max
{dt}t=∞

t=0

EX′,ε′

[
∞∑
t=0

βtu(Xt, dt, εt;θ)

]
. (2.3)

With the infinite horizon and the Markov transition function assump-

tion, I can drop the time index and reformulate the infinite horizon optimal

decision problem in (2.3) as a solution to the Bellman equation

Vθ(X, ε) = max
d={0,1}

{
ε(0) + β

∫
X′

∫
ε′
Vθ(X

′, ε′)p(X′, ε′|X, ε)dX′dε′, ν(X, 1;θ) + ε(1)

}
(2.4)

where (X′, ε′) denotes the state variables in the next period. One criti-

cal assumption proposed by Rust (1987) is the conditional independence

assumption on the transition probability p, to simplify the estimation com-

plexity. This assumption together with the additively separable error term

assumption provides the main identification strategy of the primitives.

Assumption 1. p(X′, ε′|X, ε) = pε(ε
′|X′)pX(X′|X)

In another words, assumption 1 states that the unobserved state vari-

able (by econometricians) doesn’t affect the household’s ability to predict
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the future states. Define the function, Fθ(X), as11

Fθ(X) =

∫
X′

∫
ε′
Vθ(X

′, ε′)pε(ε
′|X′)pX(X′|X)dX′dε′. (2.5)

and the choice specific value function as12

vθ(X, d) = ν(X, d, θ) + β

∫
X′

∫
ε′
Vθ(X

′, ε′)pε(ε
′|X′)pX(X′|X)dX′dε′

= ν(X, d, θ) + βFθ(X), (2.6)

or explicitly as

vθ(X, d) =

{
θ0 + θ1p+ θ2s+ θ3r + θ4τ, d = 1

βFθ(X), d = 0.
(2.7)

Note that the future value once installed is absorbed in the net present value

of the revenue term and therefore there is only a future value associated

with not installing. The Bellman equation (2.4) can be rewritten as

Vθ(X) = max
d={0,1}

[vθ(X, d) + ε(d)] . (2.8)

Assume pε(ε
′|X) is a multivariate extreme value distribution. Then

F (X) has a closed form expression which is the expected value of the max-

imum of 2 iid random variables.13

Fθ(X) =

∫
X′

ln
∑
d∈0,1

evθ(X
′,d)pX(X′|X)dX′ (2.9)

Rust (1988) and Rust et al. (2002) showed (2.9) is a contraction mapping

using Blackwell’s sufficient conditions. The conditional choice probability

11This function is sometimes called ”expected future utility”(Su and Judd, 2012), the
”social surplus function”((Rust, 1988); McFadden, 1981), or as the ”Emax function” (?)
and denoted as EVθ(X, d). In order to avoid confusion and to emphasize that Fθ(X) is
merely a function and not as a “value function”, I denote it as Fθ(X) instead.

12This term follows the common usage in the structural IO literature and with a slight
abuse of terminology since the value function by definition is after choosing the optimal
choice.

13See Anderson et al. (1992).
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can now be characterized by the binary logit formula:

Pr(d|X;θ) =
exp{vθ(X, d)}

exp{vθ(X, 0)}+ exp{vθ(X, 1)}
(2.10)

Pr(d = 1|Xz
t ;θ) represents the probability of adopting a solar power system

and Pr(d = 0|Xz
t ;θ) represents the probability of not adopting. The choice

probablity is equivalent to the market share definition and is homogeneous

across households in each zip code.

Rust (1987) proposed using the nested fixed point algorithm to esti-

mate the structural parameter vector θ. The likelihood of observing data

{Xz, di} for household i in zip code z is

`i(X
z;θ) =

T∏
t=2

Pr(dit|Xz
t ;θ)p3(X

z
t |Xz

t−1, d
i
t−1) (2.11)

The likelihood function over the whole data set is then

`θ =
Z∏
z=1

nz∏
i=1

`i(X
z;θ) (2.12)

which is usually expressed as a log-likelihood function:

Lθ = log `θ =
∑
t

∑
z

∑
i

logPr(dit|Xz
t ;θ) +

∑
t

∑
z

∑
i

log p3(X
z
t |Xz

t−1)

(2.13)

The second term is zero under the perfect foresight assumption. This is

the assumption I made in the empirical section and can be easily relaxed.

In Rust’s nested fixed point algorithm, I optimize over (2.13) to find

the deep structural parameters θ. Formally,

max
θ

∑
t

∑
z

[
nz(d

i
t = 1) logPr(dit = 1|Xz

t ;θ) + nz(d
i
t = 0) logPr(dit = 0|Xz

t ;θ)
]
,

(2.14)

where nz(d
i
t = 1) denotes the total number of adopters in a zip code, z,

and nz(d
i
t = 0) denotes the total number of non-adopters in z. Meanwhile,

in the inner loop, the algorithm uses value function iteration to find a

numerical value of Fθ(X) computed for each value of parameters θ. Let

F ζθ (X) denote the numerical value during the ζth iteration. At ζ = 0, I
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make an initial guess of F0
θ (X) = 0. At ζ = 1, I can calculate F1

θ (X) based

on (2.9) and F0
θ (X), such that

F1
θ (X) = T · ln

∑
d∈0,1

eν(X
′,d,θ)+βF0

θ (X
′), (2.15)

where T is the state transition matrix. Then I check whether the iteration

has converged by using the criterion

sup
X

∣∣F1
θ (X)−F0

θ (X)
∣∣ < ξ, (2.16)

where ξ needs to be very small so that I can minimize the amount of error

that propagates from the inner-loop into the outer-loop. Otherwise, it is

less likely to converge in the outer-loop. Specifically, I set ξ = 1e − 6. If

(2.16) is satisfied then I have found the F1
θ (X) to be used in (2.6) and

(2.10), which go into the likelihood function (outer-loop). If not, then I

repeat the iteration, with ζ = 2, 3..., until the convergence criterion (2.16)

is satisfied.

3 Data

3.1 Data sources

The rooftop PV adoption pattern in California displays significant spatial

discontinuity as shown in Figure A5.4. Adoptions are concentrated in the

three largest metropolitan, namely: San Diego, Los Angeles and the San

Francisco Bay area, in addition to Fresno and Sacramento. I focus on 344

zip codes in these three metropolitan, with over 2 million households, that

belong to 9 counties: one in the San Diego Gas and Electric (SDG&E),

two in the Southern California Edison (SCE), and 6 in the Pacific Gas and

Electric (PG&E) service territory (Figure A5.5). About half of the zip

codes and households are located in northern California and the remaining

zip codes are in southern California. The finest geographic resolution I

observe in the data is at the zip code level which defines the market in

this study. I use the monthly data on the number of installations in each

market (zip code), California Solar Initiative incentives, revenue generated
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from solar electricity and federal tax credits in order to recover the deep

structural parameters in the utility function.

California Solar Initiative Incentives

The California Solar Initiative (CSI) is a solar incentive program, part

of the 10-year, 3 billion dollars statewide Go Solar California Initiative

that started in January 2007. The CSI goal is to reach 2 gigawatts of

solar power system installations on existing homes and buildings.14 The

majority of the residential units receive a one-time, lump-sum, upfront pay-

ment. The amount of the subsidy depends on the size of the solar power

system measured in watt (W) and the subsidy rate at the time of the ap-

plication. The incentive starts at $2.50/W and gradually reduces to $0.25

at the end of the sampling period, by a prescribed schedule (Table A2.1

and Figure A5.1). For instance, at the start of the program, households

in the SDG&E district receive $2.50/W incentive payment; once there is

a total of 2.4 megawatts of systems installed, the next applicant receives

$2.20/W. Therefore, an owner of a 5kW system in the above example re-

ceives $12,500 CSI incentive at the beginning, compared to $1,250 by De-

cember 2011. Since the solar module price continues to decline over time,

a rational forward-looking consumer would always choose to adopt at a

later date, if the subsidy stayed constant over time. The block schedule

(or subsidy degression) is a strategy to account for the lower system cost

in the future and encourage adoptions to occur sooner, rather than later.15

These countervailing incentives on the timing of adoption provide a rich

context for a dynamic analysis.

I aggregate the number of households that adopt solar power systems

in each zip code in each month.16 The data set also provides information

1430% of the 2GW goal is designated for the residential sector while the remaining
portion is satisfied by the commercial sector. While commercial sector could be po-
tentially more important to study for its larger market share, its complex nature poses
much more challenges than the residential households. The CSI program, for example,
has a funding cap for the commercial applicants and therefore poses the identification
problem - I can not distinguish whether firms decide not to install or would install if
the funding were available.

15The rationale for the subsidy is that the government subsidizes the “early adopter”
for the positive externalities that they provide to the later adopters either through the
demand-side learning by doing effect or the network effect.

16I used the ”first new reservation request date“, the date when the application for
subsidy is received, as the month when the households choose to invest solar. Although
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on the prices of the systems and sizes; combined with the county specific

weekly construction worker’s wage from the Bureau of Labor Statistics and

the monthly U.S. PV module prices from SolarBuzz, I am able to recover

the unit price of solar power systems in the first stage regression analysis.17

Figure 1 shows the system price trend and the number of installations over

the studied period. During this period, the average system price decreases

by 40% from $8.40/W to $5.67/W, while the solar module price under-

went a much more precipitous decline of 57%. The declining system price

explains the overall trend of the increase in solar power investments; mean-

while the subsidy schedule explains the peaks in the number of installations

(Figure 2).

Figure 1: The average system cost versus the number of installations.

The system size varies greatly from one household to the next. However,

the average system size remains relatively constant across the years (Figure

A5.2 & A5.3). The average size in the data is 5.39kW, which is in line with

the 4kW to 6kW size that an average household needs to supply its 100%

of electricity based on the assumptions used in this research. One caveat

concerning the binary logit model proposed here is that investments must

the ”first reservation request review date“, which is when the CSI subsidy application
is reviewed, has less missing values. I believe that the first new reservation request
date approximates the time when households make their investment decisions better.
I construct the probability by utility districts using the empirical data to impute the
missing dates (months).

17EIA also compiles the solar module price index albeit at the annual level. A simple
bivariate regression analysis shows the EIA index and the annualized SolarBuzz index
to be almost perfectly correlated.
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Figure 2: Monthly installations in PG&E service territory (vertical dashed lines
represents one period before the decline in subsidy)

be made in a product that is a homogeneous in size and in the efficiency

of the module and inverter. I reconstruct the price for this average-size

system in each zip code-month pair from the first stage regression results

including the city and county sales taxes.

Revenue (Lifetime Electricity Savings)

Assuming a 25-year system lifespan18, I recover the present value of

the revenue, R, generated from an average size system by the following

equations,

Rzt =
1− r25

1− r
Y revzt

and the annual revenue, Y rev

Y revzt =
12∑
m=1

Q · IRzm · Ce
umt

where Q is the system size in (kW), IR is the solar radiation19 in month,

m, and Ce
umt is the monthly tier electricity price in utility district u in

year t. There are (mostly) four electricity rate tiers during the studied

18The actual lifespan of the solar power system is unclear and some systems from
the 1970’s are still in operation today. Because the majority of manufacturers offer the
25-year standard solar panel warranty, I choose to use this as the lifespan of the system.

19Solar radiation (or irradiation) is measured in kWh/m2/day. The solar electricity
generated data used in the current draft is based on the PVWatts calculator provided
by NREL, which uses the finer hourly data in a zip code measured in AC output.
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period and I separately use the tier 1, tier 4 and a combination of all four

tiers to compute the annual revenue, which I called “combined tiers” or

“tier c”. I calculate the monthly savings by allocating the solar production

into the lowest to the highest tier pricing.20 There are two issues with

revenues calculated from the combined tiers. One is theoretical and one

is practical. Theoretically, it is going to be less than the realized savings

because actual savings would start from the top tier and move to the bottom

tier as production increases. However, the calculation is the best I can do

because I don’t observe households’ electricity consumption. The practical

issue with the tier c savings is that it places more weight on the tier 1

pricing and this results in less variations. (See Figure A5.11 and A5.12 for

average monthly and annual revenue by tiers)

Let αD denote the module degrade factor, αe be the electricity escalation

rate, β be the annual discount factor, and finally r = (1 − αD)(1 + αe)β.

The range of the present value of the revenue stream from tier 1 pricing is

between $9,000 and $13,000 and increases to $20,000 and $36,000 from the

tier 4 pricing.21 The lifetime savings vary with the geographical location

and also across the years due to the annual electricity rate adjustment by

the utility districts.22

Federal Residential Renewable Energy Tax Credits

The Energy Policy Act of 2005 set in place a 30% federal tax credits for

20For example, during the summer season (May to October), the first 350 kWh of
electricity generated would fall into the tier 1 price, the next 100 kWh falls into the tier
2 pricing, the next 255 kWh falls into the tier 3 pricing, the next 352 kWh falls into the
tier 4 pricing and the remaining counts either as tier 4 or 5 depending on whether tier
5 pricing is available.

21Appendix A3 provides the details of the calibrated parameter values.
22Initially, the CSI rebate recipients are required to switch to the time-of-use (TOU)

pricing. This TOU mandate is subsequently eliminated in June, 2007 after LA Times
reports that the mandate decreases the economic value of solar power system in SCE
district. Borenstein (2007) shows that the majority of PG&E adopters would be better
off under the TOU rate, which is not the case for SCE adopters. The reason is that
the SCE’s original flat rate schedule is tiered (greater monthly electricity consumption
is associated with higher electricity rate) but the TOU schedule is not tiered.
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residential solar power systems, which expires at the end of 2016. Despite

remaining at a constant level, there is a $2000 cap prior to 2009 when the

American Recovery and Reinvestment Act allows households to claim the

full 30% credit. This is a significant change from an effective 5% tax credits

prior to 2009 to the full 30% afterwards. The tax credits may be carried

over for 5 years.23 I compute the tax credits from multiplying the system

price by 0.3 and cap this amount at $2000 prior to 2009.

Table I provides the summary statistics of the data used in the second

stage estimation. The unit of observation is at the zip code-month level.

The average price for a 5.39kW system is about $44,000. Households receive

$13,000 of CSI subsidy in January 2007 and receive a much smaller amount

of $1,300 at the end of the sampling period. I calculate the CSI subsidy

using the size of the system, 5.39 kW, and the per watt subsidy at the

month. All Table I values are either simulated and/or from the first stage

regression, except the weekly labor wage and the number of installations

are directly observe in the raw data.

23An example of how widely this tax credits can be utilized: A married taxpayers
(filing jointly) with an income of $67,901 has a tax liability of $14,125 in 2009 (taken
into account the standard deduction of $11,400). This means the household in this
example can use up the tax credits of $13,688 in one tax year.
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Table I: Summary (monthly) statistics (Jan. 2007- Dec. 2011, 344 zip codes)

Variable Mean Std. Dev. Min Max Obs.

System price24 43,934 3,921 32,567 51,155 20,640

Capacity-based subsidy 8,061 4,283 1,348 13,475 20,640

Present value of 25-year revenue (Tier 1)

10%: 10,667 969 9,186 13,125 20,640

Present value of 25-year revenue (Tier 4)

10%: 27,672 3,988 20,728 35,879 20,640

Present value of 25-year revenue (Combined tiers )

10%: 15,974 1,420 13,513 19,755 20,640

Tax credits 7,683 4,694 2,000 13,764 20,640

Annual electricity output (kWh) 8,472 404 7,777 9,948 20,640

Weekly wage rate25 1,085 120 930 1,253 20,640

Installed cost/watt 7.51 0.68 5.59 8.78 20,640

# installations 1.24 2.14 0 36 20,640

4 Empirical implementation

The estimation of the primitives is carried out in the following steps: In the

first stage, I recover the relationship between the (dollar-per-watt) price of

the solar power system and its component costs. The estimated price per

watt, by month and zip code, is used in the second stage to aggregate the

data from the individual level to the zip code level (the finest geographical

resolution) and in effect to conform to the proposed binary logit model

as discussed in the previous section.26 This allows me to convert each

installation observed in the data into a homogeneous average size system

(5.39 kW) and to derive the final system price in every zip code by month.

In the second stage, I use the maximum likelihood estimation to recover

the structural parameters in the consumer’s utility function.

24Total upfront PV system price after city and county taxes
25Weekly wage of construction worker by county
26The individual level data contains only the zip code and not street address infor-

mation.
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4.1 Recovering solar power system unit price

The (per-watt) system price is assumed to be a function of the system size

(x), the solar module cost (P pv), the inverter cost(P inv), the labor cost of

installation (L), the permit fee (cfee), and the costs of electric wires and

connectors (BOS). The expression for the unit price, dollar per watt (D)

as,

Dizt = f(xi, x
2
i , P

pv
t , P

inv
t , Lcty, c

BOS
i , cfeecty ) + εizt

The unit price is generally higher for small systems as the result the

economies of scale. Therefore, system size is a major determinant of the

unit price. Let x denote the system size (in kilo-Watts) observed in the data

and x2 be the square of x to capture nonlinearities. The permit fee, inverter,

and the BOS cost are not included in the regression analysis because I

don’t have good measures of these variables. During this time period, the

inverter cost remains roughly the same ($.70/W according to SolarBuzz

inverter retail price index) as does the cost of wires and connectors. In this

case, the constant term captures the combined effect of these two factors.

The construction workers weekly wage, published by the Bureau of Labor

and Statistics each month, is a proxy for the labor input cost. I also include

the total amount of installations in each zip code prior to implementation

of the CSI program, prez and use it to control for unobserved factors such

as age and types of roofs and the proximity to installers.

Table II reports the first stage estimation results. All estimated coef-

ficients have the expected signs and are significant at the 1 percent level.

Table I reports reconstructed system price of an average size system. This

cost is used in the second stage maximum likelihood estimation and also

serves as the basis of the calculation of the 30% federal tax credits.
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Table II: Regression Analysis on Installed Cost per watt

cPw Std. Err.

pre2007 -.0009∗∗∗ (.0002)

size (kW) -.2039∗∗∗ (.0045)

sizeˆ2 (kW2) .0038∗∗∗ (.0001)

wages ($1,000) 1.4701∗∗∗ (.1334)

module cost ($) 0.821∗∗∗ (16.31)

constant 3.056∗∗∗ (13.03)

Year FE Yes

Utility FE Yes

N 25,262

F( 11, 25250) = 722.40

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.2 Recovering structural parameters

I use two specifications in the second stage structural estimation. The first

specification estimates the parameters in (2.2) separately; and the second

specification aggregates all dollar terms into a single variable.27 The second

model assumes that consumers weight cost and various forms of benefits

equally. Therefore only net costs (i.e. net present values) enter into the

model. This reflects a scenario where there is no consumer behavioral

response to paying versus receiving, and assumes no transaction costs or

timing differences associated with different forms of subsidies.

Within each specification, I use fixed effects at the utility company and

the year level to control for potential omitted variables. I also include the

interaction term between the utility and the year to capture the differences

27This is the net present value of each system.
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in trends in each utility district. I estimate the log-likehood function (2.13)

in Matlab using the nested fixed point maximum likelihood estimation.28

In the inner loop, the fixed point algorithm finds the expected future utility

(2.5) and the outer-loop searches over the whole parameter space to find

the parameter values that maximize the log-likelihood function. It’s well

known that there is no unique maximum in this type of model where the pa-

rameters enter into the expected future utility. I use multistart algorithm

to randomly select starting points and find the parameter combinations

that yields the highest likelihood value. To ensure that the fminunc algo-

rithm converge successfully, the Matlab first-order optimality condition is

manually checked such that it approaches zero in each successive iteration.

Table III(a) and Table III(b) reports the results from the three elec-

tricity tiered pricing.29 Standard errors of the estimated coefficients are

calculated by bootstrapping over the two stages. The first to third columns

in Table III(b) report the results with the fixed effects and utility specific

time trends, whereas the fourth to the sixth column report the result from

estimating a net cost term. Most estimates have signs as expected, that

costs are associated with negative coefficients while subsidies, tax credits

and revenues are associated with positive coefficients, which conform with

the intuition that consumers prefer lower cost and greater subsidies.

The coefficient of the system price is consistently and significantly higher

than the other forms of benefits across models. This result agrees with the

anecdotal evidence that the upfront system cost is the greatest entry bar-

rier to solar PV adoptions. The magnitude of the CSI subsidy coefficients

becomes greater when more fixed effects are included. The fixed effects also

take away most of the variations from the revenue variable. Tier 1 electric-

28The unconstrained nested fixed point MLE is identical to the constrained maximiza-
tion with equality constraint (See Su and Judd (2012)). Due to the concern of including
nearly 30,000 constraints in a non-strictly concave objective function, I opt for a slower
repeated fixed point iterations.

29Table A2.4 and A2.5 include the full estimation results.

20



ity pricing, in particular, is usually very stable and this lack of variations

leads to the lost of significance when fixed effects are included. When con-

trolling for the year fixed effects, the residual variations in post-2009 tax

credits are perfectly correlated with system prices because tax credits are

30% of the system prices by design. This means as the system price de-

clines over time, tax credits are also lower while the number of investments

increases. Tax credits also seem to be correlated with the utility specific

time trends. The associated coefficients are negative when the fixed effects

and interaction terms are included.
Table III (a): Maximum Likelihood Estimation Results without Utility Specific Time Trends

Variables
Lowest Tiered

Pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

Highest Tiered

pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

system price -0.132∗∗∗ -0.146∗∗∗ -0.14∗∗∗ -0.363∗∗∗ -0.376∗∗∗ -0.353∗∗∗

(0.022) (0.025) (0.024) (0.038) (0.058) (0.047)

CSI subsidy 0.035* 0.057∗∗∗ 0.055∗∗∗ 0.066∗∗∗ 0.110∗∗∗ 0.102∗∗∗

(0.020) (0.022) (0.020) (0.0145) (0.0176) (0.0131)

revenue 0.01 0.024∗∗∗ 0.088∗∗∗ 0.074 0.049∗∗∗ 0.040**

(0.016) (0.005) (0.036) (0.060) (0.008) (0.018)

tax credits 0.026∗∗∗ 0.022∗∗∗ 0.018∗∗∗ 0.388∗∗∗ 0.397∗ 0.322∗

(0.004) (0.005) (0.005) (0.108) (0.215) (0.165)

net cost

constant -3.364∗∗∗∗∗∗ -3.401∗∗∗ -4.134∗∗∗ 5.477∗∗∗ 4.834∗∗ 4.709∗∗∗

(0.848) (0.909) (1.272) (1.704) (2.422) (2.350)

Year FE N N N Y Y Y

Utility FE N N N Y Y Y

Utility x Year N N N N N N

N observations 20640 20640 20640 20640 20640 20640

LR chi2 5409 5541 5587 7450 8709 8451

standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < 0.01
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Table III(b): Maximum Likelihood Estimation Results with Fixed Effects and Utility-Time Trends

Variables
Lowest Tiered

Pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

Highest Tiered

pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

system price -0.185∗∗∗ -0.183∗∗∗ -0.201∗∗∗

(0.059) (0.061) (0.060)

CSI subsidy 0.147∗∗∗ 0.146∗∗∗ 0.147∗∗∗

(0.012) (0.012) (0.012)

revenue -0.056 -0.026 -0.014

(0.047) (0.018) (0.015)

tax credits -0.485∗∗ -0.486∗∗ -0.43∗∗

(0.214) (0.212) (0.212)

net cost -0.189∗∗∗ -0.128∗∗∗ -0.153∗∗∗

(0.025) (0.014) (0.033)

constant -0.749 -0.291 -0.491 -4.091∗∗∗ -7.827∗∗∗ -5.719∗∗∗

(2.304) (2.327) (2.335) (0.633) (0.068) (0.552)

Year FE Y Y Y Y Y Y

Utility FE Y Y Y Y Y Y

Utility x Year Y Y Y Y Y Y

N observations 20640 20640 20640 20640 20640 20640

LR chi2 8,615 8,619 8,609 7,177 6,715 6,949

standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < 0.01

4.3 Discussions

4.3.1 Subsidy comparisons

I run a hypothesis test on the estimated coefficients (of specification I) to

investigate the cost-effectiveness of capacity-based subsidy and production-

based subsidies. Because production-based subsidies, such as feed-in tariffs,

pays consumers a premium over the electricity retail rates, its effect on

consumer’s preference is equivalent to the effect of revenues generated by

solar electricity. I define the null hypothesis such that the effects of the CSI

subsidy and revenue are equal (θ2 = θ3), and the alternative hypothesis is

CSI subsidy has a greater impact than the revenue on a per-dollar basis

(θ2 > θ3). Using the two-sampled hypothesis test, I find that the capacity-
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based subsidy has statistically significant greater impact than the (would-

be) production-based subsidy under the tier c and the tier 4 pricing. I am

unable to reject the null hypothesis using the tier 1 pricing because there

is not enough variation in tier 1 pricing to identify the effect of revenue on

the household’s utility function.30 This provides some evidence that the

capacity-based subsidy such as the CSI subsidy induces more household to

invest than the feed-in tariffs.

4.3.2 Endogeneity

A potential omitted variable bias concern in the second stage is that the

positive shock in the utility function may lead to an increase in the sys-

tem price and/or a decrease in the subsidy rate. However, the shock by

specification occurs at the individual level whereas the module cost, the

largest portion of the system cost is determined in the international mar-

ket (See Appendix A1.2 for more detailed discussions on the component

costs.). Because the US solar market accounts for less than 10% of the

worldwide demand (in total capacity), it lessens the concern that an in-

dividual utility shock can influence the solar module price. However, the

bias on the installation cost, the second largest component in the system

cost (Figure A5.6), poses a challenge because I don’t observe the market

structure of solar installers. Friedman et al. (2011) observe there is some

evidence of excess supply in the solar installation labor market during this

period.31 In which case, an i.i.d. shock at the household level is unlikely to

increase the equilibrium price for the installation. Even if the shock affects

the final installed price, the bias concern would be greatly lessened because

30Across different calculations of lifetime revenues, the null hypothesis can be rejected
at the 10% significance level under tier 4 electricity pricing with no fixed effects. Simi-
larly the null is rejected at the 1% significance level under the tier c prices with utility
and year fixed effects. There is no statistical significance difference between the effect
of revenue and subsidy under combo pricing and no fixed effects.

31A future project is to incorporate the supply side (installers) data.
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I don’t use the actual price in the second stage but instead using the pre-

dicted values from the first stage regression. As for the subsidy, because

the number of households required for the subsidy to be lowered to the next

level is large- on average, 4000 households are required before meeting the

capacity threshold set for each subsidy level. Therefore, each household’s

investment decision has a negligible effect on the overall subsidy level.

4.4 Model verification

I use five zip codes that are not part of the data for estimation as the

out-of-sample verification. I compare the actual installation counts with

the predicted numbers from the estimated model during 2007 and 2011.

Table IV reports the percentage differences in adoptions between the pre-

dicted and the actual numbers. The model over-predicts the number of

solar adoptions in the zip code 92673 across the estimated models using

the three electricity tiered rates. I exclude certain zip codes in both the

estimation and the verification steps. These zip codes, such as Ladera

Ranch (92694), which locates in the San Diego Gas & Electric district,

have well-documented large new housing developments with pre-installed

solar panels. Since solar panels on new homes are not part of the CSI pro-

gram discussed in this paper, the presence of these new homes creates an

under-count on the number of installations observed in the CSI dataset. In

other words, given the number of homes, I would expect to see more instal-

lations were these home not already pre-installed with solar panels. This

is likely to explain the higher (than actual) predicted adoptions in the zip

code 92673, which is very close to Ladera Ranch geographically. There is a

higher (than predicted) number of adoptions in 93420, which can be caused

by any idiosyncratic shock at the zip code level. This positive shock may

be explained by a tight-knit community with the demographics that highly

values solar or simply better informed on solar rebates and solar technol-
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ogy at this particular zip code although the specific reason requires further

case study. Overall, the difference between predicted adoptions and actual

adoptions range from 1 to 8%, on average. The model estimated using tier

1 pricing produce the best match with an average 2% difference between

the actual and predicted adoptions. Figure A5.13 shows the actual and

predicted installations by month. Not surprisingly, the predicted number

explains the general trends but not the occasional spikes in demand.

Table IV: Out-of-Sample predictions
XXXXXXXXXXXXXXX

zip code

electricity pricing
Lowest Tier Highest Tier Combined Tiers

93420 -13.2% -23.7% -5.4%

95129 -9.3% 1.0% -0.6%

90230 -12.8% 4.4% -9.5%

93257 9.3% 6.3% 9.9%

92673 34.6% 52.9% 33.6%

average 1.7% 8.2% 5.6%

5 Counterfactual Analysis

This section uses counterfactual analysis to investigate 1) the welfare costs

associated with the subsidy programs and encouraging adoptions in the

suboptimal locations; 2) the impact of policy changes on the solar power

market. All subsequent analysis is based on the estimated model II with

the nest cost term. While the analysis can be made using any of estimated

models, this is the preferred model to address the differences in policies by

taking away any behavior responses and timing issues.
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5.1 Welfare Analysis of the Incentive Programs

To create a meaningful measure of the cost of solar incentive programs,

I first clarify the purpose of such programs. Demand side subsidies are

designed to offset various market failures such as switching costs, liquidity

constraints, externalities (both positive and negative), imperfect informa-

tion, etc. Meanwhile, the argument for subsidies are of basically three

types: securing energy independence, creating new jobs, and reducing pol-

lution. The first two justifications are problematic. The main carbon-based

fuels that solar electricity replaces are coal and natural gas and yet the U.S.

is a net exporter of these fuels. Although the green industry will create new

jobs, the shrinking fossil fuel sectors will also lose jobs. Instead of creating

jobs, expansion of the solar industry shifts jobs. Therefore, the only benefit

that I consider in this paper is pollution reductions. In particular, I focus

on GHG emission reductions, which would lead to an upper bound on the

cost estimates.32 I convert the various greenhouse gasses emissions into a

unifying CO2 equivalent measure. I use GHG and CO2 interchangeably

throughout the paper.

The most common approach to assessing program cost is to sum up

the total program costs and divide this sum by total amount of pollu-

tants, such as GHG, mitigated from the program implementation. This

straightforward calculation doesn’t require a structural model but fails to

capture the change in consumer surplus from owning a solar power system.

I propose instead to derive the program cost by finding the change in to-

tal surplus per unit pollutant avoided from policy implementation. Under

the assumption of a perfectly elastic supply function of solar power sys-

32At the same time, I’m also not accounting for the hazardous chemicals used in
producing the panels. Although not addressed in this paper, the life-cycle analysis
(LCA) of the technology is critical in accessing the overall reduction in GHG emissions.
NREL surveyed the past LCA studies and found that PV power production is similar
to other renewables and much lower than fossil fuel in total life cycle GHG emissions
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tems, the loss in surplus is the difference between total program spending

(in 2011 dollar) and the gain in consumer surplus.33 A household makes

the investment decision depending on which of the two options (investing

in solar power systems versus investing in an outside option) provides the

greatest utility. However, because part of utility remains unobserved to the

econometrician, the best I can do is to find the expected consumer surplus

(for each individual) over all possible values of ε.

E(CS) =
1

θ
E
{

max
d

[vθ(X, d) + ε(d)]
}

(5.1)

where θ is the marginal utility of income, which equals marginal utility

of net system cost in this setting. The division by θ translates utility

into a dollar measure.34 Given the error specification of the multivariate

extreme value distribution, the expected consumer surplus has a closed

form expression:

E(CS) =
1

θ
ln

[∑
d=0,1

evθ(X,d)

]
(5.2)

Then, I aggregate the expected consumer surplus (5.2) over each house-

hold in each zip code. Because the change in consumer surplus is derived

from the dynamic model that captures the effect of a permanent change,

government spending should be measured over the same time horizon. To

match this long-term change in consumer surplus, I sum over the govern-

ment spending over the next 50 years and discount it with the actual annual

inflation rate until the end of 2015. From 2016 to 2061, I use the 30-year

expected inflation rate derived from the Treasury Inflation-Protected Se-

curities, which has an annual inflation rate of approximately 2%. I assume

33In the case when the supply function is not perfectly elastic, the number derived
here provides an upper bound.

34 θ = ∂U
∂Y =⇒ 1

θ = ∂Y
∂U
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inflation stays constant after the first 30 years.

PCO2 =
G−4CS
γ ×4Q

, (5.3)

where G is the present value of the total government spending, 4CS is

the change in consumer surplus as measured by the difference in the sums

of (5.2) before and after implementation of the incentive policy. γ is the

amount of CO2 displaced by the solar power system over its lifetime and

4Q denotes the installations that is due to the subsidy. The complete

description of the forward simulation and the derivation of the break-even

CO2 price, PCO2 is provided in Appendix A3.35

Table A2.6 reports the long-run welfare cost or the implied welfare-

neutral CO2 price. Assuming households with a 10% discount rate, the

CO2 prices associated with the CSI subsidy are $62/ton using the tier 1

rate, $82/ton using the tier 4 rate and $72/ton using the combined tiered

rate. The Tier 1 and Tier 4 welfare costs can be viewed as the lower and

upper bounds on the welfare cost. This cost is calculated using the actual

cost and benefits in the first five years and then holding the values in the

last observed time period (Dec. 2011) constant for the next 50 years. The

combined welfare costs of CSI subsidy and the federal tax credits increase

to $117/ton using the tier 1 rate, $132 using the tier 4 rate and $127

using the combined tiers. Program costs without considering the change

in consumer surplus are about 10% to 35% higher depending on the total

subsidy level (See Table A2.7). In general, cost difference is U-shaped in

the size of the subsidy. The difference is the greatest when the subsidy is

either very low or very high and reaches the lowest point at the intermediate

subsidy level. This peculiar shape is a direct result of the type 1 extreme

value error specification. On average, households gain $375 per solar power

35I use the average GHG emission rate of 0.348 ton/MWh or 767 lb/MWh published
by the California Air Resources Board to calculate γ.
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system installed in consumer surplus with the CSI subsidy and $975 with

both the CSI subsidy and the tax credits. In comparison, the average CSI

subsidy and tax credits at the end of 2011 are around $1800 and $10,000

per system, respectively.

More electricity produced means more CO2 abated, which lowers the

program cost per unit of CO2 and therefore Southern California tends to

have lower welfare cost from subsidy than the North.36

5.1.1 Feed-in Tariffs vs. Upfront Subsidies (Production-based

vs. Capacity-based Subsidies)

To compare the efficiency of a production-based subsidy and a capacity-

based subsidy, I conduct a counterfactual analysis by investing the same

amount of money in a production subsidy as in a capacity-based subsidy

and observe the change in implied welfare-neutral CO2 prices.37 I use a

fixed capacity-based subsidy rate of $1.1/W while keeping the 30% tax

credits. This means each adopter would receive almost $6000 per system.

Then, I calibrate the feed-in-tariff rate such that the present value of gov-

ernment spending matches that in the capacity-based subsidy. I maintain

the assumption that a rational consumer will keep the solar power systems

in the optimal electricity production condition throughout the paper.38

36In the current calculation, the average CO2 associated with each unit of electricity
production is an exogenously given constant. It’s easy to see that this value, γ, should
go down as more solar power systems are installed. However, given the solar electricity
only contributes to 0.4% of total electricity generation currently, the change in γ would
be insignificant for most of the years considered here.

37This is a “revenue-neutral” approach. In reality the Feed-in-Tariff rate is designed
to reflect either the utility avoided cost or the project cost (and return) of the renewable
energy technology. In particular, I use a market-independent, fixed feed-in tariff design
which is independent of the retail electricity rates. Similar design is in use in Germany,
for example.

38Despite this assumption may lead to biased preference towards capacity-based sub-
sidies, I also do not incorporate the additional cost from the third-party electricity mon-
itoring system that is sometimes required to report the electricity production under the
production-based subsidy. The simpler design of a capacity-based subsidy can poten-
tially overcome this inefficiency. The latter assumption thus leads to biased preference
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Intuitively, a production subsidy encourages more adoptions in sunny lo-

cations and results in a lower CO2 price.

This is indeed what I observe in the counterfactual simulations. Con-

ditioning on the same level of government spending, the welfare cost of

the subsidy program in Northern California reduces by about $1.50 when

moving from capacity-based to production-based subsidy (See Table V and

Table A2.8 to A2.10). The overall welfare difference between the capacity-

based and the production-based subsidy, however, is minuscule (around

$0.10).

There are two reasons that may cause the small efficiency gains from

using the production-based subsidy. The first is the revenue-neutral subsidy

assumption. Per-system subsidy under production-based subsidy has to

increase for households located in Southern California to reach the same

level of government spending because fewer households would adopt in

Northern California. The production-based subsidy reduces the subsidy in

N. California by $216, while increases the S. California subsidy by $135 per

unit, Therefore, the welfare cost also increases by almost $1 in Southern

California from the higher subsidy level. In fact, the efficiency outcome

would be identical between these two types of subsidies in a location with

no solar radiation variation using the revenue-neutral approach. This is

simply the result of the number of installations (or purchase probability)

being monotonically increasing in subsidy. Because total spending is the

product of the subsidy and number of adopters, the subsidy amount and

the number of adoptions have to be the same under the two schemes to

reach the same level of spending. The second reason is the relatively small

difference in solar radiation between Northern and Southern California.

There is only 8% of solar resource difference, on average, between Northern

and Southern California.

towards production-based subsidies.
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To gain deeper insights on the efficiency outcomes under the two sub-

sidy schemes when applying to a large geographical area with greater solar

radiation differentials, such as what would happen in a federal subsidy pro-

gram, I replace the solar resource in Northern California by that in Alaska

while replacing the solar resource in Southern California by that in Arizona.

This increases the North-South solar radiation difference from 8% to 90%.

Table V reports the welfare costs in each utility districts To match the

government spending in capacity-based subsidy program, the equivalent

per-unit production-based subsidy decreased by 40% to $3000 in Northern

California and increase mildly by 5% in Southern California. Naturally, the

number of households that invest in solar reduces by one-third in the North

and increases by 5% in the South. Total number of installations reduces by

1-2% under the production-based subsidy but the amount CO2 emission

abatement increases by 4% because the higher level of investments occurs

in the sunnier South. I find the welfare costs of the production-based sub-

sidy indeed reduce more in this setting by about two dollars. In particular,

the welfare cost in Northern California reduces by twenty-four dollars using

the production-based subsidy relative to the capacity-based subsidy.

Table V: Welfare costs of production and capacity-based subsidies (Tiers C)

Utility
Factual World AK & AZ Solar

Capacity Production Capacity Production

PG&E $72.21 $70.9 $117.7 $93.98

SCE $67.31 $68.04 $63.63 $65.54

SDG&E $68.15 $69.16 $64.34 $66.27

Overall $69.78 $69.68 $69.13 $67.15
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5.1.2 Deadweight loss resulting from suboptimal siting

To address the question raised by Der Spiegel magazine and to study the

effect of encouraging large adoptions in a suboptimal location, I conduct a

counterfactual analysis using the estimated model but with German solar

radiation data. Suppose that the whole California is endowed with the

solar resource in Frankfurt, Germany, which is 35% less than the average

CA solar resources. Holding the subsidy at $1.1/W or $5,920 per system,

the number the adopters under German solar radiation would reduce to a

third of the amount as in the factual world (with the actual solar resources).

Meanwhile, the total amount of CO2 abated also drops to one-fifth of the

factual world for the reduced solar resources. The average consumer surplus

per solar power system decreases slightly to $755 per system because of the

higher final price (net cost) under the German solar radiation. I find that

the welfare cost of encouraging solar adoption in a suboptimal location is

50% more costly than in the factual world.

The welfare cost increases significantly when greater number of adop-

tions is required (Table A2.11-A2.13). To reach the same number of in-

stallations as in the factual world, the government would have to double

to triple the per-unit subsidy, which leads to the welfare neutral CO2 price

nearly tripled. Furthermore, in order to have the same level of electric-

ity production as in the factual world, the government has to increase the

subsidy amount to more than three times the current level. The welfare

neutral CO2 price also increases more than three-fold. The result provides

the first look into the potentially high welfare cost associated with the sub-

optimal siting. However, the actual cost of the German subsidy program is

very likely to be smaller which ultimately depends on consumer preferences

and the amount of CO2 produced during electricity generation.39

39In 2011, the CO2 emission per kWh of electricity generation in Germany was 1.6
times higher than in California. Therefore, the break-even German CO2 price here is
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5.2 Impacts from Policy Changes

The next series of counterfactual policy experiments explore how various

policy designs and levels affect equilibrium demand.

Pending Tariffs on Imported Chinese Solar Modules

The US is in the midst of the second solar tariff ruling on imported

Chinese solar panels. In October 2011, a coalition led by SolarWorld filed

an unfair competition complaint with the US Department of Commerce,

which led to a ruling that imposes duties of 30% to 265% on imported solar

panels containing Chinese solar cell. However, most Chinese companies

were able to avoid these duties by shifting the cell manufacturing to Taiwan

while keeping the rest of the supply chain in China. The new complaint

filed in 2013 is meant to extend the scope of the previous ruling and close

the loophole.

The case splits the US solar industry between domestic manufacturers

and solar installers; the first group has been squeezed to bankruptcy by

the cheaper Chinese solar panels, whereas the latter group has been ben-

efited from the increased demand due to the cheaper solar products and

are concerned that higher costs will reduce the growth in the solar power

market.

The flexibility of the structural model can also provide a quantitative

(upper-bound) prediction on the potential impact of the solar tariffs.40 Us-

ing the estimated model and the panel cost at the end of 2011, I predict the

system price from the first stage regression equation given a worst case 30%

increase in module price (GreenTech Media, 2014). Then I use this pre-

dicted price in the second stage structural model to simulate the long-run

demand. The increase in panel price leads to a relatively small 8% increase

biased upward.
40This is an upper-bound of the impact because I assume homogeneous products

and no heterogeneous consumer responses to price in this paper. In reality, there is a
much smaller subset of consumers who will be affected by the increased price of Chinese
imported solar products.
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in system price, which results in a large 22% to 31% reduction in quantity

demanded (Table VI). This is the scenario in which firms do nothing to

avoid the new tariffs. If Chinese manufacturers move cell production back

to China and pay the 2012 tariff instead, the GreenTech report estimates

that this will lead to a milder 14% increase in module prices. Given the 14%

permanent system price increase, my model indicates that we can expect

a 3.6% increase in the system price and 11% to 16% reduction in quantity

demanded.

Table VI: Potential impact of the pending tariff on imported Chinese solar cells

14% increase 30% increase

in module price in module price

Increase in system price 3.6% 7.7%

% change in installations (Tier 1) -15.9% -31%

% change in installations (Tier 4) -11% -22.08%

% change in installations (Tier Combo) -13.05% -25.88%

The analysis above raises the issue of using the end of 2011 panel price

to evaluate the impact of imposing tariffs in 2015 because the price elas-

ticity of demand is likely to be non-constant given the large price change.

While I cannot predict the impact using the 2015 panel price due to the

extrapolation concern in the first stage, I’m able to calculate the price

elasticity at the different system price levels (Table VII). Given a 1% per-

manent increase in price at the 2011 level, I find the long-run demand to

change by 4.7% using the tier 1 electricity pricing. Not surprisingly, the

demand is less elastic at the lower system price level of $3/W. This result

indicates that the impact from tariffs would be smaller in 2015 than in

2011.

Table VII: Demand Elasticity with Prices in 2011 and 2015

2011 price 2015 price

($6.23/W) ($3/W)

εD (Tier 1) 4.7 2.1

εD (Tier 4) 3.2 1.6

εD (Tier Combo) 3.8 1.8
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Matching the Social Cost of Carbon

In 2013, the U.S. government interagency working group estimated the

social cost of carbon to be $38/ton.4142 It is then of interest to understand

the impact of lowering the subsidy to $38/ton because this is the optimal

level of subsidy, where the marginal cost of subsidy equates the marginal

benefit of displacing one ton of CO2. A subtle result arises from the coun-

terfactual exercise is that it’s possible that no subsidy level is low enough

to match the $38/ton carbon price when electricity prices are high. This

is because there are enough households who would invest in solar at the

end of 2011 market condition even without any subsidies or tax credits.

The change in consumer surplus induced by the subsidy is not enough to

offset the spending on these households. Figure 3(a) shows that (program)

welfare costs follow a near linear relationship with the subsidy. At the

lower end of the subsidy, however, the welfare cost converges to $40/ton

of CO2. Figure 3(b) shows the aggregate number of households choose to

adopt solar over the 50-year time period. It follows an S -shape curve that

adoptions are slow at the lower level of subsidies, then increase at a faster

rate as subsidy get higher, and then slow down again at the high subsidy

level.44

6 Conclusion

This study uses the investment decisions in solar power systems from a large

pool of households in California during the 5-year period to recover the con-

41This is the central value (in 2007 dollar) of each additional ton of CO2 emitted
in 2015 based on the outputs of three Integrated Assessment Models-PACE, DICE and
FUND. This value increases as time evolves to $52 by 2030 and $71 by 2050. (Interagency
Working Group, 2013)

4243

44This S -shape adoption curve is another artifact of the extreme value error assump-
tion.
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(a) Welfare Costs ($/ton CO2) (b) Number of Solar Adoptions

Figure 3: Welfare costs and the number of adoptions at different subsidy levels

sumer demand function. It provides one of the first economic evaluations

of solar incentive programs to address both normative and positive policy

concerns. The result suggests that an upfront capacity-based subsidy has

greater impact than an equivalent amount of production-based subsidy on a

household’s decision to invest in a PV system. From a policy perspective,

this implies that a capacity-based subsidy encourages more solar adop-

tions than a production-based subsidy such as the feed-in tariff program,

holding the amount of government spending equal. On the other hand

production-based subsidies are more efficient than capacity-based subsi-

dies. One insight from this counterfactual experiment is that in a location

with homogeneous solar resource across the geographical boundary, the two

type of subsidies would have exactly the same efficiency implication.

The flexibility of the structural model also allows me to assess the po-

tential effect of the on-going solar trade war. I find that if the tariffs lead

to an increase in the system price, it would have a significant impact on the

solar adoptions. The long-run demand elasticity for solar is less elastic in

the recent times when the prices are low but a 1% increase in price can still

lead to 1.8% decrease in the solar demand. The model shows that most of
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the investments in solar power systems would not have been made without

the CSI upfront subsidy and the residential renewable energy tax credits.

To respond to the concern raised by Der Spiegel, this study also shows that

the German subsidy program for solar electricity could indeed be highly ex-

pensive due to Germany’s suboptimal solar resources. We may agree with

Thomas Edison’s vision of switching to the solar power generated electric-

ity before the exhaustion of fossil fuel resources. This should, however,

occur in a sustainable manner that balances the benefits and the costs of

the programs. This paper provides the quantitative results to address these

overarching questions.
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Appendix

A1. Background Information (For Online Publication)

A1.1 The Characteristics of Solar Technology

Solar power systems can be broadly separated into two categories - PV

technologies and concentrated solar power technologies. PV technologies

commonly referred to as ”solar panel” systems feature an unusual attribute

among all electricity generation technologies inasmuch as they provide dis-

tributed power generation.45 Photovoltaic technologies convert sunlight

directly into electricity using semiconductors that exhibit the photoelectric

effect. This effect was first observed by Becquerel in the 19th century and

in 1921 a Nobel Prize was awarded to Albert Einstein for his mathemat-

ical description of the effect. When Chapin, Fuller and Pearson patented

their PV cell in 1954, while working at Bell Laboratories, they adopted

silicon as the semiconductor material of choice. It achieved 6% efficiency

at a cost of $1,720/W. Since then, crystalline silicon (c-Si) cells have been

the most widely deployed PV technology reaching an average efficiency of

14.4% (Hand et al. 2012).

The dominant PV cell manufacturers in the U.S. include the Phoenix-

based First Solar Company that uses different semiconductor materials,

such as cadmium telluride (CdTe) or copper indium gallium selenide (CGIS)

to produce solar cells. These products are often called thin-film PV cells

because of their physical characteristics as they are thinner than tradi-

tional c-Si cells. Thin films are generally cheaper to produce and easier

to integrate into a housing structure. However, due to their relatively low

efficiency rate46 they currently do not have a cost advantage over c-Si solar

cells. PV panels or PV modules are connected assemblies of multiple PV

45Solar power systems can generate electricity on-site unlike the common setup where
electricity is generated at a central station and subsequently transmitted to each house-
hold through transmission lines and substations.

46Thin-film efficiency rate is around 10% for most commercially available cells de-
pending on the material that is used. Prof. Yablonovitch used gallium arsenide (GaAs)
as the solar cell material and reached a record of 28.3% efficiency approaching the 33.5%
Shockley-Quiesser efficiency limit of single junction solar cell. Thin-film PV cells are
considered by many to be the technology of the future, and are sometimes referred to
as ”second generation” solar cells.

43



cells which make up components of a larger PV system. These PV systems

can be installed on any residential rooftop to generate electricity to supply

household electricity needs. They are referred to as distributed generation

systems since the electricity is generated at each node without the need of

transporting electricity from a central power generation plant to individual

users through power transmission lines. PV technologies always have an

economic advantage in rural areas due to the high fixed cost of setting up

transmission lines (or the off-grid systems).

The main disadvantage of PV technologies is that they only generate

electricity when the sun is shining.47 PV systems cannot support modern

household electricity needs without an electrical storage system, which can

be extremely expensive. Therefore the systems of interest in this paper

are ”grid-connected” systems. These systems generate electricity to supply

a household but when the demand is higher than the solar system can

deliver or during the night time, the residual demand is supplied by the

usual sources through grid/transmission lines.

Concentrated solar power (CSP) technologies use mirrors or lenses to

focus sunlight onto a receiver. The receiver contains a working fluid which

transfers the thermal energy to a heat engine that drives an electrical gen-

erator. Examples of CSP technologies include the Solar Two, a 10 MW

Department of Energy demonstration solar tower project, and parabolic

trough systems. CSP experienced very little growth since the mid-90s and

its utility-scaled deployment excludes this technology from the considera-

tion in this paper.

A1.2 Solar Power Markets

In analogous to retailers and wholesalers in the conventional markets, the

solar supply-side can be characterized by two interdependent markets- one

is the market with PV installers as suppliers and the other is the market

with wafer, cell and module manufacturers as suppliers. The most impor-

tant distinction between the two markets is that the former is organized as

a domestic market whereas the latter is an international market. For exam-

47The intermittency and integration issue with solar and wind power which is not
in the scope of this study is discussed in Gowrisankaran et al. (2014), EnerNex Corp
(2010), and GE Energy (2010).
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ple, manufacturers in China and Taiwan produced 61% of the global supply

of PV modules in 2011 and on average merely 6% of the solar power system

capacities are installed in the US. This observation shows that the price of

solar modules doesn’t depend on the domestic activity to a large extend

and avoids the potential endogeneity concern. One potential endogeneous

variables are the unobservables that encourage installations that also leads

to higher module prices. Since US contributes only a small percentage

of the total world demand, it’s conceivable that the local increase in de-

mand in California doesn’t translate a global module price spike (However,

the extend of the influence should be further studied empirically.). The

production capacity followed a period of rapid expansion, as worldwide

module manufacturing capacity increased 100-fold from 2007 to 2011 after

the relief from the global bottleneck in raw silicon production. During this

period, the supply capacity is 50% to 200% higher than the demand size.

The excess built-up in capacity finally lead to numerous bankruptcies and

consolidations in 2011, and this led to the DoC complaint filed by Solar

World, discussed above.

The solar PV demand-side market can be broadly divided into three

sectors - utility, commercial and residential, based on the ownership of the

solar power system. Residential systems are generally less than 10 kW

due to the limited rooftop space available whereas commercial systems are

generally between 10 kW and several MW in size and utility systems are

often several hundred MW. The residential market contributes to one-fifth

of the operating capacities in the U.S. In this paper, we will focus on

residential grid-connected systems.48

48While commercial sector could be potentially more important to study for its larger
market share and potential, its complex nature poses much more challenges than the
residential households. For example, consider a company rents an office building from
the owner and pays its own electricity bills. The owner might has incentives to install
solar power systems to differentiate their office building from the others and charge a
premium in the rent but conceivably a rare situation. Meanwhile, the renter may not
have the right to install solar power systems or unwilling to invest due to the uncertainty
in the length of the lease. In addition, many subsidies programs have a funding cap thus
poses a problem in identification. The CSI residential program is one of the few programs
that doesn’t have such a constraint.
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A1.3 California Solar Initiative Program

California, with its scenic coastline and rich natural resources, has long ex-

ercised progressive environmental policies. For example, California passed

the Solar Rights Act back in 1979. This establishes the right of homeowners

and businesses to access sunlight in order to generate solar energy and lim-

its the ability of local governments or homeowner associations to prevent

solar system installations.49 In 1998, California was one of the first states

to provide a capacity-based solar incentive policy following the electricity

deregulation. The funding for these programs is supported by the Public

Benefit Fund. It is collected by each investor-owned utility (IOU) company

based on the ratepayer’s electricity usage50 through a ”public good charge”,

created by AB1890 in 1996. There were two parallel subsidy programs that

were in effect from 1998 to December 31, 2006. California Energy Com-

mission’s (CEC) Emerging Renewable Program (ERP) which targets resi-

dential and small commercial solar systems that are under 30 kW. Larger

commercial systems are funded through California Public Utilities Com-

mission’s (CPUC) self-generation incentive program (SGIP). There were

very few adoptions in the market despite the initial $3/W subsidy51 and

the preexisting net-metering rule. Cumulative installation increased by a

mere 43% from 6 MW in 1996 level to 8.7 MW at the end of 1999.

The 2000-2001 electricity crisis presented itself as a turning point for the

solar power market in California. It heightened the awareness of the bene-

fits of self-generated electricity and shifted the public opinion on renewable

energy policy. Following the crisis, California provides a 15% state tax

credit for renewable energy investments and increased the capacity-based

subsidy to $4.50/W in 2001. Later that year, funding for mid-sized and

large projects were depleted. Within the three-year timespan from 2000 to

2003, the cumulative grid-tied PV capacity increased by 300% (see Figure

49In addition, California also enacted the Solar Shade Control Act in 1978 which
guarantees PV system with access to sunlight from the neighboring trees and buildings.

50This additional charge varies by utility and customer type. It is around 0.85
cents/kWh in addition to the electricity rate. 18% of the fund is used to support
renewable energy technologies while 63% is used for energy efficiency related programs
and the remaining 18% is for research and development projects.

51Compare this to the average $10/W total system price. Note that in 1998 there was
a 50% cap on the total subsidy amount relative to the total system cost however it’s not
a binding constraint in most cases.
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A5.8).

Since 2007, the two programs had been replaced by the Go Solar Cali-

fornia campaign with a goal of installing 3 GW of solar generating capacity

over 10 years with a budget of $3.35 billion. A third of the goal is designed

to be fulfilled by the New Solar Homes Partnership program that focuses

on integrating solar power systems into new housing constructions thus at a

lower installation cost. The rest of the capacity is to be met under the Cal-

ifornia Solar Initiative (CSI) program.52 Systems larger than 30 kW53 are

required to take the 5-year performance-based incentive to receive monthly

payments while smaller systems are to take the expected performance-

based buydown (EPBB) subsidy and receive a one-time lumpsum upfront

payment.54 This upfront capacity-based rebate starts at $2.50/W and de-

clines to nil following a block schedule as shown in Figure A5.1. When

the aggregate installed capacity reached a preset amount, the subsidy level

moves down to the next level. The block schedule (or subsidy degression)

is a method to reflect the declining system cost in the future and addition-

ally it encourage adoptions to occur sooner, rather than later. Since the

panel price continues to decline over time (See Figure A5.9 and A5.10), a

rational forward looking consumer will always choose to adopt at a later

date, should the subsidy stay constant over time. Each of the three IOUs

receives a pre-allocated target and follows its own subsidy schedule (Table

A2.2). The particular block schedule adopted by CSI means that the finan-

cial incentive declines as more capacity is installed. This particular design

also means the policy makers have precise information on the amount of

subsidy that is required to reach the 1.94 GW target level of adoption.

This is in contrast to the production subsidy where the subsidy amount

depends on the realized production amount.

52Within the CSI, a third of the installed capacity are to be fulfilled by the residential
sector and the rest to be fulfilled by commercial, government and non-profit sectors
jointly.

53When the CSI launched in 2007, this threshold is set at 100kW. Subsequently, this
is lowered to 50 kW during 2008-2009 and 30 kW starting in 2010.

54The EPBB program is essentially a capacity-based subsidy but it weights the final
subsidy amount based on the quality and installation orientation of the solar power
systems. Systems less than 10 kW in size have to take the capacity-based subsidy while
systems between 10 kW and 30 kW have the option to opt into the PBI program.
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A2. Tables

Table A2.1 CSI rebate rate schedule

Step
Statewide MW

in each step
Residential subsidy

rate (per Watt)

1 50 n/a

2 70 $2.50

3 100 $2.20

4 130 $1.90

5 160 $1.55

6 190 $1.10

7 215 $0.65

8 250 $0.35

9 285 $0.25

10 350 $0.20
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Table A2.2: First stage regression result

cost/W Std. Err.

pre2007 -0.0009∗∗∗ (.0002)

size (kW) -0.2037∗∗∗ (.0045)

size2 (kW2) 0.0038∗∗∗ (.0001)

wages 1.4702∗∗∗ (.0435)

Module cost 0.6557∗∗∗ (.1338)

2007 – omitted –

2008 0.0763∗∗ (.0390)

2009 -0.1700∗∗∗ (.0396)

2010 -0.4594∗∗∗ (.0599)

2011 -.3688∗∗∗ (.0922)

PG&E – omitted –

SCE 0.7456∗∗∗ (.0426)

SDG&E 0.3206∗∗∗ (.0284)

cons 4.127∗∗∗ (.2685)

N 25,038

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2.4: Maximum Likelihood Estimation Results without Utility Specific Time Trends

Variables null
Lowest Tiered

Pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

Highest Tiered

pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

system price -0.132∗∗∗ -0.146∗∗∗ -0.14∗∗∗ -0.3626∗∗∗ -0.3762∗∗∗ -0.3525∗∗∗

(0.022) (0.025) (0.024) (0.0375) (0.0575) (0.0471)

CSI subsidy 0.035* 0.057∗∗∗ 0.055∗∗∗ 0.0664∗∗∗ 0.1099∗∗∗ 0.102∗∗∗

(0.020) (0.022) (0.020) (0.0145) (0.0176) (0.0131)

Revenue 0.01 0.024∗∗∗ 0.088∗∗∗ 0.0736 0.0486∗∗∗ 0.0397**

(0.016) (0.005) (0.036) (0.0601) (0.008) (0.0179)

Tax Credits 0.026∗∗∗ 0.022∗∗∗ 0.018∗∗∗ 0.3876∗∗∗ 0.3967∗ 0.3219∗

(0.004) (0.005) (0.005) (0.1084) (0.2153) (0.1647)

net cost

D2008 0.8164∗∗∗ 0.8864∗∗∗ 0.85∗∗∗

(0.1096) (0.0799) (0.082)

D2009 -3.3754∗∗∗ -3.6386 -2.6715

(1.1937) (2.3645) (2.3776)

D2010 -4.2081∗∗∗ -4.244∗ -3.2885

(1.1583) (2.3655) (2.3670)

D2011 -4.5697 -4.4337 -3.5666

(1.1419) (2.3744) (2.3696)

SDGE -0.2632 0.1222 -0.1977

(0.1340) (0.1347) (0.1461)

SCE -0.6186∗∗∗ 0.3988∗∗∗ 0.1175∗∗∗

(0.1203) (0.0637) (0.0522)

constant -8.4466∗∗∗ -3.3638∗∗∗∗∗∗ -3.401∗∗∗ -4.134∗∗∗ 5.4766∗∗∗ 4.8343∗∗ 4.709∗∗∗

(0.848) (0.909) (1.272) (1.7038) (2.4216) (2.3497)

N observations 20640 20640 20640 20640 20640 20640 20640

Log- Likelihood -241985 -239281 -239215 -239192 -238260 -237631 -237760

LR chi2 5409 5541 5587 7450 8709 8451

prob > chi2 0 0 0 0 0 0

standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < 0.01
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Table A2.5: Maximum Likelihood Estimation Results with Fixed Effects and Utility-Time Trends

Variables null
Lowest Tiered

Pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

Highest Tiered

pricing (Tier 1)

Highest Tiered

pricing (Tier 4)

Combined

Tiered Pricing

system price -0.1847∗∗∗ -0.1834∗∗∗ -0.2007∗∗∗

(0.0594) (0.0605) (0.0598)

CSI subsidy 0.1467∗∗∗ 0.146∗∗∗ 0.147∗∗∗

(0.0123) (0.0118) (0.0122)

Revenue -0.0560 -0.0259 -0.0143

(0.0474) (0.0178) (0.0153)

Tax Credits -0.4854∗∗ -0.4855∗∗ -0.4296∗∗

(0.2138) (0.2107) (0.2124)

net cost -0.1889 -0.1276∗∗∗ -0.153∗∗∗

(0.0249) (0.0142) (0.0330)

D2008 0.7677∗∗∗ 0.7645∗∗∗ 0.7787∗∗∗ 0.8477 0.6429∗∗∗ 0.754∗∗∗

(0.0751) (0.0781) (0.0730) (0.0817) (0.0416) (0.1147)

D2009 5.8226∗∗ 5.9469∗∗ 5.2569∗∗ -0.8134 -1.0606∗∗∗ -0.7814∗∗∗

(2.2991) (2.2859) (2.2862) (0.1664) (0.1614) (0.2507)

D2010 5.2047∗∗ 5.3843∗∗ 4.6395∗∗ -0.4933 -1.0496∗∗∗ -0.5851∗∗

(2.2771) (2.2920) (2.2591) (0.1673) (0.1969) (0.2816)

D2011 4.6442∗∗ 4.7220∗∗ 4.0513∗ -0.5599 -0.631∗∗∗ -0.5868

(2.2786) (2.2802) (2.2571) (0.1680) (0.1486) (0.2693)

SCE×08 0.0998∗∗ 0.0563∗ 0.0921∗∗∗ 0.0364 0.3459∗∗∗ 0.1372∗∗∗

(0.0340) (0.0417) (0.0275) (0.0377) (0.0521) (0.091)

SCE×09 0.4525∗∗∗ 0.3184∗ 0.3921∗∗∗ -0.1136 0.7755∗∗∗ 0.2402∗

(0.1507) (0.1635) (0.1517) (0.0939) (0.0468) (0.125)

SCE×10 0.4025∗∗∗ 0.1965 0.3201∗∗ -0.3134 1.0276∗∗∗ 0.231

(0.1578) (0.1881) (0.1591) (0.1450) (0.0538) (0.1736)

SCE×11 1.3707∗∗∗ 1.2649∗∗∗ 1.3144∗∗∗ 0.7342 1.4852∗∗∗ 1.1154∗∗∗

(0.1466) (0.1518) (0.1475) (0.0980) (0.0393) (0.1318)

SDGE×08 0.1724∗∗∗ 0.1766∗∗∗ 0.1778∗∗∗ 0.1556 0.1647∗∗∗ 0.1145

(0.0076) (0.0100) (0.007) (0.0115 (0.0225) (0.0983)

SDGE×09 0.9983∗∗∗ 1.0969∗∗∗ 1.0191∗∗∗ 0.8366 0.437∗∗∗ 0.5782∗∗∗

(0.0500) (0.0837) (0.0556) (0.0347 (0.0720) (0.1923))

SDGE×10 0.9015∗∗∗ 0.8681∗∗∗ 0.8982∗∗∗ 0.7877 0.9552∗∗∗ 0.7337∗∗∗

(0.0500) (0.0512) (0.0491) (0.0124) (0.0272) (0.0861)

SDGE×11 1.2027∗∗∗ 1.2447∗∗∗ 1.1974∗∗∗ 1.0427 0.7961∗∗∗ 0.9801∗∗∗

(0.0511) (0.0617) (0.0496) (0.0126) (0.0308) (0.0965)

SDGE -0.9089∗∗∗ -1.0347∗∗∗ -0.6118∗∗∗ -1.0248 0.0857 -0.7525

(0.0965) (0.1321) (0.0605) (0.0565) (0.0808) (0.1062)

SCE -0.5293∗∗∗ -0.7896∗∗∗ -0.9191∗∗∗ -1.1299 -0.6854∗∗∗ -1.1023∗∗∗

(0.1557) (0.1769) (0.1509) (0.0784) (0.0884) (0.072)

constant -0.9660 -0.7487 -0.2909 -0.4914 -4.0907 -7.8227∗∗∗ -5.7191∗∗∗

(2.3042) (2.3267) (2.3351) (0.6334) (0.0684) (0.5516)

N observations 20640 20640 20640 20640 20640 20640 20640

Log-Likelihood -241,985 -237,678 -237,676 -237,681 -238,397 -238,628 -238,511

LR chi2 8,615 8,619 8,609 7,177 6,715 6,949

prob > chi2 0 0 0 0 0 0

standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < 0.01
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Table A2.6: Welfare Costs of the Solar Incentive Programs

Tier 1 Tier 4 Tier C

CSI Subsidy CSI & Tax Credits CSI Subsidy CSI & Tax Credits CSI Subsidy CSI & Tax Credits

4 num. adoptions

PGE 22% 87% 18% 76% 19% 81%

SCE 46% 91% 34% 80% 40% 86%

SDGE 21% 85% 16% 73% 18% 79%

Overall 27% 87% 21% 76% 23% 81%

Total Installations (’000)

PGE 178 178 121 121 172 172

SCE 82.8 82.8 80.6 80.6 80.3 80.3

SDGE 133 133 120 120 131 131

Overall 394 394 321 321 383 383

Change in CS ($ per system)

PGE 337.5 882.7 481 1259 367.8 1026

SCE 456.2 789.4 512 1029 490.5 919.9

SDGE 290.2 811.8 349.9 1071 314.5 942.2

Overall 346.5 839.1 439.9 1131 375.3 975.4

Implied CO 2 price ($/ton)

PGE 63.43 120 83.57 135 73.56 126.7

SCE 62.55 125.2 81.83 137.5 71.92 130.6

SDGE 59.02 108.7 79.28 124.2 69.33 115.9

Overall 61.9 117.3 81.64 131.7 71.8 123.7

All dollar values are in 2011 dollar. The unit, ton, refers to metric ton.

I keep the tax credits in the background even when evaluating only the CSI subsidy for the reason to be closest to the reality.

Table A2.7: Welfare Costs of the Solar Incentive Programs Without Adjusting for Consumer Surplus

Tier 1 Tier 4 Tier C

CSI Subsidy CSI & Tax Credits CSI Subsidy CSI & Tax Credits CSI Subsidy CSI & Tax Credits

Implied CO 2 price ($/ton)

PGE 85.42 134.7 122.8 159.2 101.9 145.2

SCE 75.97 137 102.2 155 88.78 145.2

SDGE 77.59 121.6 109.8 144.2 93.36 132.2

Overall 79.8 130.8 110.6 152.6 94.7 140.7

All dollar values are in 2011 dollar.
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Table A2.8: Welfare comparison between capacity- and production-based subsidies (revenue neutral, Tier 1)

Capacity-based

subsidy

Production-

based subsidy

Capacity-based

subsidy with AZ

solar in S. CA

and AK solar in

N. CA

Production-

based with

AZ(S. CA) and

AK (N. CA)

solar

4 num. adoptions

PGE 60.56% 76.04% 53.84% 26.28%

SCE 62.70% 94.03% 120.40% 145.30%

SDGE 58.71% 146.20% 179.20% 213.80%

Overall 60.33% 60.29% 60.61% 59.53%

Total Installations (’000)

PGE 322 244 204 203

SCE 133 91.7 77 75.4

SDGE 242 101 85.2 82.7

Overall 697 696 586 571

Subsidy ($/W)

PGE $1.1/W $1.06/W $1.1/W $0.656/W

SCE $1.1/W $1.12/W $1.1/W $1.23/W

SDGE $1.1/W $1.13/W $1.1/W $1.23/W

Overall $1.1/W 7.914 �/kWh $1.1/W 8.142 �/kWh

Public spending (’000) $2,646,265 $2,646,265 $2,221,709 $2,221,709

Change in CS $627.2 $295.2

PGE $819.5 $1022 $1534 $1894

SCE $776.3 $1170 $2745 $3400

SDGE $857.2 $2154 $1310 $1340

Overall $824.3 $1315

Lifetime CO2 abatement

PGE 13 13 4.6 2.2

SCE 6.1 6.3 7.2 8.5

SDGE 10 11 12 14

Overall 30 30 24 25

Implied CO 2 price

PGE $71.26 $69.77 $111.5 $87.23

SCE $64.79 $65.66 $61.42 $65.9

SDGE $68.75 $70.05 $66.32 $71.26

Overall $69.07 $69.01 $73.51 $70.83
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Table A2.9: Welfare comparison between capacity- and production-based subsidies (revenue neutral, Tier 4)

Capacity-based

subsidy

Production-

based subsidy

Capacity-based

subsidy with AZ

solar in S. CA

and AK solar in

N. CA

Production-

based with

AZ(S. CA) and

AK (N. CA)

solar

4 num. adoptions

PGE 47.57% 58.92% 21.41% 10.21%

SCE 48.81% 75.65% 112.30% 121.70%

SDGE 45.41% 117.20% 166% 179.60%

Overall 47.03% 46.99% 46.25% 45.66%

Total Installations (’000)

PGE 251 194 150 150

SCE 112 74.4 56.9 56.5

SDGE 207 83.1 63.3 62.5

Overall 570 570 435 430

Subsidy ($/W)

PGE $0.696/W $1.06/W $1.1/W $0.618/W

SCE $0.691/W $1.12/W $1.1/W $1.16/W

SDGE $0.704/W $1.13/W $1.1/W $1.16/W

Overall $1.1/W 7.898 �/kWh $1.1/W 7.671 �/kWh

Public spending (’000) 2146438 $2146438 $1642808 $1642808

Change in CS

PGE $904.9 $1117 $338.4 $159.8

SCE $879.9 $1369 $2103 $2295

SDGE $949.5 $2463 $3717 $4064

Overall $916.2 $1489 $1502 $1517

Lifetime CO2 abatement

PGE 8.2 7.9 1.3 0.63

SCE 4 4.1 5 5.4

SDGE 6.9 7.2 8.2 8.8

Overall 19 19 15 15

Implied CO 2 price

PGE $86.81 $85.44 $132.2 $108.7

SCE $79.73 $80.48 $76.2 $78.13

SDGE $85.08 $86.2 $83.23 $85.37

Overall $84.71 $84.66 $85.31 $83.74
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Table A2.10: Welfare comparison between capacity- and production-based subsidies (revenue neutral, Tier C)

Capacity-based

subsidy

Production-

based subsidy

Capacity-based

subsidy with AZ

solar in S. CA

and AK solar in

N. CA

Production-

based with

AZ(S. CA) and

AK (N. CA)

solar

4 num. adoptions

PGE 58.18% 56.86% 59.28% 39.83%

SCE 58.72% 59.58% 58.36% 60.49%

SDGE 57.65% 58.72% 57.74% 59.84%

Overall 58.07% 58.04% 58.19% 57.87%

Total Installations (’000)

PGE 75.1 72.8 19 12.8

SCE 26.9 27.5 37.6 39.7

SDGE 63.9 65.6 61.4 64.6

Overall 166 166 118 117

Subsidy ($/W)

PGE $1.1/W $1.06/W $1.1/W $0.619/W

SCE $1.1/W $1.12/W $1.1/W $1.16/W

SDGE $1.1/W $1.13/W $1.1/W $1.16/W

Overall $1.1/W 7.898 �/kWh $1.1/W 7.689 �/kWh

Public spending (’000) $609325 $609325 $433155 $433155

Change in CS

PGE $774.4 $755.9 $753.4 $504.4

SCE $764 $776 $770.8 $800.6

SDGE $784.5 $800.4 $782.8 $813.8

Overall $776.6 $776.8 $774.3 $775.4

Lifetime CO2 abatement

PGE 3 2.9 0.47 0.21

SCE 1.2 1.2 1.7 1.9

SDGE 2.7 2.8 2.8 3

Overall 6.9 6.9 4.9 5.1

Implied CO 2 price

PGE $72.21 $70.9 $117.7 $93.98

SCE $67.31 $68.04 $63.63 $65.54

SDGE $68.15 $69.16 $64.34 $66.27

Overall $69.78 $69.68 $69.13 $67.15
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Table A2.11: Counterfactual analysis with solar irradiation for Frankfurt, Germany (Tier 1)

Baseline (Fac-

tual World Solar

Radiation)

Frankfurt irradia-

tion

Frankfurt radia-

tion/ same num.

installations

Frankfurt ra-

diation/ same

electricity prod.

4 num. adoptions

PGE 66.24% 66.77% 83.68% 89.38%

SCE 66.71% 67.06% 84.04% 89.77%

SDGE 66.01% 66.80% 83.72% 89.42%

Overall 66.23% 66.83% 83.75% 89.46%

Total Installations (’000)

PGE 63.5 34.2 69.6 107

SCE 21.7 10.5 21.7 33.9

SDGE 49 21 42.8 65.9

Overall 134 66 134 207

Subsidy $1.1/W $1.1/W $1.83/W $2.28/W

Change in CS ($ per system)

PGE $705.5 $695 $889.5 $972.1

SCE $696.2 $689.4 $873.8 $945

SDGE $710.2 $694.4 $887.8 $969.2

Overall $705.7 $693.9 $886.4 $966.7

Electricity production 26 GWh 8.3 GWh 16.9 GWh 26 GWh

Lifetime CO 2 abatement (MMt)

PGE 2.9 1.1 2.7 4.4

SCE 1.1 0.33 0.84 1.4

SDGE 2.4 0.65 1.7 2.7

Overall 6.3 2 5.2 8.6

Implied CO 2 price

PGE $64.91 $95.77 $134.4 $161.2

SCE $60.65 $95.33 $133.7 $160.1

SDGE $60.86 $95.72 $134.3 $161.1

Overall $62.68 $95.68 $134.2 $161

MMt refers to million metric tons
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Table A2.12: Counterfactual analysis with solar irradiation for Frankfurt, Germany (Tier 4)

Baseline ”Fac-

tual World Solar

Radiation”

Frankfurt irradia-

tion

Frankfurt irradia-

tion/ same num.

installations

Frankfurt irra-

diation/ same

electricity prod.

4 num. adoptions

PGE 51.43% 52.72% 87.86% 92.22%

SCE 51.92% 52.70% 87.83% 92.18%

SDGE 50.81% 52.48% 87.45% 91.78%

Overall 51.28% 52.62% 87.69% 92.04%

Total Installations (’000)

PGE 82.8 18.2 7080.00% 110

SCE 33 10.9 4240.00% 65.9

SDGE 70.6 19.4 7330.00% 112

Overall 186 48 186.6 288

Subsidy $1.1/W $1.1/W $3.14/W $3.83/W

Change in CS ($ per system)

PGE $828.3 $803.4 $1380 $1483

SCE $818.9 $803.8 $1383 $1489

SDGE $840.4 $808 $1416 $1545

Overall $831.2 $805.3 $1395 $1509

Electricity production 36.2 GWh 6.1 GWh 23.4 GWh 36.2 GWh

Lifetime CO 2 abatement (MMt)

PGE 2.9 0.44 2.9 4.7

SCE 1.3 0.27 1.7 2.8

SDGE 2.6 4.70E-01 3.00E+00 4.8

Overall 6.8 1.2 7.6 12

Implied CO 2 price

PGE $80.22 $116.6 $223.4 $266.1

SCE $74.85 $116.6 $223.6 $266.3

SDGE $75.97 $117.1 $225 $268.4

Overall $77.59 $116.8 $224.1 $267

MMt refers to million metric tons

57



Table A2.13: Counterfactual analysis with solar irradiation for Frankfurt, Germany (Combined Tiered Pricing)

Baseline ”Fac-

tual World Solar

Radiation”

Frankfurt radiation Frankfurt irradia-

tion/ same num.

installations

Frankfurt ra-

diation/ same

electricity prod.

4 num. adoptions

PGE 58.18% 59.22% 88.11% 92.31%

SCE 58.72% 59.34% 88.28% 92.49%

SDGE 57.65% 59.13% 87.97% 92.16%

Overall 58.07% 59.21% 88.09% 92.29%

Total Installations (’000)

PGE 75.1 22.1 75.90 117.00

SCE 26.9 9.1 31.60 49.30

SDGE 63.9 17.2 58.5 89.7

Overall 166 48 166 256

Subsidy $1.1/W $1.1/W $2.65/W $3.22/W

Change in CS ($ per system)

PGE $774.4 $754.5 $1158 $1244

SCE $764 $752.3 $1145 $1222

SDGE $784.5 $756.3 $1169 $1263

Overall $776.6 $754.7 $1159 $1246

Electricity production 32.2 Gwh 6.1 Gwh 20.9 GWh 32.2 GWh

Lifetime CO 2 abatement (MMt)

PGE 3 0.61 3.1 5

SCE 1.2 2.50E-01 1.30E+00 2.10E+00

SDGE 2.7 0.47 2.4 3.8

Overall 6.9 1.3 6.8 11

Implied CO 2 price

PGE $72.21 $105.6 $188.2 $223.5

SCE $67.31 $105.4 $187.7 $222.7

SDGE $68.15 $105.8 $188.7 $224.2

Overall $69.78 $105.7 $188.3 $223.6

MMt refers to million metric tons
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A3. Calculating the equivalent CO2 prices from dead-

weightloss (For Online Publication)

The deadweight loss (DL) can be derived by subtracting the increase in

consumer surplus (CS) due to the increase in subsidy from the total gov-

ernment spending on subsidy (G).

DL = G−4CS

In the logit models, consumer surplus at the specified state (S) is the logit

inclusive value and θ.

CS(S) =
1

θ
log
(
eβEV (S) + eν(S)

)
×M (6.1)

Let M denote the market size, S as the current subsidy amount. Since

the consumers are forward looking in the infinite horizon time span, we

need to forward simulate the government spending in a very long horizon

(H), take 100 years for example. The purchase probability stays constant

in each period during the forward simulation process, however the market

size changes due to installers exiting the market. Let nzt be the number

of adopters in each zip code, z at time period (month) t. The net present

value of the total program spending can be expressed as

G = (1 β β2 · · · β12·H)




n11 n12 · · ·n1H·12

...
...

...
...

...

nz1 nz2 · · ·nzH·12


︸ ︷︷ ︸

zipcode×12·H

· S



′

, (6.2)

and the change in consumer surplus as (where S0 is the pre-policy change

subsidy amount)

4CS = CS(S)− CS(S0). (6.3)
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The change in the number of installations due to the change in subsidy

amount is

4Q =
12·H∑
h=1

[Qh(S)−Qh(S0)] . (6.4)

Finally the implied CO2 price can be derived as the loss in surplus per unit

of CO2 displaced or formally as

PCO2 =
G−4CS
γ ×4Q

. (6.5)

γ is a constant which represents the amount of CO2 displaced due to the

avoided electricity generation from the fossil fuel based power plant. The

average CO2 emission associated with each unit of electricity production is

taken from the California Air Resources Board report. Average amount of

CO2 emission associated with each MWh of electricity generation is 0.348

ton. Take San Diego vicinity for example, γ = 73 ton/unit which means

by installing a solar power system with the average size of 5.59 kW, the

system owner reduced the carbon dioxide emission by 73 tons over the 25

year lifetime of the system.

A4. Parameter Calibration and Data Clean-

ing (For Online Publication)

Table A5.1 Overall component DC-AC derate factor

Component Derate Factors Rate

PV Module nameplate DC rating 0.95

Inverter and Transformer 0.92

Diodes and connections 0.99

DC wiring 0.98

AC wiring 0.99

Soiling 0.95

System availability 0.98

Overall DC-AC derate factor 0.78

Assumption based on 25°C, no shading
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Table A5.2 Assumptions in simulating the future revenue and costs

Inflation 1.20%

Inverter Replacements Once (70�/W)

Utility Electric rate escalation 1.09%

Demand rate escalation 0%

Photovoltaic degradation factor (per year) 0.8%

Only residential installations are included (third party owned systems are

included).

� Installations with zero cost per watt are counted as but not included

in the first stage regression.

� There are a total of 5 relevant dates associated with each installation-

first new reservation request date, first online reservation request sub-

mitted date, first reservation request review date, first reservation

reserved date, first confirmed reservation date. The date that prox-

ies the first installation decision is the first new reservation request

(FNRR) date however there are 9.5% of the first new reservation re-

quest date missing. The most complete date is the first reservation

request reviewed (FRRR) date with merely 1.7% of the entries miss-

ing. All installation records have either one of these two dates. The

missing FNRR dates are therefore substituted by its correlation with

the FRRR dates. This correlation varies by the utility district and

year. For example the FRRR date could be the same month as the

FNRR date or lagged by the FNRR date by a month or two. In this

case, the probability of the number of lags is calculated by the data

and a uniform [0,1] random variable is drawn to determined on the

number of lags in the substituted data.

� The assumptions used in the lifetime solar electricity generation is

based on the Department of General Services of California. In this

case, the inflation rate is assumed to be 1.20%. The utility escalation

rate is 1.09% (real) based on the 1982-2008 historical average. This

gives a 2.29% nominal utility escalation rate. A annual PV degrada-

tion rate of 0.8% is used.

� Assume there is no technology improvement in inverter and a constant
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inverter cost of $0.70/W is used. We also make the assumption that

the inverter being replaced twice in the 25-year lifetime.

� We assume that there is an additional annual maintenance and oper-

ation cost (potentially including the increase in property insurance)

of $250.

A5. Figures and Charts (For Online Publica-

tion)

Figure A5.1: Subsidy degression in terms of cumulative installed capacity
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Figure A5.2: Histogram of the number of system installed by the size

Figure A5.3: Average system size trend
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A5.4: Zip code map showing PV system adoptions in California. Yellow indi-
cates installations occurred in 2011, green indicates installations in 2010.

64



Figure A5.5: Map showing the counties included in the study

Figure A5.6: 2010 benchmark residential PV system price components in the
U.S. (Goodrich et al., 2012)
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Figure A5.7: System net cost and the number of installations in La Jolla, San
Diego

Figure A5.8: Grid-tied cumulative PV installed capacity in California, 1996-
2006
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Figure A5.9: Average module cost, 1975-2012 (SolarBuzz)

Figure A5.10: Average install system cost in the US, 1998-2012 (Barbose et al.,
2013)
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Figure A5.11: Monthly revenue for tier 1, tier 2 and tier c pricing

Figure A5.12: Annual revenue for tier 1, tier 2 and tier c pricing
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Figure A5.13: Actual and predicted number of installations in out-of-sample
verification for zip code 94010
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