

Appendix:

Chapter 6, §7, second printing

7 Tableaux for monadic predicate logic

In this section, we extend the semantic tableau test for validity in sentential
logic (see §5 of Chapter Three) to monadic predicate logic. Since we now have
‘

�

’ in the language, we must first adjust the definition of when a tableau-path
closes:

A path

Π

 in a semantic tableau is

closed

 if and only if (i) ‘

T

:

�

’ occurs
at some node on

Π

, or (ii) there is a formula

s

 and nodes

n

1

 and

n

2

of

Π

 such that

[T

:

s

\

 occurs at

n

1

 and

[F

:

s

\

 occurs at

n

2

.

Π

 is

open

 if and
only if it is not closed.

In view of the decidability of monadic predicate calculus, as discussed in the
previous section, the reader might expect the extended tableau method to con-
stitute a decision procedure. However, it is rather complicated to give such a
procedure for full monadic predicate calculus, so we will content ourselves
with an algorithm that tests the validity of those sequents

which do not contain
nested quantifiers

, that is, quantifiers that occur within the scope of other
quantifiers. With this restriction in mind, we add to the sentential rules four
new rules,

T

∀

,

F

∀

,

T

∃

 and

F

∃

. These rules extend a path containing a quanti-
fied formula

[

(Q

v

)

φv

\

, signed

T

 or

F

, by adding a new node, or new nodes, that
contain formulae signed in the same way as

[

(Q

v

)

φv

\

. Unfortunately, there are
some complications.

Suppose ‘

T

: (

∀

x)Fx’ occurs at a node. ‘(

∀

x)Fx’ requires for its truth on an
interpretation

I

 that every instance

[

F

t

\

 be true, where

t

 names an element of
the domain of

I

. But in constructing a tree, a domain is not given at the outset,
so how do we know what instances to use? The answer is that we can use any
instance we please, and any number of instances we please, since each time we
write down an instance we can think of ourselves as adding a new object to the
domain. On the other hand, it would be pointless just to add instances for the
sake of doing so. We can certainly add instances that use names which already
occur in the formulae on the paths in question, but we will want to be as parsi-

214

Tableaux for monadic predicate logic

monious as possible in adding instances with new names. The same remarks
apply to the rule

F

∃

, since a false existential has universal import; for instance,
‘

F

: (

∃

x)Fx’ requires for its truth on an interpretation

I

 that

every

thing in

I

’s
domain fail to satisfy ‘F’, that is, that every formula

[

~

F

t

\

 be true, where

t

names an element of the domain of

I

. For the purposes of stating the tableau
quantifier rules succinctly, we shall use the term

witness

 to mean a formula
with the signature required by its associated signed quantified formula. For
example, for any

t

, the signed formula

[F

: F

t

\

 is a witness for ‘

F

: (

∃

x)Fx’, and
the signed formula

[T: Ft\ is a witness for ‘T: (∀x)Fx’.
The rules F∀ and T∃ require special restrictions. A tableaux with, say, only

‘T: (∃x)Fx’, ‘T: (∃x)~Fx’ and ‘F: �’ at its root node should not close, since (∃x)Fx,
(∃x)~Fx ù �. But we could close the tableau by using the same name in witness-
es for ‘T: (∃x)Fx’ and ‘T: (∃x)~Fx’, since we could get ‘T: Fa’ and ‘T: ~Fa’, hence
‘F: Fa’, in three steps. Evidently, the fallacy is in using ‘a’ twice. To be true on I,
‘(∃x)~Fx’ requires the truth on I of some instance, but there is no justification
for choosing one that mentions the same object as figured in ‘(∃x)Fx’s witness.
To avoid such fallacious steps, we stipulate that when we apply T∃ to [(∃v)φv\
and extend a path Π by adding a node to Π with a witness φt, we never replace
v with a name t that already occurs in a formula on Π. The same applies to the
rule F∀, since a false universal has existential import; for instance, ‘F: (∀x)Fx’
requires for its truth on an interpretation I that something in I’s domain fail to
satisfy ‘F’, that is, that some formula [~Ft\ be true, where t names some ele-
ment of the domain of I.

The tableaux rules for monadic predicate calculus are these:

T∀◗ F∀◗ T∃◗ F∃◗

T: (∀v)φv F: (∀v)φv T: (∃v)φv F: (∃v)φv

{T: φt} {F: φt} {T: φt} {F: φt}

The rules say that if the tail formula is on a node n in a tree, then we may
extend each path Π on which n lies by adding a new node to the bottom of Π
which contains as many witnesses as we please (different t’s). The braces indi-
cate that we may label the new node with a set of formulae of the relevant form,
not just a single formula. And we may use different sets for different nodes.
However, we must observe the restriction that when applying F∀ and T∃, we
use only names which do not occur in formulae at earlier nodes of Π.

If we simply add these rules to the sentential system, there would be noth-
ing to prevent us from failing to close a tableau which can be closed, since we
could pointlessly continue applying the rules without ever making the right
application. To avoid this, we adopt the following rules of order (see Jeffrey):

Appendix: Chapter 6, §7, second printing 215

(1) Apply all possible sentential rules, checking off a formula whenever
a rule is applied to it.

(2) If there are still open paths after (1), apply F∀ and T∃ once to each
appropriate formula, using only one witness for each application
and checking off a formula whenever a rule is applied to it.

(3) If there are still open paths after (2), apply T∀ and F∃ as often as
possible. Either use only names in formulae already on the path, but
do not repeat any formula already on the path; or, if there are no
names on the path, write down one witness using any name. Do not
check off the formulae.

(4) If there are still open paths after (3), go back to (1) and repeat the
process until a pass through (1), (2) and (3) causes no changes in the
tableau.

Example 1: Determine whether (∃x)(Fx & Gx) î (∃x)Fx.

T: (∃x)(Fx & Gx) ✔

F: (∃x)Fx

T: Fa & Ga ✔

F: Fa

T: Fa
T: Ga

✖

Note the absence of nested quantifiers. The tableau closes, hence (∃x)(Fx & Gx)
î (∃x)Fx. We follow our rules of order, though it does not matter here whether
we apply T& before or after F∃. Also, if it is indifferent which of two rules is
applied first and one of the rules would cause branching, it is sometimes better
to apply it second. Following the rules of order guarantees that if a tableau can
be closed, it will be, and that if it cannot be closed, this will be established in
finitely many steps. That is why the rules of order constitute a decision proce-
dure for validity when applied to sequents without nested quantification.

Our next example is of a tableau which determines whether (∀x)Fx →
(∀x)Gx î Fa → (∀x)Gx. The tableau is displayed on the next page. The left path
in this tableau remains open, and therefore we have shown (∀x)Fx → (∀x)Gx ù
Fa → (∀x)Gx. As in the sentential case, we can read off a counterexample to the
sequent from the signed atomic formulae on an open branch once we are fin-
ished. However, we will not go into the details of this procedure, since our pri-
mary method for demonstrating invalidity is the method of §2 of this chapter.
(The interested reader who wishes to explore tableaux further might try apply-
ing our method to an invalid sequent containing nested quantifiers such as
(∀x)[(∀y)Gy → Fx] î (∀x)(∀y)(Gy → Fx), to see exactly what goes wrong.)

216 Tableaux for monadic predicate logic

Example 2: Determine whether (∀x)Fx → (∀x)Gx î Fa → (∀x)Gx.

T: (∀x)Fx → (∀x)Gx] ✔

F: Fa → (∀x)Gx) ✔

T: Fa
F: (∀x)Gx ✔

F: (∀x)Fx T: (∀x)Gx

F: Gb

F: Fc

❑ Exercises

Repeat problems 1–19, 22 and 23 of Exercise I, §2, demonstrating invalidity by
constructing open tableaux. Then for each of these sequents in which there is
only one premise formula, test the converse semantic sequent for validity. For
example, for problem 19, determine whether *(∃x)(Fx ↔ Gx) î (∀x)Fx ↔ (∀x)Gx.

✖

