

Semantics for Sentential Logic

1 Truth-functions

Now that we know how to recover the sentential logical form of an English argu-
ment from the argument itself, the next step is to develop a technique for test-
ing argument-forms for validity. The examples we have already considered
indicate that whether or not a logical form is valid depends at bottom on the
meanings of the sentential connectives which occur in it. For example, in Chap-
ter 1 we considered the two cases

A:

P

&

 Q

∴

 P

and

B:

P

∨

 Q

∴

 P

the first of which is valid and the second invalid. Since the only difference
between the two is that one has ‘

&

’ where the other has ‘

∨

’, it must be the dif-
ference in meaning between these two connectives that explains the difference
in validity status between the two argument-forms. So a technique for testing
argument-forms for validity must be based upon a precise specification of the
meanings of the connectives.

First, some terminology. If a sentence is true, then it is said to

have the
truth-value

TRUE

, written ‘

�

’. If a sentence is false, then it is said to

have the
truth-value

FALSE

, written ‘

⊥

’. We make the following assumption, often called
the

 Principle of Bivalence:

There are exactly two truth-values,

�

 and

⊥

. Every meaningful sen-
tence, simple or compound, has one or other, but not both, of these
truth-values.

We already remarked that classical sentential logic is so called in part

3

46

Chapter 3: Semantics for Sentential Logic

because it is the logic of the

sentential

 connectives. What makes it

classical

 is
the fact that the Principle of Bivalence is embodied in the procedure for giving
meaning to sentences of LSL. (By implication, therefore, there are other kinds
of sentential logic based on different assumptions.) Granted the Principle of
Bivalence, we can precisely specify the meaning, or

semantics

, of a sentential
connective in the following way. A connective attaches to one or more sent-
ences to form a new sentence. By the principle, the sentence(s) to which it
attaches already have a truth-value, either

�

 or

⊥

. The compound sentence
which is formed must also have a truth-value, either

�

 or

⊥

, and which it is
depends both on the truth-values of the simpler sentence(s) being connected
and on the connective being used. A connective’s semantics are precisely spec-
ified by saying what will be the truth-value of the compound sentence it forms,
given all the truth-values of the constituent sentences.

Negation

. The case of negation affords the easiest illustration of this proce-
dure. Suppose

p

 is some sentence of English whose truth-value is

�

 (‘2 + 2 = 4’).
Then the truth-value of

�

it is not the case that

p

�

 is

⊥

. In the same way, if

p

 is
some sentence of English whose truth-value is

⊥

 (‘2 + 2 = 5’), the truth-value of

�

it is not the case that

p

�

 is

�

. Hence the effect of prefixing ‘it is not the case
that’ to a sentence is to

reverse

 that sentence’s truth-value. This fact exactly
captures the meaning of ‘it is not the case that’, at least as far as logic is con-
cerned, and we want to define our symbol ‘

~

’ so that it has this meaning. One
way of doing so is by what is called a

truth-table

. The truth-table for negation
is displayed below.

The symbol ‘

~

’ forms a compound wff by being prefixed to some wff

p

.

p

 has
either the truth-value

�

 or the truth-value

⊥

, and these are listed in the column
headed by

p

 on the left. On the right, we enter on each row the truth-value
which the compound formula

�

~

p

�

 has, given the truth-value of

p

 on that row.
Any sentential connective whose meaning can be captured in a truth-table

is called a

truth-functional

 connective and is said to

express a truth-function

.
The general idea of a function is familiar from mathematics: a function is some-
thing which takes some object or objects as input and yields some object as
output. Thus in the arithmetic of natural numbers, the function of squaring is
the function which, given a single number as input, produces its square as out-
put. The function of adding is the function which, given two numbers as input,
produces their sum as output. A truth-function, then, is a function which takes
a truth-value or truth-values as input and produces a truth-value as output. We
can display a truth-function simply in terms of its effect on truth-values,
abstracting from sentences. Thus the truth-function expressed by ‘

~

’ could be
written:

�⇒⊥

,

⊥⇒�

, which says that when the input is a truth the output is a
falsehood (

�⇒⊥

), and when the input is a falsehood, the output is a truth

~p p

�
�⊥
⊥

§1: Truth-functions

47

(

⊥⇒�

). Notice that the input/output arrow ‘

⇒

’ we use here is different from the
arrow ‘

→

’ we use for the conditional. ‘

~

’ expresses a

one-place

 or

unary

 truth-
function, because the function’s input is always a single truth-value. In the
same way, squaring is a one-place function of numbers, since it takes a single
number as input.

Conjunction

.

 The truth-table for conjunction is slightly more complicated than
that for negation. ‘

&’ is a two-place connective, so we need to display two for-
mulae, p and q, each of which can be � or ⊥, making four possibilities, as in (a)
below. The order in which the possibilities are listed is by convention the stan-
dard one. (a) is empty, since we still have to decide what entries to make on
each row of the table. To do this, we simply consider some sample English con-
junctions. The assertion ‘salt is a solid and water is a liquid’ is one where both
conjuncts are true, and this is enough to make the whole conjunction true.
Since this would hold of any other conjunction as well, � should go in the top
row of the table. But if one of the conjuncts of a conjunction is false, be it the
first or the second, that is enough to make the whole conjunction false: consid-
er ‘salt is a gas and water is a liquid’ and ‘water is a liquid and salt is a gas’.
Finally, if both conjuncts are false, the result is false as well. So we get the table
in (b). We can write the resulting truth-function in the arrow notation, as in (c),

though this time the function is two-place, since the appropriate input is a pair
of truth-values (addition is an example of a two-place function on numbers,
since it takes two numbers as input). There is also a third way of exhibiting the
meaning of ‘&’, which is by a matrix, as in (d). The values in the side column
represent the first of the two inputs while the values in the top row represent
the second of the two inputs. A choice of one value from the side column and
one from the top row determines a position in the matrix, where we find the
value which conjunction yields for the chosen inputs. (b), (c) and (d), therefore,
all convey the same information.

Disjunction. To exhibit the semantics of a connective, we have to write out the
truth-function which the connective expresses in one of the three formats just
illustrated. What truth-function does disjunction express? Here matters are not
as straightforward as with negation and conjunction, since there tends to be
some disagreement about what to enter in the top row of the truth-table for ‘∨’,
as we noted in connection with Example 2.2.10 on page 17. Recall also

(1) Either I will watch television this evening or read a good book

(a) (b) (c) (d)

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒ ⊥

⊥
⊥
�

&

�

⊥
⊥

�
�

�
⊥

⊥

p q p q

⊥
⊥
⊥
��

⊥
⊥

�
�

�
⊥

⊥

p q p q

�
⊥
⊥

⊥
�

� ⊥

⊥

&

& &

48 Chapter 3: Semantics for Sentential Logic

on the supposition that I do both, so that both disjuncts are true. But we have
declared the policy of always treating disjunction as meaning inclusive disjunc-
tion, so (1) is true if I do both, and therefore the top row of the table for ‘∨’
contains �.

The remaining rows of the truth-table are unproblematic. If I only watch
television (row 2 of the table below) or only read a good book (row 3), then (1)
is clearly true, while if I do neither (row 4), it is false. So in the inclusive sense,
a disjunction is true in every case except where both disjuncts are false. This
leads us to the following representations of the meaning of ‘∨’:

The difference between the actual table (a) for ‘∨’ and the one we would have
written had we chosen to use the symbol for exclusive disjunction (one or the
other but not both) would simply be that the top row would contain ⊥ instead
of �.

The Conditional. This leaves us still to discuss the conditional and the bicon-
ditional. Since the biconditional was defined as a conjunction of conditionals
(page 24), we will be able to calculate its truth-table once we have the table for
‘→’, since we already know how to deal with conjunctions. However, the table
for ‘→’ turns out to be a little problematic. There is one row where the entry is
clear. The statement

(2) If Smith bribes the instructor then Smith will get an A

is clearly false if Smith bribes the instructor but does not get an A. (2) says that
bribing the instructor is sufficient for getting an A, or will lead to getting an A,
so if a bribe is given and an A does not result, what (2) says is false. So we can
enter a ⊥ in the second row of the table for ‘→’, as in (a) below.

But what of the other three rows? Here are three relevant conditionals:

(a) (b) (c)

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒ ⊥

�
�
�

∨p q

⊥

��

⊥
⊥

�
�

�
⊥

⊥

�
�

∨p q

�
⊥

�
� ⊥

⊥
�

�

∨

⊥
��

⊥
⊥

�
�

�
⊥

⊥

p q p q→

�
�

(a) (b) (c) (d)

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒

⊥
�

�
�

�

⊥
⊥

�
�

�
⊥

⊥

p q

⊥

p q→

� ⊥�
� ⊥

⊥ � �

→

§1: Truth-functions 49

(3) If Nixon was U.S. president then Nixon lived in the White House.

(4) If Agnew was British prime minister then Agnew was elected.

(5) If Agnew was Canadian prime minister then Agnew lived in Ottawa.

(3) has a true antecedent and a true consequent, (4) a false antecedent and a
true consequent, and (5) a false antecedent and a false consequent, but all three
of the conditionals are true (only elected members of Parliament can be British
prime minister, but unelected officials can become U.S. president). Relying just
on these examples, we would complete the table for ‘→’ as in (b) of the previous
figure, with equivalent representations (c) and (d).

The trouble with (b), (c) and (d) is that they commit us to saying that every
conditional with a true antecedent and consequent is true and that every con-
ditional with a false antecedent is true. But it is by no means clear that this is
faithful to our intuitions about ordinary indicative conditionals. For example,

(6) If Moses wrote the Pentateuch then water is H2O

has an antecedent which is either true or false—most biblical scholars would
say it is false—and a consequent which is true, and so (6) is true according to
our matrix for ‘→’. But many people would deny that (6) is true, on the grounds
that there is no relationship between the antecedent and the consequent: there
is no sense in which the nature of the chemical composition of water is a con-
sequence of the identity of the author of the first five books of the Bible, and if
(6) asserts that it is a consequence, then (6) is false, not true.

As in our discussion of ‘or’, there are two responses one might have to this
objection to our table (b) for ‘if…then…’. One response is to distinguish two
senses of ‘if…then…’. According to this response, there is a sense of ‘if…
then…’ which the table correctly encapsulates, and a sense which it does not.
The encapsulated sense is usually called the material sense, and ‘→’ is said to
express the material conditional. Indeed, even if it were held that in English,
‘if…then…’ never expresses the material conditional, we could regard the table
(b) above as simply a definitional introduction of this conditional. There would
then be no arguing with table (b); the question would be whether the definition-
ally introduced meaning for the symbol ‘→’ which is to be used in translating
English indicative conditionals is adequate for the purposes of sentential logic.
And it turns out that the answer to this question is ‘yes’, since it is the second
row of the table which is crucial, and the second row is unproblematic. An alter-
native response to the objection is to say that the objector is confusing the
question of whether (6) is literally true with the question of whether it would
be appropriate to assert (6) in various circumstances. Perhaps it would be inap-
propriate for one who knows the chemical composition of water to assert (6),
but such inappropriateness is still consistent with (6)’s being literally true,
according to this account.

The parallel with the discussion of ‘or’ is not exact, and these are issues we
will return to in §8 of this chapter. But whatever position one takes about the

50 Chapter 3: Semantics for Sentential Logic

meaning of ‘if…then…’ in English, the reader should be assured that it is ade-
quate for the purposes of sentential logic to translate English indicative condi-
tionals into LSL using the material conditional ‘→’, even if one does regard this
conditional as somewhat artificial. The artificiality will not lead to intuitively
valid arguments being assessed as invalid, or conversely.

The Biconditional. For any LSL wffs p and q, the biconditional �p ↔ q� simply
abbreviates the corresponding conjunction of conditionals �(p → q) & (q → p)�,
according to our discussion in §3 of Chapter 2. It follows that if we can work
out the truth-table for that conjunction, given the matrices for ‘&’ and ‘→’, we
will arrive at the truth-function expressed by ‘↔’. What is involved in working
out the table for a formula with more than one connective? In a formula of the
form �(p → q) & (q → p)�, p and q may each be either true or false, leading to
the usual four possibilities. The truth-table for �(p → q) & (q → p)� should tell
us what the truth-value of the formula is for each of these possibilities. So we
begin by writing out a table with the formula along the top, as in (a) below:

The formula is a conjunction, so its truth-value in each of the four cases will
depend upon the truth-value of its conjuncts in each case. The next step is
therefore to work out the truth-values of the conjuncts on each row. The first
conjunct is the (material) conditional �(p → q)� whose truth-table we have
already given, so we can just write those values in. The second conjunct is
�q → p�. We know from our discussion of ‘→’ above that the only case where a
material conditional is false is when it has a true antecedent and false conse-
quent, and this combination for �q → p� occurs on row 3 (not row 2); so under
�q → p� we want ⊥ on row 3 and � elsewhere. This gives us table (b) above. We
have now calculated the truth-value of each conjunct of �(p → q) & (q → p)� on
each row, so it remains only to calculate the truth-value of the whole conjunc-
tion on each row. Referring to the tables for conjunction, we see that a conjunc-
tion is true in just one case, that is, when both conjuncts are true. In our table
for �(p → q) & (q → p)�, both conjuncts are true on rows 1 and 4, so we can com-
plete the table as in (c) above. Notice how we highlight the column of entries
under the main connective of the formula. The point of doing this is to distin-
guish the final answer from the other columns of entries written in as interme-
diate steps.

The example of �(p → q) & (q → p)� illustrates the technique for arriving at
the truth-table of a formula with more than one occurrence of a connective in
it, and it also settles the question of what truth-function ‘↔’ expresses. We com-
plete our account of the meanings of the connectives with the tables for the

(a) (b) (c)

�

⊥
⊥

�
�

�
⊥

⊥

p q &p q→() ()pq→ p q

⊥
�

�
�

�
�

�
⊥

�

�

⊥
⊥

&p q→() ()pq→

�

⊥
⊥

�
�

�
⊥

⊥

&p q→() ()pq→p q

�

⊥
⊥

�
�

�
⊥

⊥

⊥
�

�
�

�
�

�
⊥

§1: Truth-functions 51

biconditional displayed above. Note that, by contrast with �p → q� and �q → p�,
�p ↔ q� and �q ↔ p� have the same truth-table; this bears out our discussion
of Examples 2.4.6 and 2.4.7 on page 32, where we argued that the order in
which the two sides of a biconditional are written is irrelevant from the logical
point of view.

In order to acquire some facility with the techniques which we are going to
introduce next, it is necessary that the meanings of the connectives be memo-
rized. Perhaps the most useful form in which to remember them is in the form
of their function-tables, so here are the truth-functions expressed by all five
connectives:

 The information represented here can be summarized as follows:

• Negation reverses truth-value.
• A conjunction is true when and only when both conjuncts are true.
• A disjunction is false when and only when both disjuncts are false.
• A conditional is false when and only when its antecedent is true and

its consequent is false.
• A biconditional is true when and only when both its sides have the

same truth-value.

These summaries should also be memorized.
There are some entertaining puzzles originated by Raymond Smullyan

which involve manipulating the notions of truth and falsity in accordance with
the tables for the connectives. In a typical Smullyan setup, you are on an island
where there are three kinds of inhabitants, Knights, Knaves and Normals.
Knights always tell the truth and Knaves always lie, while a Normal may some-
times lie and sometimes tell the truth. You encounter some people who make
certain statements, and from the statements you have to categorize each of the
people as a Knight, a Knave, or a Normal. Here is an example, from Smullyan:

(a) (b) (c)

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒

�

�

⊥
⊥

↔
�

⊥
⊥

�
�

�
⊥

⊥

p q p q↔

�

�

⊥
⊥ � ⊥

⊥
�

� ⊥

⊥

↔

�

~

& ∨ → ↔

� ⇒ ⊥
⊥ ⇒ �

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒ ⊥

⊥
⊥
� �� ⇒

�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒ ⊥

�
�
�

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒

⊥
�

�
�

�� ⇒
�⊥ ⇒
⊥� ⇒
⊥⊥ ⇒

�

�

⊥
⊥

52 Chapter 3: Semantics for Sentential Logic

You meet two people, A and B, each of whom is either a Knight or a
Knave. Suppose A says: ‘Either I am a Knave or B is a Knight.’ What are
A and B?

We reason to the solution as follows. There are two possibilities for A, either
Knight or Knave. Suppose that A is a Knave. Then what he says is false. What
he says is a disjunction, so by any of the tables for ‘∨’, both disjuncts of his
statement must be false. This would mean that A is a Knight and B is a Knave.
But A cannot be a Knight if he is a Knave (our starting supposition). Thus it fol-
lows that he is not a Knave. So by the conditions of the problem, he is a Knight
and what he says is true. Since he is a Knight, the first disjunct of his statement
is false, so the second disjunct must be true. Hence B is a Knight as well.

❑ Exercises

The following problems are from Smullyan.1 In each case explain the reasoning
that leads you to your answer in the way just illustrated.

(1) There are two people, A and B, each of whom is either a Knight or
a Knave. A says: ‘At least one of us is a Knave.’ What are A and B?

(2) With the same conditions as (1), suppose instead A says: ‘If B is a
Knight then I am a Knave.’ What are A and B? [Refer to the truth-
table for ‘→’.]

(3) There are three people, A, B and C, each of whom is either a Knight
or a Knave. A and B make the following statements:

A: ‘All of us are Knaves.’
B: ‘Exactly one of us is a Knight.’

What are A, B and C?

*(4) Two people are said to be of the same type if and only if they are
both Knights or both Knaves. A and B make the following state-
ments:

A: ‘B is a knave.’
B: ‘A and C are of the same type.’

On the assumption that none of A, B and C is Normal, can it be
determined what C is? If so, what is he? If not, why not?

1 © 1978 by Raymond Smullyan. Reprinted by permission of Simon and Schuster.

§2: Classifying formulae 53

(5) Suppose A, B and C are being tried for a crime. It is known that the
crime was committed by only one of them, that the perpetrator was
a Knight, and the only Knight among them. The other two are either
both Knaves, both Normals, or one of each. The three defendants
make the statements below. Which one is guilty?

A: ‘I am innocent.’
B: ‘That is true.’
C: ‘B is not Normal.’

(6) A, who is either a Knight or a Knave, makes the following statement:

A: ‘There is buried treasure on this island if and only if I am a
Knight.’

(i) Can it be determined whether A is a Knight or a Knave?

(ii) Can it be determined whether there is buried treasure on the is-
land?

2 Classifying formulae

Any formula of LSL has a truth-table, for every formula is constructed from a
certain number of sentence-letters and each sentence-letter can be either � or
⊥. So there are various possible combinations of truth-values for the sentence-
letters in the formula, and for each of those possible combinations, the formula
has its own truth-value. Here are truth-tables for three very simple formulae,
‘A → A’, ‘A → ~A’ and ‘~(A → A)’:

A A → A A A → ~A A ~(A → A)

� � � ⊥ � ⊥ �
⊥ � ⊥ � ⊥ ⊥ �

(a) (b) (c)

In table (a), on the first row, ‘A → A’ is � → �, which by the function-table or
matrix for ‘→’ is �, and on the second row, ⊥ → ⊥, which is also �. In table (b)
we have � → ⊥ on the top row and ⊥ → � on the bottom, which gives ⊥ and �
respectively. Finally, in table (c) we have the negation of the formula of table
(a), so in its final answer column, table (c) should have ⊥ where table (a) has �,
and � where (a) has ⊥. We enter the column for the subformula ‘A → A’ first,
directly under the main connective of this subformula, and then apply the
truth-function expressed by ‘~’ to that column. This gives the final answer,
which we always display under the main connective of the whole formula.

These three formulae exhibit the three possibilities for any formula: that in

54 Chapter 3: Semantics for Sentential Logic

its truth-table the final answer column contains nothing but �s, or a mixture
of �s and ⊥s, or nothing but ⊥s. There is a technical term for each of these
three kinds of formula:

• A formula whose truth-table’s final answer column contains only
�s is called a tautology.

• A formula whose truth-table’s final answer column contains only
⊥s is called a contradiction.

• A formula whose truth-table’s final answer column contains both
�s and ⊥s is said to be contingent.

Thus ‘A → A’ is a tautology, ‘~(A → A)’ is a contradiction, and ‘A → ~A’ is a con-
tingent formula.

When a formula only has a single sentence-letter in it, as in the three for-
mulae just exhibited, there are only two possibilities to consider: the sentence-
letter is either � or ⊥. And as we have seen in giving the truth-tables for the
binary connectives, when there are two sentence-letters there are four possibil-
ities, since each sentence-letter can be either � or ⊥. The number of possibili-
ties to consider is determined by the number of sentence-letters in the formula,
not by the complexity of the formula. Thus a truth-table for ‘(A ↔ B) → ((A & B)
∨ (~A & ~B))’ will have only four rows, just like a table for ‘A → B’, since it con-
tains only two sentence-letters. But it will have many more columns:

A B (A ↔ B) → ((A & B) ∨ (~A & ~B))

�� � � � � ⊥ ⊥⊥
�⊥ ⊥ � ⊥ ⊥ ⊥ ⊥�
⊥� ⊥ � ⊥ ⊥ � ⊥⊥
⊥⊥ � � ⊥ � � ��

1 2 6 3 5 4

Here the numbers indicate the order in which the columns are computed. We
begin by entering the values for ‘A ↔ B’ and ‘A & B’, simply taking these from
the truth-tables for ‘↔’ and ‘&’; this gives us the columns numbered 1 and 2.
Then we compute the entries for ‘~A’ and ‘~B’ by applying the negation truth-
function to the entries under the two sentence-letters on the far left; this gives
us columns 3 and 4. Using columns 3 and 4, we next compute the values for the
conjunction ‘~A & ~B’, which gives us column 5, since it is only on the bottom
row that columns 3 and 4 both contain �. We then use columns 2 and 5 to com-
pute the entries for the disjunction ‘(A & B) ∨ (~A & ~B)’, yielding column 6
under the disjunction symbol. Lastly, we use columns 1 and 6 to compute the
final answer for the whole formula. Inspecting the final column reveals that the
formula is a tautology. There is some flexibility about the order in which we
compute columns—the main constraint is that before computing the column
for any subformula q of a given formula p, we must first compute the columns
for all q’s subformulae.

§2: Classifying formulae 55

What of formulae with more than two sentence-letters, for example, ‘(A →
(B ∨ C)) → (A → (B & C))’? The first question is how many different combinations
of truth-values have to be considered when there are three sentence-letters. It
is not difficult to see that there are eight combinations, as the following argu-
ment shows: A can be either � or ⊥, and in each of these two cases, B can be
either � or ⊥, giving us four cases, and in each of these four, C can be either �
or ⊥, giving eight cases in all. More generally, if there are n sentence-letters in
a formula, then there will be 2n cases, since each extra sentence-letter doubles
the number of cases. In particular, we need an eight-row truth-table for the for-
mula ‘(A → (B ∨ C)) → (A → (B & C))’.

There is a conventional way of listing the possible combinations of truth-
values for any n sentence-letters. Once the sentence-letters are listed at the top
left of the table, we alternate � with ⊥ under the innermost (rightmost) letter
until we have 2n rows. Then under the next-to-innermost, we alternate �s and
⊥s in pairs to fill 2n rows. Continuing leftward we alternate �s and ⊥s in fours,
then eights, then sixteens, and so on, until every sentence-letter has a column
of 2n truth-values under it. This procedure guarantees that all combinations are
listed and none are listed twice. For our example, ‘(A → (B ∨ C)) → (A → (B & C))’,
we will therefore have � followed by ⊥ iterated four times under ‘C’, two �s
followed by two ⊥s followed by two �s followed by two ⊥s under ‘B’, and four
�s followed by four ⊥s under ‘A’. We then proceed to compute the table for the
formula in the usual way:

A B C (A → (B ∨ C)) → (A → (B & C))

�� � � � � �
�� ⊥ � ⊥ ⊥ ⊥
�⊥ � � ⊥ ⊥ ⊥
�⊥ ⊥ ⊥ ⊥ � ⊥ ⊥
⊥� � � � �
⊥� ⊥ � � �
⊥⊥ � � � �
⊥⊥ ⊥ � � �

4 3 2 1

This formula is contingent, since it has a mixture of �s and ⊥s. Notice also that
the truth-table has not been completely filled in. When the number of rows in
a truth-table is large, it is advisable to look for shortcuts in arriving at the final
column. So in column 1, for example, we do not compute the bottom four rows,
since we know that a material conditional with a false antecedent is true, and
hence ‘A → (B & C)’ will be true on the bottom four rows since ‘A’ is false there
(refer to A’s column on the extreme left); the values of ‘B & C’ are therefore irrel-
evant on these rows. Similarly in column 3, we can ignore all but row 4, since
the falsity of ‘A → (B ∨ C)’ requires the truth of ‘A’ and the falsity of ‘B ∨ C’,
which in turn requires the falsity of both ‘B’ and ‘C’. ‘B’ and ‘C’ are both ⊥ only
on rows 4 and 8, and by inspection of these two rows, we see that ‘A’ is � only
on row 4. Hence it is only on row 4 that the condition for ‘A → (B ∨ C)’ to be ⊥

56 Chapter 3: Semantics for Sentential Logic

is satisfied, and we can fill in � on all the other rows in column 4, as we have
done in the displayed table.

Up to this point we have referred to combinations of truth-values listed on
the left of a truth-table as ‘cases’ and have described a truth-table for a formula
as giving the truth-value of the formula in each of the ‘possible cases’. The
more usual word for ‘case’ is interpretation. Thus a formula of LSL with n sen-
tence-letters has 2n possible interpretations. However, the term ‘interpretation’
is used in every kind of system of logic: an interpretation is a way of giving
meaning to the sentences of the language appropriate for the kind of logic in
question, and with more complex languages, this involves more than specifying
truth-values for sentence-letters. So for each kind of logic, we have to say
explicitly what kind of thing an interpretation of a formula of the language for
that logic is. For sentential logic, we have:

An interpretation of a formula p of LSL is an assignment of truth-values
to the sentence-letters which occur in p.

So in a truth-table for p we find on the left a list of all the possible interpreta-
tions of p, that is, all the possible assignments of truth-values to the sentence-
letters in p. A single interpretation of a formula is given by specifying the truth-
values which its sentence-letters have on that interpretation. For example, the
third interpretation in the table on the previous page assigns � to ‘A’ and ‘C’
and ⊥ to ‘B’, and this interpretation makes the formula p = ‘(A → (B ∨ C)) → (A →
(B & C))’ false.

Because the term ‘interpretation’ has application in every kind of logic,
technical concepts of sentential logic defined using it will also have wider appli-
cation. For example, we have previously spoken of formulae being ‘equivalent’
or of their ‘meaning the same’ in a loose sense. Exactly what this amounts to is
spelled out in the following:

Two formulae p and q are said to be logically equivalent if and only if,
on any interpretation assigning truth-values to the sentence-letters of
both, the truth-value of the first formula is the same as the truth-value
of the second.

Here we have not explicitly restricted the definition to formulae of LSL, since
the same notion of logical equivalence will apply to formulae of any system of
logic in which formulae have truth-values or something analogous. In the spe-
cial case of LSL, for formulae with exactly the same sentence letters, logical
equivalence amounts to having the same truth-table. So by inspecting the table
on the following page, we see that ‘A & B’ and ‘~(~A ∨ ~B)’ are logically equiva-
lent, and that ‘~(A ∨ B)’ and ‘~A & ~B’ are logically equivalent. For each inter-
pretation gives the same truth-value to ‘A & B’ as it does to ‘~(~A ∨ ~B)’, and
each gives the same truth-value to ‘~(A ∨ B)’ as it does to ‘~A & ~B’.

§2: Classifying formulae 57

A B A & B ~(~A ∨ ~B) ~(A ∨ B) ~A & ~B

�� � � ⊥ ⊥ � ⊥
�⊥ ⊥ ⊥ � ⊥ � ⊥
⊥� ⊥ ⊥ � ⊥ � ⊥
⊥⊥ ⊥ ⊥ � � ⊥ �

In our discussion of the connective ‘unless’ in §3 of Chapter Two, the con-
clusion we reached was that �p unless q� can be symbolized as �~q → p�, for
any formulae p and q. Suppose that p and q are sentence-letters, say ‘A’ and ‘B’.
Then what we find is that ‘unless’ is just ‘or’, for we have the following table,

A B A ∨ B ~B → A

�� � �
�⊥ � �
⊥� � �
⊥⊥ ⊥ ⊥

which shows that ‘~B → A’ is logically equivalent to ‘A ∨ B’. In testing English
arguments for validity, it is an advantage to symbolize the English with formu-
lae which are as simple as possible, so at this point we will change our policy
as regards ‘unless’. Henceforth, we symbolize ‘unless’ using ‘∨’:

• �p unless q� is symbolized �p ∨ q�.

Reflection on the meaning of ‘unless’ should indicate that this policy is intu-
itively correct: if the company will go bankrupt unless it receives a loan, that
means that either the company will go bankrupt or (if it does not) then it
receives (i.e. must have received) a loan.

❑ Exercises

I Construct complete truth-tables for the following formulae and classify
each as tautologous, contradictory or contingent. Be sure to mark your final
column clearly and place it directly under the main connective of the formula.

(1) A → (B → (A & B))
(2) ~R → (R → S)
(3) R → (S → R)

*(4) (A ↔ B) & (A & ~B)
(5) ((F & G) → H) → ((F ∨ G) → H)
(6) (A ↔ (B ∨ C)) → (~C → ~A)
(7) (A ↔ B) & ((C → ~ A) & (B → C))

58 Chapter 3: Semantics for Sentential Logic

II Use truth-tables to determine which formulae in the following list are log-
ically equivalent to which. State your results.

(1) A ∨ B (2) A → B
(3) ~(A & ~B) (4) ~(~A & ~B)
(5) ~A ∨ B (6) A ∨ ~A
(7) (A → (A & ~A)) → ~A

III If p is a sentence of LSL which is not a tautology, does it follow that �~p�
is a tautology? Explain.

3 Testing for validity by exhaustive search

We are now in a position to present the first technique for testing an argument-
form for validity. Recall our opening examples of a valid and an invalid English
argument from §1 of Chapter 1:

A: (1) If our currency loses value then our trade deficit will narrow.
(2) Our currency will lose value.
(3) ∴ Our trade deficit will narrow.

B: (1) If our currency loses value then our trade deficit will narrow.
(2) Our trade deficit will narrow.
(3) ∴ Our currency will lose value.

Concerning argument A, we said that the truth of the conclusion (3) is ‘guaran-
teed’ by the truth of the two premises (1) and (2), but we did not explain exactly
what the guarantee consists in. The (sentential) invalidity of argument B we
explained in the following way: even if (1) in B is true, its truth is consistent with
there being other conditions which are sufficient for a narrowing of our trade
deficit, so even given the truth of (2) in B, we cannot conclude (3), since it may
have been one of those other conditions which has brought about the truth of
(2) without our currency having lost value at all. Hence it is incorrect to say that
the truth of (1) and (2) in B guarantees the truth of (3) (even if in fact (1), (2) and
(3) are all true).

Reflecting on this explanation of B’s invalidity, we see that we demonstrate
the lack of guarantee by describing how circumstances could arise in which
both premises would be true while the conclusion is false. The point was not
that the premises are in fact true and the conclusion in fact false, but merely
that for all that the premises and conclusion say, it would be possible for the
premises to be true and the conclusion false. And if we inspect argument A, we
see that this is exactly what cannot happen in its case. Thus the key to the dis-
tinction between validity and invalidity in English arguments appears to have
to do with whether or not there is a possibility of their having true premises and
a false conclusion. Yet we also saw that validity or invalidity is fundamentally

§3: Testing for validity by exhaustive search 59

a property of argument-forms, not the arguments themselves. The sentential
logical forms of A and B are respectively

C: F → N
F
∴ N

and

D: F → N
N
∴ F

What then would it mean to speak of the ‘possibility’ of C or D having true pre-
mises and a false conclusion?

We can transfer the notion of the possibility of having true premises and
false conclusion from English arguments to the LSL argument-forms which
exhibit the English arguments’ sentential forms, by using the concept of inter-
pretation explained on page 56. To say that it is possible for an LSL form to
have true premises and a false conclusion is to say that there is at least one
interpretation of the LSL form on which its premises are true and its conclusion
false. In sentential logic, an interpretation is an assignment of truth-values, so
whether or not an LSL argument-form is valid depends on whether or not some
assignment of truth-values makes its premises true and its conclusion false. We
render this completely precise as follows:

An interpretation of an LSL argument-form is an assignment of truth-
values to the sentence-letters which occur in that form.

An argument-form in LSL is valid if there is no interpretation of it on
which its premises are true and its conclusion false, and invalid if there
is at least one interpretation of it on which its premises are true and
its conclusion false.

An English argument (or argument in any other natural language) is
sententially valid if its translation into LSL yields a valid LSL argument-
form, and is sententially invalid if its translation into LSL yields an in-
valid form.

Since there is no question of discerning finer structure in an LSL argument-
form (as opposed to an English argument) using a more powerful system of log-
ic, judgements of validity and invalidity for LSL forms are absolute, not relative
to sentential logic. We can test an LSL form for validity by exhaustively listing
all its interpretations and checking each one to see if any makes the form’s pre-
mises all true while also making its conclusion false. Interpretations are listed

60 Chapter 3: Semantics for Sentential Logic

in truth-tables, so we can use the latter for this purpose, by writing the argu-
ment-form out along the top. For example, we can test the two arguments C and
D on the previous page with the following four-row table:

F N F → N F ∴ N F → N N ∴ F

�� � � � � � �
�⊥ ⊥ � ⊥ ⊥ ⊥ �
⊥� � ⊥ � � � ⊥
⊥⊥ � ⊥ ⊥ � ⊥ ⊥

The table shows that C is valid according to our definition, since none of the
four interpretations listed makes the two premises ‘F → N’ and ‘F’ true while at
the same time making the conclusion ‘N’ false. The table also shows that argu-
ment-form D is invalid, since inspection of the entries for the third interpreta-
tion (highlighted), on which ‘F’ is false and ‘N’ is true, shows that D’s premises
‘F → N’ and ‘N’ are true on this interpretation while its conclusion ‘F’ is false. In
terms of the original English argument, the truth-values ⊥ for ‘our currency will
lose value’ and � for ‘our trade deficit will narrow’ are exactly the ones which
would obtain in a situation where our trade deficit narrows for some other rea-
son while our currency stays the same or rises, which is the kind of situation
whose possibility we mentioned in order to show the sentential invalidity of B.
The third interpretation in the table, therefore, expresses what is common to
all situations which show that a given English argument with the same form as
B is sententially invalid.

To summarize, this technique of testing an LSL argument-form for validity
consists in listing all its possible interpretations and exhaustively inspecting
each one. If one is found which makes the premises of the argument true and
its conclusion false, then the LSL argument-form is invalid; if no interpretation
which does this is found, the LSL argument-form is valid.

In applying this test to more complex LSL argument-forms, with large num-
bers of sentence-letters, it is important to exploit as many short cuts as possi-
ble. For example, in §4 of Chapter 2, we considered the argument:

E: If God exists, there will be no evil in the world unless God is unjust,
or not omnipotent, or not omniscient. But if God exists then He is
none of these, and there is evil in the world. So we have to conclude
that God does not exist.

To test this English argument for sentential validity, we translate it into LSL and
examine each of the interpretations of the LSL argument-form to see if any
makes all the premises true and the conclusion false. If none do, the LSL argu-
ment-form is valid. This means that the English argument E is sententially valid
and therefore valid absolutely. But if some interpretation does make the pre-
mises of the LSL argument-form all true and the conclusion false, then the LSL
argument-form is invalid and so the English argument is sententially invalid.

§3: Testing for validity by exhaustive search 61

The symbolization at which we arrived was:

F: X → [~(~J ∨ (~M ∨ ~S)) → ~V]
[X → (~~J & (~~M & ~~S))] & V
∴ ~X

F contains five sentence-letters and therefore has 25 interpretations. Conse-
quently, we would appear to need a truth-table with thirty-two rows to conduct
an exhaustive check of whether or not F is valid. However, we can use the fol-
lowing table to test it for validity:

X V J M S X → [~(~J ∨ (~M ∨ ~S)) → ~V] [X → (~~J & (~~M & ~~S))] & V ∴ ~X

���� � ⊥ � � � � ⊥
���� ⊥ � ⊥
���⊥ � � ⊥
���⊥ ⊥ � ⊥
��⊥� � � ⊥
��⊥� ⊥ � ⊥
��⊥⊥ � � ⊥
��⊥⊥ ⊥ � ⊥
�⊥�� � ⊥ ⊥
�⊥�� ⊥ ⊥ ⊥
�⊥�⊥ � ⊥ ⊥
�⊥�⊥ ⊥ ⊥ ⊥
�⊥⊥� � ⊥ ⊥
�⊥⊥� ⊥ ⊥ ⊥
�⊥⊥⊥ � ⊥ ⊥
�⊥⊥⊥ ⊥ ⊥ ⊥

Two features of this table are immediately striking. The first is that it only has
sixteen rows, instead of the advertised thirty-two. Where are the missing six-
teen? The answer is that we are able to discount sixteen rows because we are
only trying to discover whether there is an interpretation (row) on which all the
premises of the argument-form are true while its conclusion is false. If we see
that the conclusion is true on a certain interpretation, it would be a waste of
effort to compute the truth-values of the premises on that interpretation, for
clearly, that interpretation will not be one where all the premises are true and
the conclusion false. To apply this point, observe that the conclusion of our
argument-form is ‘~X’, which is true on every interpretation which makes ‘X’
false, and the missing sixteen rows are exactly those on which ‘X’ is false. We
deliberately made ‘X’ the first sentence-letter in the listing at the top of the
table, so that the column beneath it would contain sixteen �s followed by six-
teen ⊥s, since this allows us to ignore the bottom sixteen rows, these being the
interpretations where the conclusion is true and where we are consequently
uninterested in the values ascribed to the premises.

62 Chapter 3: Semantics for Sentential Logic

The other striking feature of the table is that only the top row has been
completed. The justification for this is comparable to that for ignoring the bot-
tom sixteen rows. Just as we are not interested in interpretations which make
the conclusion true, so we are not interested in interpretations which make one
of the premises false, since those interpretations will not be ones where the
conclusion is false and all the premises true. And it is easy to see from our table
that every interpretation except the first makes premise 2 false; interpretations
9–16 make the second conjunct of the premise, ‘V’, false, while interpretations
2–8 make the first conjunct, ‘X → (~~J & (~~M & ~~S))’, false, because they make
‘X’ true and ‘(~~J & (~~M & ~~S))’ false, since they make at least one of ‘J’ or ‘M’
or ‘S’ false. So only interpretation 1 makes premise 2 of F true, and so it is only
its value for premise 1 that we are interested in computing. Hence, whether or
not F is valid comes down to whether or not interpretation 1 makes premise 1
true. A simple calculation shows that in fact it makes it false. It follows that F
is valid: no interpretation makes all the premises true and the conclusion
false.2 Consequently, E is sententially valid, and therefore valid absolutely. (The
reader should study the reasoning of this and the previous paragraph for as
long as is necessary to grasp it fully.)

This example nicely illustrates how with a little ingenuity we can save our-
selves a lot of labor in testing for validity using the method of exhaustive
search. But the method is still unwieldy, and completely impractical for LSL
arguments which contain more than five sentence-letters. Given our definition
of validity, then, the next step is to try to develop a more efficient way of testing
for it.

❑ Exercises

Use the method of exhaustive search to test the arguments symbolized in the
exercises for 2.4 for sentential validity. Display your work and state the result
you obtain.

4 Testing for validity by constructing interpretations

A faster way of determining the validity or invalidity of an LSL argument-form
is to attempt an explicit construction of an interpretation which makes the pre-
mises true and the conclusion false: if the attempt succeeds, the LSL form is
invalid, and if it breaks down, then (provided it has been properly executed) the

2 To repeat a point from Chapter 2, this does not mean that we have proved that God does not exist.
We have shown merely that the original English argument is sententially valid, not that it is sound
(recall that a sound argument is one which has all its premises true as well). In traditional Christian
theology, the first premise would be disputed: it would be argued that the existence of evil is consis-
tent with the existence of a just, omnipotent and omniscient God, since evil would be said to be a con-
sequence of the free actions of human and supernatural beings, and God, it is held, is obliged not to
interfere with the outcome of freely chosen actions. In other religions, or other versions of Christian-
ity, different premises would be disputed. For instance, in some Eastern religions, it would be denied
that there is evil in the world, on the grounds that all suffering is ‘illusion’.

§4: Testing for validity by constructing interpretations 63

LSL form is valid. To test an English argument for sentential validity in this way,
we first exhibit its form by translating it into LSL, and then we make assign-
ments of truth-values to the sentence-letters in the conclusion of the LSL form
so that the conclusion is false. We then try to assign truth-values to the remain-
ing sentence-letters in the premises so that all the premises come out true. For
example, we can test the argument G from §4 of Chapter 2, repeated here as

A: We can be sure that Jackson will agree to the proposal. For other-
wise the coalition will break down, and it is precisely in these cir-
cumstances that there would be an election; but the latter can
certainly be ruled out.

We begin by translating A into LSL, which results in the LSL argument-form

B: (~J → C) & (E ↔ C)
~E
∴ J

(reread the discussion in §4 of Chapter 2 if necessary) and then we try to find
an interpretation of the three sentence-letters in B which makes the conclusion
false and both premises true. To make the conclusion ‘J’ false, we simply stip-
ulate that ‘J’ is false. Taking the simpler of the two premises first, we stipulate
that ‘E’ is false, making ‘~E’ true. The question now is whether there is an
assignment to ‘C’ on which premise 1 comes out true. Since ‘E’ is false, we need
‘C’ to be false for the second conjunct of premise 1 to be true, but then ‘~J →
C’ is � → ⊥, which is ⊥, making premise 1 false. There are no other options, so
we have to conclude that no interpretation makes all the premises of B true and
the conclusion false. Thus B is a valid LSL argument-form, and therefore A is a
sententially valid English argument, and so valid absolutely.

Here is another application of the same technique, to the LSL argument-
form

C: A → (B & E)
D → (A ∨ F)
~E
∴ D → B

To make the conclusion false we stipulate that ‘D’ is true and ‘B’ is false.
The simplest premise is the third, so next we make it true by stipulating that
‘E’ is false. This determines the truth-value of ‘A’ in the first premise if that
premise is to be true: if ‘E’ is false then ‘B & E’ is false, so we require ‘A’ to be
false for the premise to be true. So far, then, we have shown that for the con-
clusion to be false while the first and third premises are true, we require the
assignment of truth-values � to ‘D’, ⊥ to ‘B’, ⊥ to ‘E’ and ⊥ to ‘A’. The question
is whether this assignment can be extended to ‘F’ so that premise 2 comes out
true. With ‘D’ being true and ‘A’ false, premise 2 is true when ‘F’ is true and false
when ‘F’ is false. Since we are free to assign either truth-value to ‘F’, we obtain

64 Chapter 3: Semantics for Sentential Logic

an interpretation which shows C to be invalid by stipulating that ‘F’ is true. In
other words, the interpretation

D B E A F

� ⊥ ⊥ ⊥ �

makes all the premises of C true and its conclusion false, so C is invalid.
This technique is a significant improvement over drawing up the thirty-two

row truth-table that would be required to test C for validity by the method of
exhaustive search. However, the two examples we have just worked through
contain a simplifying feature that need not be present in general, for in both B
and C there is only one way of making the conclusion false. How do we proceed
when there is more than one? An example in which this situation arises is the
following:

D: ~A ∨ (B → C)
E → (B & A)
C → E
∴ C ↔ A

We deal with this by distinguishing cases. There are two ways of making the
conclusion false, and we investigate each case in turn to see if there is any way
of extending the assignment to make all the premises true:

Case 1: ‘C’ is true, ‘A’ is false. Then for premise 3 to be true, we require
‘E’ to be true, and so for premise 2 to be true, we require ‘B & A’ to be
true, but we already have ‘A’ false. Consequently, there is no way of
extending the assignment ‘C’ true, ‘A’ false, to the other sentence-let-
ters so that all the premises are true. But this does not mean that D is
valid. For we still have to consider the other way of making the conclu-
sion false.

Case 2: ‘C’ is false, ‘A’ is true. Then for premise 1 to be true, ‘B → C’
must be true, which requires ‘B’ to be false, since we already have ‘C’
false. (Why take premise 1 first this time? Because the assignment of ⊥
to ‘C’ and � to ‘A’ does not determine the truth-value of ‘E’ in the sim-
plest premise, premise 3, while it does determine the truth-value of ‘B’
in premise 1. When nothing can be deduced about the truth-values of
the sentence-letters in a premise, given the assignments already made,
we look for another premise where something can be deduced.) We
now have ‘C’ false, ‘A’ true and ‘B’ false. Hence for premise 2 to be true
we must have ‘E’ false, and this also makes premise 3 true. So in Case
2 we arrive at an interpretation on which D’s premises are true and its
conclusion false.

Our overall conclusion, therefore, is that D is invalid, as established by the fol-
lowing interpretation:

§4: Testing for validity by constructing interpretations 65

E B C A

⊥ ⊥ ⊥ �

Notice that we do not say that D is ‘valid in Case 1’ and ‘invalid in Case 2’. Such
locutions mean nothing. Either there is an interpretation which makes D’s pre-
mises true and conclusion false or there is not, and so D is either invalid or
valid simpliciter. The notions of validity and invalidity do not permit relativiza-
tion to cases. What we find in Case 1 is not that D is ‘valid in Case 1’, but rather
that Case 1’s way of making the conclusion false does not lead to a demonstra-
tion of invalidity for D.

Example D suggests that judicious choice of order in which to consider
cases can reduce the length of the discussion, for if we had taken Case 2 first
there would have been no need to consider Case 1: as soon as we have found a
way of making the premises true and the conclusion false we can stop, and pro-
nounce the argument-form invalid. It is not always obvious which case is the
one most likely to lead to an interpretation that shows an invalid argument-
form to be invalid, but with some experience we can make intelligent guesses.

When an argument-form is valid we say that its premises semantically
entail its conclusion, or that its conclusion is a semantic consequence of its pre-
mises. So in example B we have established that ‘(~J → C) & (E ↔ C)’ and ‘~E’
semantically entail ‘J’, or that ‘J’ is a semantic consequence of ‘(~J → C) & (E ↔
C)’ and ‘~E’; and also, in example D, that ‘~A ∨ (B → C)’, ‘E → (A & B)’ and ‘C →
E’ do not semantically entail ‘C ↔ A’. There are useful abbreviations for seman-
tic entailment and non-entailment in a formal language like LSL: for entailment
we use the symbol ‘	’, known as the double-turnstile, and for non-entailment
we use the symbol ‘�’, known as the cancelled double-turnstile. The turnstiles
also implicitly put quotes around formulae where they are required. So we can
express the results of this section as follows:

(1) (~J → C) & (E ↔ C), ~E 	 J
(2) A → (B & E), D → (A ∨ F), ~E � D → B
(3) ~A ∨ (B → C), E → (B & A), C → E � C ↔ A.

Thus semantic entailment is essentially the same notion as validity, and seman-
tic nonentailment essentially the same notion as invalidity. If we are asked to
evaluate an expression such as (1), which says that ‘(~J → C) & (E ↔ C)’ and ‘~E’
semantically entail ‘J’, we simply use one or another technique for determining
whether or not there is an interpretation which makes the premises of (1) true
and the conclusion false. If there is, (1) is false, if there is not, (1) is true. Note
the correct use of ‘valid’ versus ‘true’. Arguments are valid or invalid, not true
or false. But (1) is a statement about some premises and a conclusion: it says
that the conclusion follows from the premises, and this statement itself is
either true or false. Statements like (1), which contain the double-turnstile, are
called semantic sequents.

Since entailment is essentially the same as validity, the formal definition of

66 Chapter 3: Semantics for Sentential Logic

the symbol ‘	’ for LSL is just like the definition of ‘valid argument-form of LSL’:

For any formulae p1,…,pn and q of LSL, p1,…,pn 	 q if and only if there
is no interpretation of the sentence-letters in p1,…,pn and q under
which p1,…,pn are all true and q is false.

In the special case where there are no p1,…,pn—or as it is sometimes put, where
n = 0—we delete from the definition the phrases which concern p1,…,pn. This
leaves us with ‘For any formula q of LSL, 	 q if and only if there is no interpre-
tation under which q is false’. If there is no interpretation on which q is false,
this means q is true on every interpretation, in other words, that q is a tautol-
ogy, and so we read ‘	 q’ as ‘q is a tautology’. ‘� q’, then, means that q is either
contingent or a contradiction.

❑ Exercises

I Use the method of constructing interpretations to determine whether the
following statements are correct. Explain your reasoning in the same way as in
the worked examples, and if you claim a sequent is incorrect, exhibit an inter-
pretation which establishes this.

(1) A → B, B → (C ∨ D), ~D 	 A → C
(2) (A & B) → C, B → D, C → ~D 	 ~A
(3) A → (C ∨ E), B → D 	 (A ∨ B) → (C → (D ∨ E))

*(4) A → (B & C), D → (B ∨ A), C → D 	 A ↔ C
(5) A ∨ (B & C), C ∨ (D & E), (A ∨ C) → (~B ∨ ~D) 	 B & D
(6) A → (B → (C → D)), A & C, C → B 	 ~B ↔ (D & ~D)
(7) (A ↔ B) & (B ↔ C) 	 (A ∨ ~A) & ((B ∨ ~B) & (C ∨ ~C))
(8) (A ↔ B) ∨ (B ↔ C) 	 A ↔ (B ∨ C)
(9) (~A & ~B) ∨ C, (A → D) & (B → F), F → (G ∨ H) 	 ~G → (H ∨ C)

II Test the following English arguments for sentential validity by translating
them into LSL and testing each of the resulting LSL arguments for validity,
using the method of constructing interpretations. Give a complete dictionary
for each argument and be sure not to use different sentence-letters of LSL for
what is essentially the same simple sentence of English. Explain your reasoning
in the same way as in the worked examples, and if you claim an argument is
invalid, exhibit an interpretation which establishes this.

(1) The next president will be a woman only if the party that wins the next election
has a woman leader. Since no party has a woman leader at the moment, then
unless some party changes its leader or a new party comes into being, there will
be no female president for a while. Therefore, unless a new party comes into
being, the next president will be a man.

§4: Testing for validity by constructing interpretations 67

(2) B is a Knave, since if he is a Knight then what he says is false and in that case
he is not a Knight. (In symbolizing this argument, assume everyone is either a
Knight or a Knave.)

(3) A theory which has been widely accepted in the past is always refuted eventual-
ly. This being so, unless we are much more intelligent than our predecessors,
the Theory of Relativity is bound to be refuted. If we are more intelligent, the
human brain must have increased in size, which requires that heads be bigger.
You say the human head has not got bigger in historical times. If you are right
about this, the Theory of Relativity will be refuted.

*(4) If Yossarian flies his missions then he is putting himself in danger, and it is irra-
tional to put oneself in danger. If Yossarian is rational he will ask to be ground-
ed, and he will be grounded only if he asks. But only irrational people are
grounded, and a request to be grounded is proof of rationality. Consequently,
Yossarian will fly his missions whether he is rational or irrational. (F, D, R, A) (In
symbolizing this argument, treat statements about people in general as if they
concerned Yossarian specifically; e.g., symbolize ‘only irrational people are
grounded’ as a statement about Yossarian.)

(5) If the safe was opened, it must have been opened by Smith, with the assistance
of Brown or Robinson. None of these three could have been involved unless he
was absent from the meeting. But we know that either Smith or Brown was
present at the meeting. So since the safe was opened, it must have been Robin-
son who helped open it.

(6) If God is willing to prevent evil but is unable to do so, He is impotent. If God is
able to prevent evil but unwilling to do so, He is malevolent. Evil exists if and
only if God is unwilling or unable to prevent it. God exists only if He is neither
impotent nor malevolent. Therefore, if God exists then evil does not exist.

(7) We don’t need a space station except if we need people in orbit, and we only
need people in orbit if there are going to be manned expeditions to other plan-
ets, and then only if launch technology doesn’t improve. A space station is a
pointless extravagance, therefore, since interplanetary exploration will all be
done by machines if we don’t find better ways of getting off the ground.

(8) The Mayor will win if the middle class votes for her. To prevent the latter, her
rivals must credibly accuse her of corruption. But that charge won’t stick if she
isn’t corrupt. So honesty assures the Mayor of victory.

(9) A decrease in crime requires gun control. So the Mayor’s only winning strategy
involves banning guns, because he won’t win without the middle-class vote and
he’ll lose that vote unless crime goes down. (4 sentence-letters)

(10) The Mayor’s three problems are crime, corruption and the environment. He
can’t do anything about the first and he won’t do anything about the third. So
he won’t be reelected, since winning would require that he solve at least two of
them.

68 Chapter 3: Semantics for Sentential Logic

5 Testing for validity with semantic tableaux

The arguments which we gave in the previous section to establish semantic
consequence and failure of semantic consequence, though rigorous, are rather
unstructured: at various points it is left to the reasoner to decide what to do
next, and it is not always obvious what that should be. In this section we briefly
describe a format for testing argument-forms for validity (semantic sequents
for correctness) which imposes rather more structure on the process, a format
known as a semantic tableau. To determine whether or not p1,…,pn 	 q we build
a search tree which grows downward—like parse trees, search trees are invert-
ed—as we extend our search for an assignment of truth-values which makes
p1,…,pn all true and q false. The reader may wish to review the tree terminology
on page 37 of Chapter 2.5.

A search tree begins at the top or root node with a list of signed formulae.
A signed formula is a formula preceded by either the characters ‘T:’ or the char-
acters ‘F:’. ‘T:’ may be thought of as abbreviating ‘it is true that’ and ‘F:’ as
abbreviating ‘it is false that’. There is a T-rule and an F-rule for each connective,
and the rule reflects that connective’s truth-table. The tree is extended down-
ward by applying T-rules and F-rules to the main connectives of formulae at
nodes on it. For example, the T-rule for a conjunction �p & q� allows us to
extend a tree with �T:p & q� at a node n by adding a new node to the bottom of
every path on which node n lies; the new node is labeled with the signed for-
mulae �T:p� and �T:q�. We call this rule T-&. The corresponding F-rule for a
conjunction �p & q� allows us to extend a tree which has �F:p & q� at a node n
by splitting the tree at the bottom node of every path on which n lies, the new
left node on each such path holding the signed formula �F:p� and the new right
node holding the signed formula �F:q�. We call this rule F-&. The collection of
rules we get by providing a T-rule and an F-rule for each connective is known
as the collection of tableau rules. These rules reflect the requirements for a for-
mula of the relevant sort to have the stated truth-value. Thus the rule T-&
reflects the fact that for �p & q� to be true, p must be true and q must be true,
while the rule F-& reflects the fact that for �p & q� to be false, either p must be
false or q must be false. The disjunction here corresponds to the splitting in
the search tree (and to the distinguishing of cases in some of the informal argu-
ments in the previous section).

To search for an interpretation on which p1,…,pn are all true and q false, we
construct a search tree at whose root node we list the signed formulae
T:p1…T:pn and F:q. We then extend the tree downward by applying the tableau
rules. We may apply the rules to any signed formulae in any order, but which-
ever order we choose, one or the other of two outcomes is inevitable. To
describe these outcomes, it is useful to define the notion of a path in a semantic
tableau or search tree being closed:

A path Π in a semantic tableau is closed if and only if there is a formula
s and nodes n1 and n2 of Π such that �T: s� occurs at n1 and �F: s�
occurs at n2. Π is open if and only if it is not closed.

§5: Testing for validity with semantic tableaux 69

The first of the two possible outcomes is that at some stage of the search, every
path in the tableau closes. In this case the tableau is itself said to be closed and
the search for an interpretation making p1,…,pn all true and q false has failed.
So p1,…,pn 	 q. The second possible outcome is that we have eventually applied
all possible rules but at least one path in the tableau is still open, that is, the
path has no nodes n1 and n2 such that for some formula s, �T: s� occurs at n1

and �F: s� occurs at n2. In this case the search for an interpretation on which
p1,…,pn are all true and q false has succeeded, for as we shall see, if we take an
open path Π at this stage and assign � to every atomic sentence p such that T:
p is on Π and ⊥ to every atomic sentence p such that F: p is on Π, we obtain an
interpretation which makes all of p1,…,pn true and q false. So in this situation,
we can conclude p1,…,pn � q.

The tableau rules for the connectives of LSL are as follows:

T~◗ F~◗ T&◗ F&◗ T∨◗ F∨◗

T: ~p F: ~p T: p & q F: p & q T: p ∨ q F: p ∨ q

F: p T: p T: p F: p F: q T: p T: q F: p
T: q F: q

T→◗ F→◗ T↔◗ F↔◗

T: p → q F: p → q T: p ↔ q F: p ↔ q

F: p T: q T: p T: p F: p T: p F: p
F: q T: q F: q F: q T: q

In interpreting these rule diagrams, remember that an occurrence of a formula
at a node in a tree may lie on many paths, since branching may occur below that
node and a path is a total route through a tree from top to bottom. With this in
mind, think of a rule with a single arrow as an instruction: to apply it to an
occurrence of a formula of the form at the tail of the arrow (i.e. the upper for-
mula), we extend all currently open paths on which this formula-occurrence
lies by adding a new node to each, labeling the new node with the signed for-
mula(e) at the head of the arrow. To apply a rule with a branching arrow to an
occurrence of a formula of the form at the tail of the arrow, we extend all cur-
rently open paths containing the formula occurrence by branching to two new
nodes, labeled as indicated.

We illustrate the technique by repeating two examples from §4, this time
using tableaux. First, we establish the validity of the argument-form B of §4 by
showing that a tableau for it closes.

70 Chapter 3: Semantics for Sentential Logic

Example 1: Show (~J → C) & (E ↔ C), ~E 	 J.

T: (~J → C) & (E ↔ C) ✔

T: ~E ✔

F: J ✔

T: (~J → C) ✔

T: (E ↔ C) ✔

 F: ~J ✔ T: C

 T: J T: E F: E
 ✖ T: C F: C

 F: E
✖

Each node in this tree is generated by applying one of the tableau rules to a
signed formula at a previous node, though not necessarily the node immediate-
ly above. Once we have applied a tableau rule to a signed formula s, we check s
with the dingbat ‘✔ ’. We mark a closed path by positioning the dingbat ‘✖ ’
under its leaf. In this example there are three paths (because there are three
bottom nodes), and all three are marked as closed. Path 1, the path down the
tree which terminates in the node labeled ‘T: J’, is closed because it also has
‘F: J’ on it; path 2, the path down the tree which terminates in the node labeled
‘F: E’, is closed because it also has ‘T: E’ on it (the last rule used on this path is
T~, which is applied to the middle formula at the root node, producing the
occurrence of ‘F: E’ which closes the path); and path 3, the path down the tree
which terminates in the node labeled ‘F: C’, is closed because it also has ‘T: C’
on it. It is worth noting that in general, the size of a tree can be kept to a min-
imum by applying rules like T~ which do not cause branching before applying
rules like T↔ which do cause branching. However, in Example 1 only one path
is still open at the point at which T~ is applied to the root node, and so only
one copy of a node labeled with ‘F: E’ has to be added to the tree.

The next example is argument-form C in §4, which we already know to be
invalid. So a tree search for an interpretation establishing invalidity should suc-
ceed, that is, the tree should have at least one open path. Here is the tree.

✖

§5: Testing for validity with semantic tableaux 71

Example 2: Determine whether A → (B & E), D → (A ∨ F), ~E 	 D → B.

T: A → (B & E) ✔

T: D → (A ∨ F) ✔

T: ~E ✔

F: D → B ✔

F: E

T: D
F: B

F: A T: B & E ✔

F: D T: A ∨ F ✔ T: B

T: A T: F
✖

Paths 1, 2 and 4 are closed. However, path 3 does not satisfy the condition for
being closed, and all nonatomic signed formulae above its leaf are checked, so
there is nothing more we can do to attempt to close the path. Thus our search
ends with the path still open, which shows that A → (B & E), D → (A ∨ F), ~E �
D → B. As we already indicated, we can derive an interpretation which estab-
lishes this failure of semantic consequence by looking at the signed atomic for-
mulae on the open path, in this case ‘F: E’, ‘T: D’, ‘F: B’, ‘F: A’ and ‘T: F’. Reading
truth-value assignments off the signatures, we obtain exactly the interpretation
demonstrating invalidity that we arrived at through applying the method of
constructing interpretations to argument-form C in §4, as exhibited on page 64.

❑ Exercises

Repeat the exercises of I of §4 using semantic tableaux rather than the method
of constructing interpretations.

T: E
✖

✖

72 Chapter 3: Semantics for Sentential Logic

6 Properties of semantic consequence

One advantage of the double-turnstile notation is that it enables us to raise in
a convenient form certain questions about relationships among argument-
forms. For example, in symbolizing A of §4 as B (page 63), we treated all of the
first sentence after ‘for’ as a single premise, a conjunction. Would it have made
any difference if we had symbolized that piece of English as two separate pre-
mises? This question is a general one, and we can put it in the following way:
for any formulae p, q and r of LSL,

Example 1: If (p & q) 	 r, does it follow that p, q 	 r?

Example 2: If p, q 	 r, does it follow that (p & q) 	 r?

In other words, as far as LSL validity is concerned, is there any significant dif-
ference between multiple premises versus a conjunction with multiple con-
juncts?

It is not too difficult to see that the answers in both examples are yes. But
there is a general strategy for answering questions like these which it is useful
to be able to illustrate with simple examples. Let us begin with Example 1. We
reason as follows:

Example 1: If (p & q) 	 r then by definition of ‘	’ this means that no
interpretation makes �p & q� true and r false. So by the table for ‘&’, no
interpretation makes p true, q true and r false. But if p, q � r then some
interpretation makes p true, q true and r false, which is what we have
just ruled out. Consequently, if (p & q) 	 r it cannot be that p, q � r, so
it follows that p, q 	 r.

Example 2: If p, q 	 r then this means that no interpretation makes p
true, q true and r false. On the other hand, if (p & q) � r then some
interpretation makes �p & q� true and r false, which means that it
makes p true, q true and r false. But that is what we have just ruled out.
Hence it cannot be that (p & q) � r, so it follows that (p & q) 	 r.

In problems like these, we are using the metavariables ‘p’, ‘q’ and ‘r ’ to
abstract from sequents with LSL formulae as their premises and conclusions,
and are considering instead sequents with metalanguage formulae that desc-
ribe patterns which sequents with LSL formulae may instantiate. One such
abstract sequent is given, and another is queried. The strategy for solving the
problem is to begin by using the definition of ‘	’ to determine which kinds of
interpretation are ruled out by the given sequent. To determine whether the
queried sequent is correct, we then ask what kinds of interpretation would
show that it is not correct. If all interpretations of these kinds have been ruled
out by the given sequent, the queried sequent does follow from the given one.
But if they have not all been ruled out, the queried sequent does not follow
from the given one. For any particular formulae p, q and r, the resulting queried

§6: Properties of semantic consequence 73

sequent may of course be semantically correct. The issue is whether the cor-
rectness of the given sequent guarantees this for all formulae p, q and r.

Here are two further examples, where p, q and r are any sentences of LSL:

Example 3: If (p ↔ q) 	 (p & q), does it follow that (p ∨ q) 	 (p & q)?

Answer: If (p ↔ q) 	 (p & q) then no interpretation makes �p ↔ q� true
and �p & q� false. Thus the interpretations which are ruled out are
those which make p false and q false. (Remember that p and q are any
LSL wffs, not necessarily atomic ones, so there might be more than one
interpretation which results in p false, q false.) If (p ∨ q) � (p & q) then
some interpretation makes �p ∨ q� true and �p & q� false. Any such
interpretation must either have p true and q false or vice-versa. In fact,
neither of these combinations has been ruled out, so it does not follow
from (p ↔ q) 	 (p & q) that (p ∨ q) 	 (p & q).

Example 4: If 	 (p → (q → r)), does it follow that ~r 	 (~p → ~q)?

Answer: If 	 (p → (q → r)) then no interpretation makes p true, q true
and r false. If ~r � (~p → ~q) then some interpretation makes �~r� true
and �~p → ~q� false, that is, it makes r false, p false and q true. Such
an interpretation has not been ruled out, so from 	 (p → (q → r)) it does
not follow that ~r 	 (~p → ~q).

The semantic consequence relation is the fundamental concept of modern
logic. It is just as important to be able to reason about it, as in Examples 1–4
above, as it is to be able to execute a technique for detecting when it holds and
when it fails, like the ones developed in §3–§5 of this chapter.

❑ Exercises

In the following, p, q, r and s are any sentences of LSL. In (1)–(6), explain your
reasoning in the manner illustrated by the examples of this section.

(1) If 	 p → (q → r), does it follow that p, q 	 r? Does it follow that r 	 (p → q)?
(2) If (p → q) 	 r, does it follow that p 	 (q → r)?

*(3) If p 	 (q & r), does it follow that (p ↔ q) 	 (p ↔ r)?
(4) If (p ↔ q) 	 (r ∨ s), does it follow that (p & q) 	 r?
(5) If (p → q) 	 (~r ∨ s), does it follow that (p & r) 	 ~q?
(6) If (p & q) ∨ (r & s) 	 (p → r) ↔ (q → s), does it follow that (p & ~r), ~q 	 ~s?
(7) Although there is no sentence-letter in common between premise and

conclusion, (A & ~A) 	 B. Briefly explain why.
*(8) Although there is no sentence-letter in common between premise and

conclusion, B 	 (A ∨ ~A). Briefly explain why.

74 Chapter 3: Semantics for Sentential Logic

7 Expressive completeness

At the end of §1 in Chapter 2 we claimed that our five sentential connectives
‘~’, ‘∨’, ‘&’, ‘→’ and ‘↔’ are all we need in sentential logic, since other sentential
connectives are either definable in terms of these five or else beyond the scope
of sentential logic. When we say that a connective is beyond the scope of clas-
sical sentential logic, what we mean is that it is non-truth-functional; in other
words, there is no truth-function that it expresses (see §1 of this chapter for a
discussion of expressing a truth-function). In the next section we will consider
various connectives of this sort. Meanwhile, we will concern ourselves with the
definability of other truth-functional connectives.

An example of a truth-functional connective which is definable in terms of
our five is ‘neither…nor…’, since for any English sentences p and q, �neither p
nor q� is correctly paraphrased as �not p and not q� (see (11) on page 18). But
this is just one example. How can we be confident that every truth-functional
connective can be defined in terms of ‘~’, ‘∨’, ‘&’, ‘→’ and ‘↔’? Our confidence
is based in the fact that our collection of connectives has a property called
expressive completeness, which we now explain.

At the end of §1 of this chapter, we listed the function-tables for the one-
place, or unary, function expressed by ‘~’, and the four two-place, or binary,
functions expressed by the other connectives. However, there are many more
unary and binary truth-functions than are expressed by the five connectives
individually. For example, there are three other unary truth-functions:

� ⇒ � � ⇒ � � ⇒ ⊥
⊥ ⇒ � ⊥ ⇒ ⊥ ⊥ ⇒ ⊥

(a) (b) (c)

To show that all unary truth-functional connectives are definable in terms of
our five basic connectives, we establish the stronger result that all unary truth-
functions are definable, whether or not they are expressed by some English
connective. (While (b) is expressed by ‘it is true that’, neither (a) nor (c) has an
uncontrived rendering.) Our question is therefore whether we can express all
of (a), (b) and (c) in terms of our five chosen connectives. And in this case it is
easy to see that (a) is captured by ‘…∨ ~…’, (b) by ‘~~…’, and (c) by ‘…& ~…’,
where in (a) and (c) the same formula fills both ellipses.

What about the other binary truth-functions? We have connectives for four,
and we know how to define a fifth, the truth-function

�� ⇒ ⊥
�⊥ ⇒ ⊥
⊥� ⇒ ⊥
⊥⊥ ⇒ �

which is expressed by ‘neither…nor…’ (to repeat, �neither p nor q� is true just
in case both p and q are false, so we express it with �~p & ~q�). But there are

§7: Expressive completeness 75

many more binary truth-functions, and again we are concerned to define all of
them, not merely those which correspond to some idiomatic phrase like ‘nei-
ther…nor…’. First, how many other binary functions are there? There are as
many as there are different possible combinations of outputs for the four pairs
of truth-values which are the inputs to binary truth-functions. Hence there are
sixteen different binary truth-functions: the output for the first pair of input
truth-values �� is either � or ⊥, giving us two cases, and in each of these cases,
the output for the second pair of inputs �⊥ is either � or ⊥, giving a total of
four cases so far, and so on, doubling the number of cases at each step for a
total of sixteen. So apart from examining each of the remaining eleven binary
truth-functions one by one, is there a general reason to assert that they can all
be defined by our five connectives?

Even supposing that we can give a general reason why all binary truth-func-
tions should be definable in terms of our five, that would not be the end of the
matter, since for every n, there are truth-functions of n places, though when
n > 2 they rarely have a ‘dedicated’ English phrase which expresses them.3 The
claim that our five chosen connectives suffice for sentential logic is the claim
that for any n, every truth-function of n places can be expressed by our five
connectives. This is our explanation of the notion of expressive completeness
of a collection of connectives, which we embody in a definition:

A set of connectives S is expressively complete if and only if for every
n, all n-place truth-functions can be expressed using only connectives
in S.

The set of connectives which we wish to prove expressively complete is
{~,&,∨,→,↔} (the curly parentheses, or braces, are used for sets, with all the
members of the set exhibited between them). But what does it mean to say that
a truth-function is expressed using connectives in this set? This means that
there is a formula which expresses the truth-function and which is built up
from sentence-letters and connectives in the set. And this in turn is explained
using truth-tables. We observe that every truth-function corresponds to a
truth-table (and conversely). For example, the three-place function

��� ⇒ �
��⊥ ⇒ ⊥
�⊥� ⇒ ⊥
�⊥⊥ ⇒ �
⊥�� ⇒ �
⊥�⊥ ⇒ �
⊥⊥� ⇒ �
⊥⊥⊥ ⇒ �

corresponds to the truth-table laid out on page 55. In general, given a function-

3 The phrase ‘if…then…, otherwise…’ is an example of a locution expressing a three-place sentential
connective. However, �if p then q, otherwise r� can be paraphrased as �if p then q and if not-p then r�.

76 Chapter 3: Semantics for Sentential Logic

table, the corresponding truth-table is the table with the output of the function
as its final column. We say that a function is expressed by a formula, or a for-
mula expresses a function, if that formula’s truth-table is the table correspond-
ing to the function. So the three-place function just exhibited is expressed by
the formula ‘(A → (B ∨ C)) → (A → (B & C))’ from page 55.

Consequently, to show that every truth-function is expressible in terms of
the five connectives of LSL, it suffices that we show how, given any truth-table,
we can recover a formula which contains only LSL connectives and whose truth-
table it is. In other words, we have to develop a technique that is the reverse of
the one we have for constructing truth-tables, given formulae; the problem now
is to construct formulae, given truth-tables.

There is a systematic way of doing this. A truth-table lists various possible
interpretations, that is, assignments of truth-values to certain sentence-letters.
Say that a formula defines an assignment I of truth-values to sentence-letters
π1,…,πn if and only if that formula is true on I and on no other assignment to
π1,…,πn. Then given an assignment I to π1,…,πn, one can use π1,…,πn to con-
struct a formula in ‘&’ and ‘~’ which defines I as follows: take each sentence-
letter which is assigned � and the negation of each which is assigned ⊥ and
form the conjunction of these letters and negated letters. So, for example, the
interpretation consisting in the assignment of ⊥ to ‘C’, � to ‘D’, ⊥ to ‘B’, ⊥ to
‘A’ and � to ‘F’ is defined by ‘~C & D & ~B & ~A & F’, since this formula is true
on that assignment, and only that one, to those sentence-letters. Now suppose
we are given a randomly chosen truth-table with 2n rows and a final column of
entries, but no formula and no sentence-letters are specified. It is easy to find
a formula for the table in the two special cases in which all interpretations lead
to � or all to ⊥. Otherwise, to construct a formula for the table, we choose sen-
tence-letters π1,…,πn and use them to construct the formulae which define the
interpretations where there is a � in the final column of the table, and disjoin
these interpretation-defining formulae together. This produces a disjunction
such that each disjunct is true on exactly one row of the table (the one it
defines), making the whole disjunction true at that row. For each row where
there is a � there is a disjunct in the constructed formula with this effect. And
the formula has no other components. Therefore it is true on exactly the rows
in the table where there is a �. Consequently, this disjunction expresses the
truth-function given by the table.

In sum, we have the following three-step procedure for constructing a for-
mula for any truth-table:

• If there are no �s in the final column, let the formula be ‘A & ~A’; if
there are no ⊥s, let it be ‘A ∨ ~A’.

• Otherwise, using the appropriate number of sentence-letters ‘A’, ‘B’
and so on, for each interpretation which gives a � in the final col-
umn of the table construct a conjunction of sentence-letters and
negated sentence-letters defining that interpretation.

• Form a disjunction of the formulae from the previous step.

Here are two applications of this technique.

§7: Expressive completeness 77

Example 1:

A B

�� ⇒ ⊥ �� ⊥
�⊥ ⇒ � �⊥ �
⊥� ⇒ ⊥ ⊥� ⊥
⊥⊥ ⇒ � ⊥⊥ �
Function Corresponding table

The second and fourth interpretations (inputs) produce �s in the final column
of the table. The second interpretation is: � assigned to ‘A’, ⊥ to ‘B’, so its defin-
ing formula is ‘A & ~B’. The fourth interpretation is: ⊥ assigned to ‘A’, ⊥ to ‘B’,
so its defining formula is ‘~A & ~B’. Consequently, the formula we arrive at is
‘(A & ~B) ∨ (~A & ~B)’, and a simple calculation confirms that this formula does
indeed have the displayed truth-table. Of course, there are many other (in fact,
infinitely many other) formulae which have this table. For example, the reader
may have quickly noticed that the formula ‘(A ∨ ~A) & ~B’ also has the table in
Example 1. But to show that the truth-function is expressible, all we have to
find is at least one formula whose table is the table corresponding to the func-
tion, and our step-by-step procedure will always produce one. Moreover, when
we consider functions of three places or more it is no longer so easy to come
up with formulae for their corresponding tables simply by inspecting the
entries and experimenting a little. So it is best to follow the step-by-step proce-
dure consistently, as in our next example.

Example 2:

A B C

��� ⇒ � ��� �
��⊥ ⇒ ⊥ ��⊥ ⊥
�⊥� ⇒ ⊥ �⊥� ⊥
�⊥⊥ ⇒ � �⊥⊥ �
⊥�� ⇒ ⊥ ⊥�� ⊥
⊥�⊥ ⇒ � ⊥�⊥ �
⊥⊥� ⇒ ⊥ ⊥⊥� ⊥
⊥⊥⊥ ⇒ � ⊥⊥⊥ �
Function Corresponding table

Here it is interpretations 1, 4, 6 and 8 which produce a �. The four formulae
defining these interpretations are respectively: ‘A & B & C’, ‘A & ~B & ~C’, ‘~A &
B & ~C’ and ‘~A & ~B & ~C’. Therefore a formula for the table, grouping dis-
juncts conveniently, is:

78 Chapter 3: Semantics for Sentential Logic

[(A & (B & C)) ∨ (A & (~B & ~C))] ∨ [(~A & (B & ~C)) ∨ (~A & (~B & ~C))].

It should be clear from this method that we are proving something stronger
than that the set of LSL connectives {~,&,∨,→,↔} is expressively complete, since
our procedure for finding a formula for an arbitrary table involves only the con-
nectives in the subset {~,&,∨}. What we are showing, therefore, is that {~,&,∨} is
expressively complete, from which the expressive completeness of {~,&,∨,→,↔}
follows trivially: if we can express any truth-function by some formula in
{~,&,∨}, then the same formula is a formula in {~,&,∨,→,↔} which expresses the
truth-function in question (the point is that p’s being a formula in {~,&,∨,→,↔}
requires that p contain no other connectives, but not that it contain occurrenc-
es of all members of {~,&,∨,→,↔}). But can we do better than this? That is, is
there an even smaller subset of {~,&,∨,→,↔} which is expressively complete?
Given the expressive completeness of {~,&,∨}, a simple way to show that some
other set of connectives is expressively complete is to show that the connectives
of the other set can define those of {~,&,∨}.

What is it for one or more connectives to define another connective? By this
we mean that there is a rule which allows us to replace every occurrence of the
connective c to be defined by some expression involving the defining connec-
tives. More precisely, if p is a formula in which there are occurrences of c, then
we want to select every subformula q of p of which c is the main connective,
and replace each such q with a formula q� logically equivalent to q but contain-
ing only the defining connectives. For instance, we already know that we can
define ‘↔’ using the set of connectives {&,→}, since every occurrence of ‘↔’ in a
formula p is as the main connective of a subformula �(r ↔ s)�, and we have the
following substitution rule:

• Replace each subformula q of p of the form �(r ↔ s)� with �((r → s)
& (s → r))�.

Applying this substitution rule throughout p yields a logically equivalent for-
mula p� which contains no occurrence of ‘↔’. For example, we eliminate every
occurrence of ‘↔’ from ‘A ↔ (B ↔ C)’ in two steps (it does not matter which ‘↔’
we take first):

Step 1: [A → (B ↔ C)] & [(B ↔ C) → A]
Step 2: [A → ((B → C) & (C → B))] & [((B → C) & (C → B)) → A]

Using a similar approach, we can show that the set of connectives {~,&} is
expressively complete. Given that {~,&,∨} is expressively complete, the problem
can be reduced to defining ‘∨’ in terms of ‘~’ and ‘&’. For a disjunction to be
true, at least one disjunct must be true, which means that it is not the case that
the disjuncts are both false. So the substitution rule should be:

• Replace every subformula of the form �(r ∨ s)� with �~(~r & ~s)�.

Since each substitution produces a logically equivalent formula, or as we say,

§7: Expressive completeness 79

since substitution preserves logical equivalence, then if we begin with a formula
in {~,&,∨} for a given truth-table, and replace every occurrence of ‘∨’ using the
substitution rule, we end up with a formula in {~,&} for that same truth-table.
Since every table has a formula in {~,&,∨}, it follows that every table has a for-
mula in {~,&}, hence {~,&} is expressively complete. For example, we have
already seen that ‘(A & ~B) ∨ (~A & ~B)’ is a formula for the table of Example 1
above. Applying the substitution rule to the one occurrence of ‘∨’ in this for-
mula yields the logically equivalent formula

~[~(A & ~B) & ~(~A & ~B)]

which is therefore also a formula for the table in Example 1.
By the same technique we can show that {~,∨} and {~,→} are expressively

complete (these are exercises). However, not every pair of LSL connectives is
expressively complete; for example, {&,∨} and {~,↔} are not. This can be proved
rigorously by a technique known as mathematical induction, but for our pur-
poses it is enough to understand one example, {&,∨}, intuitively. The point is
that negation cannot be expressed in terms of {&,∨}, since no formula built out
of ‘A’ and ‘&’ and ‘∨’ can be false when ‘A’ is true. Since ‘~A’ is false when ‘A’ is
true, this means no formula built out of ‘A’ and ‘&’ and ‘∨’ has the same truth-
table as ‘~A’. Thus {&,∨} is expressively incomplete.

There are two connectives which are expressively complete individually,
though neither belongs to LSL. One is a symbol for ‘neither…nor…’, ‘↓’, and the
other is called Sheffer’s Stroke, after its discoverer, and written ‘|’. Their func-
tion-tables are:

↓ |

�� ⇒ ⊥ �� ⇒ ⊥
�⊥ ⇒ ⊥ �⊥ ⇒ �
⊥� ⇒ ⊥ ⊥� ⇒ �
⊥⊥ ⇒ � ⊥⊥ ⇒ �

To see that ‘↓’ is expressively complete, we use the already established
expressive completeness of {~,&}. Since every table has a formula whose only
connectives are ‘~’ and ‘&’, we can derive a formula for any table by finding the
formula in ‘~’ and ‘&’ for it and then using substitution rules to eliminate all
occurrences of ‘~’ and ‘&’, replacing them with formulae containing only ‘↓’.
What should the substitution rules be in this case? One can play trial and error
with truth-tables, but it is not hard to see that �not-p� can be paraphrased, if
awkwardly, as �neither p nor p�. We also note that �neither not-p nor not-q� is
true exactly when p and q are both true, which makes it equivalent to that con-
junction; and we already know how to eliminate ‘not’ in �not-p� and �not-q�. So
we get the following substitution rules:

• Replace every subformula of the form �~r� with �(r↓r)�.
• Replace every subformula of the form �(r & s)� with �(r↓r)↓(s↓s)�.

80 Chapter 3: Semantics for Sentential Logic

It is easy to check the correctness of these rules using truth-tables. Hence ‘↓’ is
expressively complete by itself, and a similar argument shows Sheffer’s Stroke
to be expressively complete by itself (this is an exercise).

A final comment. We saw earlier that there are four unary truth-functions
and sixteen binary ones. But for an arbitrary n, how many n-place truth-func-
tions are there? To answer this we generalize the reasoning which gave us the
answer ‘sixteen’ in the binary case. If a truth-function takes a sequence of n
truth-values as input, there are 2n different possible such input sequences for
it: the first element of an input sequence may be � or ⊥, giving two cases, and
in each of these cases the second element may be � or ⊥, giving a total of four
cases, and so on, doubling the number of cases at each step, giving a total of 2n

cases at the nth element of the sequence. And if there are 2n different possible
input sequences to a truth-function, there are 22n different possible combina-
tions of truth-values which can be the function’s output: the output for the first
input may be either � or ⊥, giving two cases, and in each of these, the output
for the second input may be � or ⊥, and so on, doubling the number of cases
with each of the 2n inputs, for a total of 22n different possible outputs. Hence
there are 22n different n-place truth-functions.

❑ Exercises

I Find formulae in {~,&,∨} which express the truth-functions (1), (2) and (3)
below. Then give formulae in {~,&} for (1) and *(2) (use the rule on page 78).

(1) ��� ⇒ � (2) ��� ⇒ ⊥ (3) ��� ⇒ �
��⊥ ⇒ ⊥ ��⊥ ⇒ ⊥ ��⊥ ⇒ �
�⊥� ⇒ ⊥ �⊥� ⇒ � �⊥� ⇒ �
�⊥⊥ ⇒ ⊥ �⊥⊥ ⇒ � �⊥⊥ ⇒ �
⊥�� ⇒ � ⊥�� ⇒ ⊥ ⊥�� ⇒ ⊥
⊥�⊥ ⇒ ⊥ ⊥�⊥ ⇒ ⊥ ⊥�⊥ ⇒ ⊥
⊥⊥� ⇒ ⊥ ⊥⊥� ⇒ � ⊥⊥� ⇒ ⊥
⊥⊥⊥ ⇒ ⊥ ⊥⊥⊥ ⇒ � ⊥⊥⊥ ⇒ �

II Granted that {~,&,∨} is expressively complete, explain carefully why each
of the following sets of connectives is expressively complete (compare the
explanation on page 78 for {~,&}). State your substitution rules. In (3), ‘←’
means ‘if’, so �p ← q� is read �p if q�.

(1) {~,∨} (2) {~,→} *(3) {~, ←} (4) { | }

*III {~,↔} is expressively incomplete. Can you think of a general pattern of dis-
tribution of �s and ⊥s in the final column of a truth-table which would guar-
antee that there is no formula in {~,↔} which has that table? Try to explain your
answer (this is much harder than the expressive incompleteness of {&,∨}).

§8: Non-truth-functional connectives 81

8 Non-truth-functional connectives

The five connectives of LSL have been shown to be adequate for all of truth-
functional logic. What is being deliberately excluded at this point, therefore, is
any treatment of non-truth-functional connectives, that is, connectives which
do not express truth-functions. There are extensions of classical logic which
accommodate non-truth-functional connectives, but at this point all we need to
know is how to determine whether a given connective is truth-functional or
non-truth-functional.

A truth-functional connective expresses a truth-function, which in turn can
be written as a function-table, so a proof that a certain n-place connective is not
truth-functional would consist in showing that its meaning cannot be
expressed in a function-table. A function-table associates each of the possible
2n inputs with a single output, either � or ⊥, so what we need to prove about a
connective to show that it is non-truth-functional is that for at least one input,
there is no single output that could be correctly associated with the connective.
For if this is so, the truth-value of a sentence formed using the connective is
not a function of the truth-values of the component sentences. Here are two
examples.

Example 1: Philosophers distinguish two kinds of fact, or truth, those which are
contingent and those which are noncontingent or necessary. Something is con-
tingently the case if it might not have been the case, that is, if there are ways
things could have gone in which it would not have been the case. Something is
necessarily the case if there is no way things could have gone in which it would
not have been the case. Note that this use of ‘contingent’ is much broader than
its use to mean ‘not a tautology and not a contradiction’, which was the way we
employed the term in §2. Understood in this new, broad sense, we can show
that the connective ‘it is a matter of contingent fact that…’ is non-truth-func-
tional. ‘It is a matter of contingent fact that…’ is a one-place connective which
can be prefixed to any complete sentence. If it were truth-functional, then it
would have a function-table � ⇒ ?, ⊥ ⇒ ? like negation, in which each query is
replaced by either � or ⊥. It is easy to see that when the input is ⊥, the output
is also ⊥. In other words, if the ellipsis in ‘it is a matter of contingent fact that…’
is filled by a false sentence, the result is a false sentence; for if p is false, then
�it is a matter of contingent fact that p� is false as well, since it is not a fact at
all that p. But there is a problem when the input to the connective is �. If the
connective is truth-functional the output must always be �, or always be ⊥, yet
we can show that neither of these alternatives correctly represents the meaning
of ‘it is a matter of contingent fact that’.

(a) Let ‘A’ mean ‘Gorbachev was president of the Soviet Union’. Then
‘A’ is true, and ‘it is a matter of contingent fact that A’ is true as
well, since it is a contingent fact that Gorbachev was president of
the Soviet Union, there being many other ways things could have
gone in which he would not have achieved that office—for example,
he might have been killed in World War II.

82 Chapter 3: Semantics for Sentential Logic

(b) Let ‘A’ mean ‘all triangles have three angles’. Then ‘A’ is true, but ‘it
is a matter of contingent fact that A’ is false, for it is not a contin-
gent fact that all triangles have three angles. Having three angles is
part of the meaning of ‘triangle’, so it is necessary rather than con-
tingent that all triangles have three angles: there are no alternative
ways things could have gone in which there are triangles with fewer
than or more than three angles.4

(a) and (b) together show that there is no correct way of completing the first
entry � ⇒ ? in a function-table for ‘it is contingent that…’ (a) shows that it
would be wrong to put ⊥, and (b) that it would be wrong to put �. This illus-
trates the general technique for establishing that a connective is non-truth-
functional: we find two examples which show that for a particular input there
is no single correct output.

Example 2: The connective ‘after’ is not truth-functional. ‘After’ is a two-place
connective, and can occur either between two complete sentences, as in �p after
q�, or at the beginning, as in the syntactic variant �After q, p�. To show that
‘after’ is not truth-functional, we show that there is no correct output for the
input �,�.

(a) Let ‘A’ mean ‘Thatcher was elected prime minister’ and ‘B’ mean
‘Nixon was elected president’. Then ‘A after B’ is true, since Thatch-
er was first elected in 1979 and Nixon last elected in 1972.

(b) Let ‘A’ mean ‘Nixon was elected president’ and ‘B’ mean ‘Thatcher
was elected prime minister’. Then ‘A after B’ is false.

Thus in any purported function-table for ‘after’ it would be impossible to com-
plete the first entry �,� ⇒ ?, because (a) shows ⊥ is incorrect and (b) shows �
is incorrect.

These two examples explain the terminology ‘non-truth-functional’, for
their morals are that the truth-value of �it is a matter of contingent fact that p�
is not a function merely of the truth-value of p, and the truth-value of �p after
q� is not a function merely of the truth-values of p and q. Rather, the truth-
value of �it is contingent that p� depends, for true p, on the nature of the rea-
son why p is true, and the truth-value of �p after q�, for true p and q, depends
on the temporal order of the events reported in p and q. The connective ‘it is a
matter of contingent fact that’ belongs to an extension of classical logic called
modal logic (see Chapter 9), and the connective ‘after’ to an extension of clas-
sical logic called tense logic (see Burgess).

4 Do not confuse the question (i) ‘Could triangles have had more than or fewer than three angles?’
with the question (ii) ‘Could the word “triangle” have been defined differently?’ Obviously, the word
‘triangle’ could have been defined to mean what we actually mean by ‘square’ (‘tri’ could have been
used for ‘four’), but that is irrelevant to question (i), where ‘triangles’ is used with its normal meaning.
Given what (i) means, the correct answer to it is ‘no’.

§8: Non-truth-functional connectives 83

The alert reader will have noticed some parallels between our discussion
of ‘after’ and our earlier discussion of ‘if…then…’ in §1 of this chapter. We have
demonstrated that ‘after’ is not truth-functional by providing two examples in
both of which ‘after’ is flanked by true sentences and in which the resulting
‘after’ sentences have different truth-values. But a comparable pair of examples
for ‘if…then…’ as it is used in English can apparently be constructed. We used
the sentence

(1) If Nixon was president then Nixon lived in the White House

to motivate the entry �� ⇒ � in the function-table of the truth-function
expressed by ‘if…then…’, but we also noted that many would judge that the
conditional

(2) If Moses wrote the Pentateuch then water is H2O

is not true, on the grounds that the consequent is unrelated to the antecedent.
Yet on the assumption that ‘Moses wrote the Pentateuch’ is true, (2) has a true
antecedent and true consequent. Here one example with true antecedent and
true consequent gives us a true conditional while another, also with true ante-
cedent and true consequent, does not. Why do we not just conclude that the
‘if…then…’ of the indicative conditional is not truth-functional?

We remarked in our discussion in §1 that on one view, there are at least two
senses of ‘if…then…’ and our truth-table for ‘→’ captures only one of its senses,
the material sense. The senses which are not captured are the non-truth-func-
tional ones, where the truth-value of the conditional depends not just on the
truth-values of its antecedent and consequent, but also on whether there is a
certain kind of connection between antecedent and consequent. Different sens-
es of the conditional would correspond to different kinds of connection, for
instance, there would be a causal sense in which the truth of the consequent
has to be caused by the truth of the antecedent. Unfortunately, it seems as
though all the natural senses of ‘if…then…’ are non-truth-functional, so one
could reasonably worry about the reliability of translations of English condi-
tionals into a symbolism which cannot express these natural senses. This is
why the case of the conditional is unlike the case of disjunction: even though
we took inclusive disjunction as basic, the exclusive sense is also truth-func-
tional and easily defined. But we cannot define any of the non-truth-functional
senses of the conditional.

However, in the case of both disjunction and the conditional, there is an
alternative to postulating two or more senses of the English connective.
According to the alternative view, a conditional such as ‘if Moses wrote the Pen-
tateuch then water is H2O’ really is true, but sounds strange for the following
reason. It is correct to assert conditionals only when we believe it is not the case
that the antecedent is true and the consequent false, and the standard grounds
for such a belief are either (i) we believe that the antecedent is false, or (ii) we
believe that the consequent is true, or (iii) we believe that if the antecedent is
true, that will in some way make the consequent true. But if our grounds for

84 Chapter 3: Semantics for Sentential Logic

the belief that it is not the case that the antecedent is true and the consequent
false are (i) or (ii), then asserting the conditional violates one of the maxims we
have to observe if conversation is to be an efficient way of communicating
information, the maxim to be as informative as possible. If our grounds are (i)
or (ii), we should just deny the antecedent or assert the consequent, that is, we
should make the more informative statement. However, this does not mean
that if we assert the conditional instead, we say something false: the condition-
al is still true, but it is conversationally inappropriate. The problem with ‘if
Moses wrote the Pentateuch then water is H2O’, therefore, is that in the absence
of any mechanism tying the authorship of the Pentateuch to the chemical com-
position of water, the most likely ground for asserting the conditional is that
we believe that water is H2O. But then that is what we should say, not something
less informative. This means that we are left with (iii) as the only grounds on
which it is normally appropriate to assert a conditional. So the suggestion is
that when people deny that ‘if Moses wrote the Pentateuch then water is H2O’
is true, they are failing to distinguish the question of truth from the question
of appropriateness. All we can really object to about (2) is that in ordinary con-
texts it is likely to be conversationally inappropriate; but this is consistent with
its being true.

The maxim to be as informative as possible needs to be qualified, for there
are circumstances in which maximum informativeness would not be appropri-
ate in the context. For example, in giving clues to children engaged in a treasure
hunt, one may say ‘if it’s not in the garden then it’s in the bedroom’ so as to
leave it open which should be searched, even though one knows the treasure is
in the bedroom. This is a case where the conditional seems true despite the
absence of a mechanism that brings about the treasure’s being in the bedroom
from its not being in the garden (the treasure is in the bedroom because that is
where it was put). If we distinguish the appropriateness of a conditional from
its truth, therefore, we can maintain that the English ‘if…then…’ has only one
meaning, the truth-functional one. (This approach to the conditional and relat-
ed matters was developed by Paul Grice; see Grice.)

❑ Exercises

Show that the following connectives are not truth-functional:

(1) ‘It is necessary that…’
(2) ‘…before…’

*(3) ‘It is surprising that…’
(4) ‘…because…’

*(5) ‘…, which means that…’
(6) ‘At noon…’
(7) ‘Someone knows that…’ (Note: (7) is tricky.)

§9: Summary 85

9 Summary

• Negation reverses truth-value; a conjunction is � when and only
when both conjuncts are �; a disjunction is ⊥ when and only when
both disjuncts are ⊥; a conditional is ⊥ when and only when its an-
tecedent is � and its consequent is ⊥; a biconditional is � when and
only when both its sides have the same truth-value.

• Every formula of LSL is either a tautology (true on every interpreta-
tion), a contradiction, or contingent. Equivalent formulae have the
same truth-value on each interpretation.

• An English argument has a valid argument-form if its translation in
LSL is a valid argument-form.

• An argument-form in LSL is valid if and only if no interpretation
makes its premises true and its conclusion false. LSL validity may
be determined either by exhaustive search or by constructing an
interpretation.

• Classical sentential logic is the logic of truth-functional connec-
tives, all of which can be defined by ‘~’, ‘&’ and ‘∨’. Non-truth-func-
tional sentential connectives require extensions of classical logic,
such as modal logic and tense logic, to handle them.

