

A Brief Guide to

MacLogic

acLogic

 is a program for the Apple Macintosh computer which
implements Gentzen’s system of natural deduction NK as well
as other logical systems. It functions in two modes, either (a)

as a proof-checker, in which the user types in a proof line by line and
the program checks each line, detecting errors and displaying brief cor-
rection messages where appropriate, or (b) as a proof-constructor, in
which the user dictates the strategy to be pursued and the program
builds the proof. In the following quick guide to

MacLogic

, basic famil-
iarity with the Mac is assumed; if you’ve never used a Mac before, play
around with one and follow Apple’s introductory documentation
before starting on

MacLogic

. This guide will be enough to get someone
who knows his or her way around the Mac up and running with the pro-
gram. However, the distribution package for

MacLogic

 contains a much
fuller and more detailed manual (as a

Microsoft

Word

 file) which the
serious user should print out and study (or see http://www.dcs.st-
and.ac.uk/~rd/logic/mac/docs/).

MacLogic

 is written in a programming language called

Prolog

 (for ‘pro-
gramming in logic’). Different versions of Prolog work on different gen-
erations of Macs and with different system settings. But unless you
have a very old Mac, you should be using the latest version of

MacLogic

,
3.4.1, which you can download at http://www.dcs.st-and.ac.uk/~rd/
logic/mac/.

MacLogic

 requires OS9 to run, so if your Mac runs under
OSX, it will launch in Classic or not launch at all. If it doesn’t launch at
all it’s likely you don’t have Classic installed. There are two cases: (A)
you have one of the last Macs based on IBM chips, the G4 or G5. In this
case you need to insert the DVD that came with your Mac, find the Clas-
sic Installer, and install Classic. (B) Your Mac is one of the newest, and
has an Intel chip. In this case Classic cannot be installed, and you must

M

Graeme Forbes

http://www.dcs.st-and.ac.uk/~rd/logic/mac/docs/
http://www.dcs.st-and.ac.uk/~rd/logic/mac/docs/
http://www.dcs.st-and.ac.uk/~rd/logic/mac/
http://www.dcs.st-and.ac.uk/~rd/logic/mac/

2

Graeme Forbes

run

MacLogic

 inside a program that simulates an older Mac. An easy-to-
use package that allows this can be found at http://fitelson.org/
maclogic.htm. The simulation program is called Basilisk, and there are
versions of it for Windows, Linux, BeOS and other platforms; so

MacLogic

 can be run essentially on every type of personal computer. (If
your Mac hails from the mid-90s or earlier, please email me for help;
forbes@tulane.edu)

Before proceeding any further, you should be aware of a potentially
confusing difference in terminology between

MacLogic

 and

Modern
Logic

. In

Modern Logic

, following Lemmon, I use the term ‘premise’ to
mean ‘premise of a sequent’, that is, a formula on the left of the turn-
stile ‘

�

’ of the sequent. But in

MacLogic

 the word ‘premise’ means
‘premise for the application of a rule of inference’. For example, if we
apply

&

I to two lines j and k to infer a conjunction ‘A

&

 B’ at a line m,
the conjuncts ‘A’ and ‘B’, or the lines j and k, are said to be the

premises
for

 that application of

&

I.

MacLogic

 uses the word ‘Assumption’ for
what are called assumptions in

Modern Logic

 and

also

 for what are
called premises there: the program views what

Modern Logic

 calls pre-
mises simply as assumptions which need not be discharged.

In order to use

MacLogic

 one has to be able to type the logical symbols.
The program comes with two logic fonts, Detroit and Konstanz. (For
those familiar with the Mac, Detroit is a Chicago lookalike which con-
tains the logic symbols and is used in the program’s menus in place of
Chicago. Konstanz is a Geneva-based text font with logic symbols, and
is the font in which the program displays proofs.) If you are using

MacLogic

 on a computer on which it has not been run before, you will
probably need to install the fonts. Consult your Apple documentation
to determine whether you should install only bitmap fonts, or True-
Type fonts, or bitmap and type 1 fonts.

Logic symbols are produced by special key combinations. Beneath the
Shift key on a Mac keyboard there is a smaller key called the Option
key. A logic symbol is typically produced by pressing the Option and
Shift keys together and then pressing a character key so that all three
keys are depressed simultaneously. The key combinations for the sym-
bols are displayed in the table on the following page. In the USA release
of System 7, Apple remapped the keyboard, making some logic sym-
bols harder to produce. You might be able to restore the System 6 key-

http://fitelson.org/maclogic.htm
http://fitelson.org/maclogic.htm

A Brief Guide to

MacLogic

3

board using the Keyboard control panel. You may also want to obtain

the freeware control panel

PopChar

, which displays a font’s character
set on screen, tells you what keystroke will produce any character you
select, and will pop that character into your text at the current cursor
position. (The most recent versions of

MacLogic

, 3.

x

 and later, allow
certain other ways of creating symbols – see the Advice window that is
displayed on startup.)

❏

Proof-Checking

Launch

MacLogic

 by double-clicking the program icon (the hand draw-
ing ‘

∃

’). You will be presented with some messages which you should
read and then dismiss by clicking ‘Ok’. Pressing the Return key is the
same as clicking ‘Ok’, or more generally, it is the same as clicking the
button with the thick border (if there is one), the

default

 button, in any
dialog box. You will now be presented with the following menu bar at
the top of your screen:

Symbol System 6
Keystroke

System 7, 8,
9, Keystroke

~ Option-Shift-L Option-Shift-L

∨

Option-Shift-D Option-Shift-D

→

Option-Shift-Y Option-Shift-Y

↔

Option-Shift-S Option-Shift-S

�

Option-Shift-F Option-Shift-F

∀

Option-Shift-U Option-U and
then Shift-E

∃

Option-Shift-E Option-Shift-R

�

Option-Shift-N Option-Shift-I

�

Option-Shift-V Option-Shift-V

Table 1: Keystrokes for Logic Symbols in Konstanz

4

Graeme Forbes

File Edit Logic Problem Options Windows Help

The Apple menu (the one which appears by clicking on the

) allows
you to display the information box which also appears when you
launch

MacLogic

 (this is useful if you want to reset the evaluation space
in

MacLogic

 2.5 or earlier) and then underneath, the names of the vari-
ous ‘accessories’ which are installed in your system (these appear no
matter what program is running). You should take a moment to explore
the other seven menus, which belong to

MacLogic

 itself. Under the

File

menu are various options, none of which need concern you at the
moment. The

Edit

 menu contains the usual Mac operations and a spe-
cial

Balance

 command. If you highlight a parenthesis in a formula and
choose

Balance

, the program will find the matching parenthesis (if
there is one) in the formula. This is useful if the program has told you
that you have typed a non-wff. The

Logic

 menu offers a choice of vari-
ous logical systems. Make sure

Classical

 is checked. The other menu to
look at before beginning is the

Problem

 menu. Make sure

Delta Con-
version

 is

not

 checked and

Checking

is

 checked. The program defaults
to

Delta Conversion

 off, but

Constructing

 rather than

Checking

 may
be activated (

Alpha Conversion

 is irrelevant at this point but later you
will want it off).

MacLogic

 2.5 or earlier will let you save the settings you
select, but 3.

x

 will not and you will have to reset them each time you
launch the program. Remember to set

Classical

 in the

Logic

 menu

.

To demonstrate a simple proof-check, we will check this proof:

Example 1:

Show P

→

 (Q

→

 R)

�

 (P → Q) → (P → R).

1 (1) P → (Q → R) Premise
2 (2) P → Q Assumption
3 (3) P Assumption
1,3 (4) Q → R 1,3 →E
2,3 (5) Q 2,3 →E
1,2,3 (6) R 4,5 →E
1,2 (7) P → R 3,6 →I
1 (8) (P → Q) → (P → R) 2,7 →I

To derive ‘(P → Q) → (P → R)’ we expect to use →I at the last line, requir-
ing that we assume the antecedent ‘P → Q’ (line 2) and derive the con-
sequent ‘P → R’ (line 7). Since ‘P → R’ is another conditional, we would

A Brief Guide to MacLogic 5

expect to derive it by →I too, so we assume its antecedent ‘P’ (line 3)
and derive its consequent ‘R’ (line (6).

To check that this is a correct proof we enter it line by line into MacLog-
ic. First we have to enter the problem itself. From the Problem menu
choose Dialog, aand type in the premises and conclusion. Clicking Ok
will cause the screen to redraw and two new windows will appear, the
Proof window and the Next Line entry window, as shown in Figure 1:

Click in the Formula: box and type the formula ‘P → (Q → R)’ (without
the quotes; you may be able to type ‘->’ to get ‘→’). Then click the radio
button next to Ass and then click Ok or hit Return. The first line of the
proof will be displayed in the Proof window and the Assn. Nos: and
Formula: boxes will clear.

We can now enter the second line of the proof. Click in the Assn. Nos:
box and type ‘2’, Tab or click in the Formula: box and type ‘P → Q’
(MacLogic will not insist on outer parentheses), click the radio button
next to Ass, then click Ok or hit Return. The second line of the proof
will be displayed in the Proof window and the Assn. Nos: and Formula:
boxes will clear. Similarly, enter the third line. There are now three lines
in the Proof window, all labelled Ass—recall that MacLogic uses the
same label for premises and assumptions.

Figure 1

6 Graeme Forbes

Next, we enter the first line in this proof which is obtained by applying
a rule of inference to previous lines. Type ‘1,3’ in the Assn. Nos: box,
‘Q → R’ in the Formula: box, click in the radio button for →E, and then,
in the Premiss Nos: box, type in the line numbers to which the rule of
→E is being applied in this step, that is, type in ‘1,3’. Remember that
MacLogic calls the lines to which a rule is being applied the premises for
that application of the rule. That is why the Premiss Nos: box is so-
called. If you like, instead of typing ‘1,3’ in the Premiss Nos: box, type
‘3,1’, then click Ok. You will get an error message to the effect that the
premises are in the wrong order. MacLogic is fussy about the order in
which you type the line numbers to which a rule is being applied. The
general principle it follows for an Elimination rule is this: the number
of the line that contains the formula with the connective occurrence
being eliminated is entered first, then the number of any other line
which is involved. The line with the connective occurrence being elimi-
nated is called the major premise for that application of the E-rule, and
the other line(s), if any, the minor premise(s).

Once you have ‘1,3’ in the Premiss Nos: box, type Ok. In the same way,
enter lines 5 and 6 of the proof, remembering that in the Assn. Nos:
box for line 6, you have to type ‘1,2,3’. The Proof window now looks like
this:

Now enter the remaining lines of the proof. If at any point you make a
technical mistake in entering a line, for example if you forget to dis-
charge assumptions and leave too many numbers in the Assn. Nos:
box, MacLogic will catch it when you click Ok. If you enter a line which
is technically correct but which you decide you don’t want when you

Figure 2

A Brief Guide to MacLogic 7

see it displayed in the Proof window, you can use Backtrack to go back
to the line and change it. After you have typed in the last line and
clicked Ok, you will get a message of congratulations.

Your next step will typically be one of the following actions: going to
the File menu and choosing either Save to text file or Print Visible
Windows… or Quit, or going to the Problem menu and choosing either
Dialog… or Library.

• Save to text file brings up a dialog box with a default file
name that you can change. Click the Save button. You can
open this file later with a word-processor and print it, but
only if you have the font Konstanz installed (see next item).
However, a more efficient way of generating a single file con-
taining all the proofs you generate in a MacLogic session is
to have a word-processor running simultaneously. Then at
the conclusion of a proof the contents of the Proof window
can be copied and pasted into the word processor file.

• Print Visible Windows… will print out the completed proof
if your Mac is connected to a printer. The command is quite
literal—all windows any parts of which are visible on the
screen will be printed, one per page. If you only want to print
out the proof, close all other windows first.

• Quit allows you to leave MacLogic and returns you to the
Finder. If you changed settings on the Logic menu or else-
where from what they were previously, you will be asked (2.5
or earlier) if you want to save the new settings. You may want
to do this if you are running MacLogic on your own machine
and would like to have the current settings in force next time
you use the program. Click Yes then navigate to the folder
where the Settings file is stored, click Save and Yes when
asked if you want to replace the old Settings file.

• Dialog… allows you to start over checking another proof,
one for a problem you enter yourself rather than select from
the library. Use of the Problem Entry window which Dia-
log… calls up is described in the next section. Your current
proof will be stored in a window called Previous Proofs and
can be consulted at any point by choosing this window from
the Windows menu. Note that completed proofs will only be
stored in this window if at the start of the session you

8 Graeme Forbes

checked Saving proofs to window in the Options menu. If
all you are doing is checking proofs you have already written
out, there is no need to save them.

• As we have seen, Library saves you the effort of typing the
premises and conclusion of a sequent. MacLogic may come
preloaded with a library of problems, and the fitelson.org
packages contain most of the Modern Logic problems as text
files that you can load by choosing Load library problems
from the File menu. This presents you with a pop-up sub-
menu from which you can choose From text file… and nav-
igate to the file you want. On the MacLogic distribution disk
the other Problem files are in a folder called ‘Problem files’.

In the Next Line window, one of the radio buttons is labelled ‘…’ Click-
ing on this button in MacLogic 2.5 or earlier allows one to use Df, SI or
a rule called ‘Tautology’ (SI is not supported in MacLogic 3.x, and users
should employ Tautology instead). Choosing SI from the dialog box
brings up a scrolling list of sequents and theorems, and you can dou-
ble-click on the one you want to use. However, the list is less compre-
hensive than that in Modern Logic (p. 123). To use a sequent in SI that
is not in MacLogic’s list, click the Tautology button. If the formula you
enter in the Formula: box really is a semantic consequence of the for-
mulae at the line(s) whose number(s) you enter in the Premiss Nos.
box, the appropriate new line will be added to your proof. At least ini-
tially, you should restrict yourself to the sequents (a)–(r) on p. 123 of
Modern Logic for uses of SI via the Tautology button. A file with these
sequents ready to load is part of the packages from fitelson.org

❏ Constructing Proofs

Launch MacLogic and make sure that Constructing is checked in the
Options menu. If you are currently using MacLogic in the Checking
mode, simply finish your proof, or click Stop in the line-entry dialog,
then go to Options and check Constructing. Next, choose either Dia-
log… or Library from the Problem menu. For this example, we will sup-
pose that you choose Dialog, in which case the following Problem Entry

A Brief Guide to MacLogic 9

box appears on the screen:

Probably the ‘A, B’ in the top box is highlighted (white text on a black
background) in which case the first keystroke you type will delete it.
Otherwise, click in front and then backspace. After entering the pre-
mises, tab into the Goal box and type the conclusion. In this illustra-
tion, we will construct a proof of the following problem:

Example 2: Show A → C, B → ~C � ~(A & B)

1 (1) A → C Premise
2 (2) B → ~C Premise
3 (3) A & B Assumption
3 (4) A 3 &E
1,3 (5) C 1,4 →E
3 (6) B Assumption
2,3 (7) ~C 2,6 →E
1,2,3 (8) � 7,5 ~E
1,2 (9) ~(A & B) 3,8 ~I ♦

Once you have entered the premises into the Assumptions box and the
conclusion into the Goal box, click Ok. You are now presented with a
very different-looking display, as illustrated on the following page. In
Constructing mode, we do not tell the program what the lines of the
proof are but only what tactics (rule applications) are to be used in con-
structing the proof. In Example 2, the overall goal, and so the current
problem, is to derive ‘~(A & B)’ from the two premises. We would expect
to obtain ‘~(A & B)’ by ~I, so we click the ~I radio button in the Tactic

Figure 3

10 Graeme Forbes

Choice box, then click Ok or hit return. The contents of both the Deri-
vation window and the Current Problem window will change. The Der-
ivation window may be ignored, but the contents of the Current
Problem window are what guide us through the proof-construction. As
we know, when we decide to use ~I to obtain a formula of the form �~p�
we assume p and try to derive ‘�’. So in this example, when writing the
proof out, we assume ‘A & B’ at line 3 and try to derive ‘�’. Inspecting
the Current Problem window we see that this in effect is what has hap-
pened in it; ‘A & B’ has been added to the formulae which we can use
and the formula to be derived has changed from ‘~(A & B)’ to ‘�’.

In order to obtain ‘�’, we have to apply &E, then use →E twice, then ~E.
Clicking the radio button for &E and then clicking Ok updates the Cur-
rent Problem window by replacing the assumption ‘A & B’ with the
result of applying &E to it, viz. the two separate formulae ‘A’ and ‘B’.
Then we click the radio button for →E and Ok. Since there are two con-
ditionals in the list of formulae we may use at this point, a dialog box
asks us to select one. If the highlighted conditional is the one you want,
click Ok, otherwise double-click the conditional you want. When →E is
applied, the chosen conditional is removed from the Using:– list, along
with its antecedent, and in their place the consequent appears (this has
the side effect of eliminating the need to choose a conditional when we

A Brief Guide to MacLogic 11

apply →E the second time). So after two applications of →E, the Using:–
list now contains ‘C’ and ‘~C’. The three applications of elimination
rules have not affected the formula to be derived, which is still Absur-
dity, and with ‘C’ and ‘~C’ in the Using:– list, we can choose ~E to finish
the proof. The offer to display the proof we have just constructed
should be accepted.

This method of constructing proofs requires no typing of formulae
after the problem has been entered, but requires us to be able to work
out how the proof should go. In our previous example we see that the
proof will finish with an application of ~I, so choosing the tactic for ~I
is our first step. We continue reasoning backwards from the bottom of
the proof in this manner until there are no more introduction rules to
be applied. In Example 2, evidently, we arrive at this point immediately
after choosing ~I. So we switch to the top of the proof and start apply-
ing elimination rules. An elimination rule can be applied only if there is
an appropriate formula to apply it to among the formulae currently
listed in the Current Problem window’s “Using:–” list. ‘appropriate’
means that if the elimination rule is for a connective c, then there must
be a formula in the Using:– list with c as its main connective. For exam-
ple, after choosing ~I to start the proof construction, we cannot contin-
ue working up from the bottom of the proof by choosing ~E (even
though we know that the second last line of the proof will be derived
by ~E) because at this point there is no formula with ‘~’ as main connec-
tive in the Using:– list. But as soon as ‘~C’ appears in the Using:– list, we
can choose ~E. Indeed, if we choose ‘B → ~C’ as the first conditional to
which to apply →E, then we can choose ~E immediately thereafter.
What will happen then is this. In order to apply ~E we need two formu-
lae of the form q and �~q�. Since ‘~C’ is the only negative formula in
the Using:– list, MacLogic takes your choice of ~E to mean that �~q� is
‘~C’. To use ~E we therefore need q, that is, ‘C’, so the formula under
Derive:– in the Current Problem window changes from ‘�’ to ‘C’. The
problem can then be concluded with another use of →E. The reader
should run through the construction process for Example 2 twice, in
the first pass choosing →E twice, then ~E, and in the second, choosing
~E after a first application of →E to ‘B → ~C’.

As in Checking mode, SI and TI are accessed through the button with
the ellipsis ‘…’. Choose SI (which includes TI) if the sequent is one of
those in MacLogic’s own list (if there is such a list), otherwise choose

12 Graeme Forbes

Tautology. In the latter case you will be presented with a box listing the
goal formula and all the formulae which may be used at the current
stage. Very likely most of these are irrelevant to the application of SI
you wish to make. Deleting all but the relevant ones will produce an
application of Tautology labelled with the correct line numbers. You
may also have to type a different formula in the Succedent formula
box. For example, the quickest proof of the problem ~(P → (Q ∨ R)) �
(Q ∨ R) → P applies Neg-Imp at line 2 to the premise, so one should click
the ellipsis button and choose Tautology, which brings up the follow-
ing dialog box:

Though the succedent formula is indeed a semantic consequence of the
antecedent formula, and MacLogic will allow you to click Ok at this
point, producing a one-step proof of the entire problem, you would not
expect much credit for constructing this proof! Since the intention is to
apply Neg-Imp, you should tab into the Succedent formula box and
type ‘(P & ~(Q ∨ R))’, then click Ok. You will be returned to the main
screen and will find that ‘P & ~(Q ∨ R)’ has replaced ‘~(P → (Q ∨ R))’ in
the ‘Using:’ list. You can now apply &E and PMI to finish the proof (if
you are copying the proof into a word-processor you may want to
replace the label ‘1 Taut’ on line 2 with ‘1 SI (Neg-Imp)’).

In other examples, the contents of the Succedent formula box may be
right for what you have in mind, which is to obtain the goal formula
from a formula p which can itself be obtained from formulae in the
Using:– list. In this case delete the formulae in the Antecedent formu-
lae box, enter p in their place, and click Ok. When you return to the

Figure 4

A Brief Guide to MacLogic 13

main screen you will find that the Using:– list is as before but the for-
mula to derive has been changed to p. Now pursue whatever strategy
you had in mind to derive p from the formulae you can use.

Here are two things to remember when using MacLogic in Constructing
mode:

• Only choose an elimination rule for a connective c if c is the
main connective of one of the formulae listed in the Current
Problem window under ‘Using:–’. For example, if the formula
‘A & (B ∨ C)’ is the only one in the list, &E is a possible tactic
choice, but not ∨E, though you can choose ∨E after &E: &E
enters ‘A’ and ‘(B ∨ C)’ into the Using:– list in place of ‘A & (B
∨ C)’, and ‘∨’ is the main connective of ‘(B ∨ C)’.

• Only choose an introduction rule for a connective c if c is the
main connective of the formula in the Current problem win-
dow beneath ‘Derive:–’. For example, if under ‘Using:–’ you
have the three formulae ‘A’, ‘B’ and ‘(A & B) → C’, and the for-
mula to be derived is ‘C’, there is no introduction rule which
can be applied at this point, since ‘C’ does not have a main
connective. Of course, we know that we will eventually want
to derive ‘A & B’ by &I in order to apply →E to ‘(A & B) → C’,
but if you choose &I at this point (i.e. when ‘C’ is the formula
beneath ‘Derive:–’), MacLogic will take you to think that ‘C’ it-
self can be derived by &I and will tell you that this is wrong.
What we should do is choose →E. MacLogic will find the con-
ditional and then look for its antecedent in the Using:– list.
If it does not find the antecedent there, the formula to be de-
rived changes from whatever is currently listed (‘C’ in our ex-
ample) to the required antecedent. So in our example,
choosing →E results in the formula to be derived changing
from ‘C’ to ‘A & B’, and now it is legitimate to choose &I, since
‘&’ is the main connective of the formula now listed in the
Current Problem window under ‘Derive:–’. [To familiarize
yourself with this, use MacLogic to construct a proof of A, B,
(A & B) → C � C.]

❏ Quantifiers and Identity in MacLogic

Using MacLogic to construct proofs in monadic or full first-order logic

14 Graeme Forbes

is a straightforward extension of the procedures for sentential logic (if
you want to use the identity rules, make sure Equality is checked in the
Logic menu). However, to make MacLogic ’s Construct mode complete-
ly compatible with Modern Logic, you must have Alpha Conversion in
the Options menu unchecked. This done, the following will happen
when you choose a tactic for a quantifier rule.

• If the rule is ∀E or ∃I, a Term Entry window will appear and
you will be asked to choose a term (more strictly, an individ-
ual constant) t to substitute for the variable v in the formula
φv which your rule-application concerns. For instance, if you
are applying ∀E to ‘(∀x)(Fx → Gx)’ the following will appear:

You are told that the term you choose must be free for ‘x’ in
‘Fx → Gx’, or more generally, that t must be free for v in φv,
but you may ignore this warning, since it concerns a problem
that arises only when Alpha Conversion is on. At this point
you should enter the individual constant ‘a’, ‘b’, ‘c’ etc. which
you prefer and click Ok; the program will return you to your
proof, and �Ft → Gt� will have been added to the Using:– list.

• If your chosen tactic is for ∀I or ∃E, you are presented with
a scrolling window and asked to choose an individual con-

 Figure 5

A Brief Guide to MacLogic 15

stant to replace occurrences of the variable that is relevant
to your rule application.1

For example, if you are trying to deduce ‘(∀x)(Fx → Gx)’ you
may decide to aim for ‘Fa → Ga’, which is the formula you get
if ‘a’ replaces the occurrences of ‘x’ in ‘(∀x)(Fx → Gx)’ which
become free when the ‘(∀x)’ is removed (the syntax given in
Modern Logic guarantees that every occurrence of v in
�(∀v)φv� becomes free when �(∀v)� is removed, but not all
systems have this feature). Once you have chosen a specific
individual constant, it will be removed from the list of those
you may use in future applications of ∀I or ∃E. This helps
keep your uses of these rules legal.

If you find that your attempts to apply quantifier rules are resisted by
the validity checker, which says that you may be attempting to prove
something which is invalid, it is likely that the problem is merely with
the order in which you are trying to apply the rules. For example, you
may have chosen the tactic for ∃I since the formula you are trying to
derive is existential, but in the final proof this application of ∃I will
occur within a use of ∃E. In this case you should choose the tactic for

 Figure 6

1 If you are presented with a window that asks you to choose a variable and presents
you with a scrolling list in reverse alphabetical order, you have a version of MacLogic
which has not been customized for Modern Logic. If you know how to use ResEdit you
can customize it yourself following the instructions on p. 359 of Modern Logic. Otherwise
simply ignore ‘variable’ and scroll down the list until you reach constants.

16 Graeme Forbes

∃E before that for ∃I.

The rules for identity in MacLogic are =I, =E, Sym and Trans, the latter
two essentially being ad hoc extensions of SI. Use Sym if you have, say,
‘a = b’ and want ‘b = a’, and use Trans if you have, say, ‘a = b’ and ‘b =
c’ and want ‘a = c’. MacLogic will implement =I automatically when it is
needed, so there is no =I radio button.

In order to apply =E you have to tell the program which identity sen-
tence �t = t
� you want to use (if there is more than one available), which
formula you want make substitutions in, and which occurrences of t in
that formula you wish to replace with t
. To illustrate how MacLogic
handles this, suppose we have the following problem:

Example 3: Show a = b, (∀x)Fxa � Fbb.

1 (1) a = b Premise
2 (2) (∀x)Fxa Premise
2 (3) Faa 2 ∀E
1,2 (4) Fbb 1,3 =E ♦

If, working up from the bottom of the proof, we begin by choosing the
tactic for =E, the dialog below appears. We are asked to supply a formu-

la with some free variable v such that the result of replacing v with ‘a’
is something that we can derive. We know we can derive ‘Faa’ so we
enter ‘Fxx’ (or ‘Fyy’ etc.). We then tab down or click in the next box to
specify that the free variable to replace is ‘x’, then we click Ok.

Figure 7

A Brief Guide to MacLogic 17

By careful choice of formula to enter in the first box we can control
which occurrences of the individual constant in the minor premise of
the =E are replaced when =E is applied. For instance, if we wanted ‘Fab’
instead of ‘Fbb’, we would enter, say, ‘Fax’ in the first box, since we can
show ‘Faa’, and specify that it is ‘x’ that is to be substituted for. The pro-
gram would put ‘a’ for that occurrence of ‘x’ and then replace that
occurrence of ‘a’ with ‘b’.

Finally, you may wish to try MacLogic with Alpha Conversion on. This
allows you, when applying a quantifier elimination rule, to replace the
bound variable with a free variable rather than an individual constant.
For example, from ‘(∀x)(Fx & Gx)’ one may infer ‘Fx & Gx’, ‘Fy & Gy’ etc.
Generally speaking, with Alpha Conversion on, MacLogic will apply
quantifier rules itself unless there is a choice to be made, in which case,
as happens when Alpha Conversion is off, you will be asked to choose
a term with which to replace the variable in the formula which results
from deleting the prefixed quantifier. However, if you are going to use
Alpha Conversion, you should understand the details of quantifier
rules when free variables are allowed in proofs.

• In ∀I, the same restrictions apply to free variables as apply
to individual constants. For example, if ‘Fx & Gx’ has been de-
rived depending on premises and assumptions p1…pn, then
‘(∀x)(Fx & Gx)’ (or ‘(∀y)(Fy & Gy)’ etc.) may be inferred, de-
pending on p1…pn, so long as there is no occurrence of ‘x’
free in any of the p1…pn. Note that it is free occurrences of ‘x’
which are ruled out. If p2 = ‘(∀x)Fx’, say, in which ‘x’ occurs
bound, that does not prevent application of ∀I.

• The rule of ∀E has a new restriction added to it: if you are
going to use an individual variable rather than an individual
constant in applying ∀E to �(∀v)φv�, then the variable which
replaces v must be one which cannot be captured accidental-
ly by a quantifier in φv. The point here is to block the infer-
ence from, say, ‘(∀x)(∃y)Rxy’ to ‘(∃y)Ryy’, using ‘y’ to replace
‘x’ in an application of ∀E (it is easy to show that (∀x)(∃y)Rxy
� (∃y)Ryy). The phenomenon this mistaken inference illus-
trates is called accidental capture, since the substituted ‘y’
becomes bound by the existential quantifier, which is not
what we intend. The restriction on ∀E which prevents acci-
dental capture is that the variable v
 which is to replace v

18 Graeme Forbes

must be such that v has no occurrences in φv which are al-
ready bound there.

• Like ∀I, in ∃E the same restrictions apply to free occurrences
of a variable v as apply to individual constants.

• The rule of ∃I is unchanged; read ‘term’ for ‘individual con-
stant’ in the statement of it on p. 186 of Modern Logic.

• The rule =E has a new restriction like the one on ∀E: if we re-
place occurrences of v in φv using v = v
, then the replacing
variable v
 must have no bound occurrences in φv.

	Proof-Checking
	Constructing Proofs
	Quantifiers and Identity in MacLogic

