
 

Solutions to Selected Exercises

 

(A complete solutions manual is available for instructors. Requests should be made on
official letterhead directly to the author at the Department of Philosophy, Tulane Univer-
sity, New Orleans, LA 70118, USA. Please state your course number and/or title, and if
possible supply an e-mail address.)

 

Chapter 2, §2

 

(6) I: Inflation is falling
G: The government can guide the economy wisely
R: The government can regain its popularity
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and at the same time _” is the denial of a conjunction: not both are
true. So we should have ‘
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(9) S: Smith is a lawyer B: Brown is a lawyer
R: Robinson is a lawyer X: Smith is honest
Y: Brown is honest Z: Robinson is honest
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[‘Still’ is another way of expressing conjunction. ‘At least two of them are hon-
est’ should be expanded into full sentential form as a claim explicitly about
Smith, Brown and Robinson. If at least two are honest, then of the three, either
the first two are honest (‘X 
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 Y’), or the second two are (‘Y 
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 Z’), or the first and
third are (‘X 
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 Z’).]
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(5) P: Grades may be posted
R: Students request grades to be posted
S: Students are identified by name
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(To say that a condition 
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 will hold provided 
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 holds is to say that 

 

q

 

 is sufficient
for 

 

p

 

, as in ‘you’ll be notified provided you’re registered’—this implies that
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there is nothing else you must do. But it leaves it open that there are ways an
unregistered person may be notified, say by some special arrangement.)

(8) R: One has the right to run for president
C: One is an American citizen
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 C

(12) E: One makes an effort
P: One passes the exam
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(15) F: There is an increase in government funding for education
Q: There is an improvement in the quality of education

(Q 

 

→

 

 F) 

 

&

 

 

 

~

 

(F 

 

→

 

 Q)

 

Chapter 2, §4

 

(4) H: Homer existed
C: The Odyssey was written by a committee
B: Butler was right

W: The Odyssey was written by a woman
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(9) P: Parking is prohibited in the center of town
B: People will buy bicycles
O: The general inconvenience is offset
U: City shops pick up some business
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[‘In which case’ means ‘in the case that people buy bicycles’. The best we can
do for ‘the general inconvenience is offset by the fact that…’ is to say that the
general inconvenience is offset 

 

and

 

 shops pick up some business.]

 

Chapter 2, §5

 

(I.e) In (2) the ‘

 

&

 

’ is within the scope of the ‘

 

~

 

’, since the scope of the ‘

 

~

 

’, which
by definition is the formula at the node in the parse tree for (2) immediately
beneath the node where the ‘

 

~

 

’ is introduced, is ‘(P 
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 Q)’, which contains the ‘

 

&

 

’
in question. In (3) the ‘

 

&

 

’ is again within the scope of the ‘
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’, since in the parse
tree for (3), the ‘

 

&

 

’ appears in the formula which is the scope of the ‘

 

~

 

’, the for-
mula at the node where the ‘

 

~

 

’ is introduced (the root node).
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(II.4) The outer parentheses in (4) are incorrect, since in its structure the last
step (reading bottom to top) is to apply the formation rule (f-

 

~

 

), and this rule
(page 36) does not put outer parentheses around the formula which results
from its application.

 

Chapter 2, §6

 

(II.1) (a) If 

 

p

 

 =

 

 ‘snow is’ and 

 

q

 

 =

 

 ‘white’, then 

 

�

 

p q� (note the space) is ‘snow is
white’. (b) The result of writing p followed by ‘q’ is ‘snow isq’ or, with optional
space, ‘snow is q’.

(IV.1) This is incorrect—what is meant is that ‘Rome’ is the name of a city. Rome
is a city, not a city’s name.

(IV.4) This is grammatically correct as it stands. It is also true: if p is an indica-
tive sentence of English, so is the result of prefixing ‘it is not the case that’ to it.

(IV.11) The reading on which the statement is syntactically incorrect is the one
on which what is meant is that if we prefix ‘it is obvious to every English speak-
er that’ to any syntactically correct indicative sentence we obtain a syntactically
correct English sentence. This claim, which is in fact true, requires corners
around ‘it is obvious to every English speaker that p’. On the other reading (can
you see what it is?) the claim is syntactically correct but false.

Chapter 3, §1

(4) If A is a Knight, then since that means what he says is true, B is a Knave and
so speaks falsely. Thus A and C are of different types, and therefore C is a
Knave. This is a possible solution, but for it to be determined what C is, there
must be no solution on which C is a Knight. So what happens if A is a Knave?
Then B is a Knight since A speaks falsely, so A and C are of the same type, since
B speaks truly, being a Knight, so again C is a Knave. Thus being a Knave is the
only possibility for C.

Chapter 3, §2

(I.4) A B (A ↔ B) & (A & ~B)

�� � ⊥ ⊥
�⊥ ⊥ ⊥ �
⊥� ⊥ ⊥ ⊥
⊥⊥ � ⊥ ⊥

Since the final column of the table for formula (1d) contains only ⊥s, (1d) is a
contradiction.
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Chapter 3, §4

(I.4) There are two cases, (1) ‘A’ is true, ‘C’ is false, and (2) the converse. In case
1, premise 1 false, so only case 2 need be considered. This requires ‘D’ to be
true for premise 3 to be true and hence ‘B’ must be true for premise 2 to be
true. This interpretation makes all premises true and the conclusion false, so
the argument-form is invalid, as demonstrated by the interpretation assigning
⊥ to ‘A’ and � to ‘B’, ‘C’ and ‘D’.

(II.4) F: Yossarian flies his missions
D: Yossarian puts himself in danger
R: Yossarian is rational
A: Yossarian asks to be grounded

(F → D) & (D → ~R), (R → A) & (~F → A), (~F → ~R) & (A → R)
∴ (R ∨ ~R) → F

[‘Only irrational people are grounded’ particularized to Yossarian means ‘Yos-
sarian will be grounded (i.e. doesn’t fly his missions) only if Yossarian is not
rational’; ‘a request to be grounded is proof of rationality’ particularized to
Yossarian means ‘if Yossarian asks to be grounded then Yossarian is rational’.]

To test for validity, we note that ‘F’ must be false for the conclusion to be
false; hence ‘A’ must be true for premise 2 to be true, and so ‘R’ must be true
for the second conjunct of premise 3 to be true; but ‘R’ has to be false for the
first conjunct to be true. Thus the argument-form is valid.

Chapter 3, §5

(I.4) A → (B & C), D → (B ∨ A), C → D � A ↔ C

The solution is displayed on the next page. In this inverted tree there are ten
paths, eight of which are closed. The two open paths, the fifth and ninth (read-
ing along the leaves from the left), determine the same interpretation, the one
assigning ⊥ to ‘A’ and � to ‘B’, ‘C’ and ‘D’. So this result agrees with the one
obtained by the method of constructing an interpretation.

Chapter 3, §6

(3) If p � (q & r), then on no assignment do we have p true, (q & r) false; so none
of (a), p is true, q is true, r is false, (b) p is true, q is false, r is true, (c) p is true,
q is false, r is false, is possible. If (p ↔ q) � (p ↔ r), then there are assignments
of truth-values to sentence-letters in p, q and r on which (p ↔ q) is true, (p ↔
r) is false. This is possible, since, comparing (a), (b) and (c), we see that we have
not ruled out an assignment on which e.g. p is false, q is false, r is true. So it
does not follow that (p ↔ q) � (p ↔ r).
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T: A → (B & C) ✔

T: D → (B ∨ A) ✔

T: C → D ✔

F: A ↔ C ✔

T: A F: A
F: C T: C

F: A T: B & C ✔ F: A T: (B & C) ✔

T: B T: B
T: C T: C

F: C T: D F: C T: D

F: D T: B ∨ A ✔ F: D T: B ∨ A ✔

T: B T: A T: B T: A
✖ ✖

In this inverted tree there are ten paths, eight of which are closed. The two open
paths, the fifth and ninth reading along the leaves from the left, determine the
same interpretation, the one assigning ⊥ to ‘A’ and � to ‘B’, ‘C’ and ‘D’. So this
result agrees with the one obtained by the method of constructing an interpre-
tation.

Chapter 3, §6 (continued)

(8) Semantic consequence holds when no interpretation makes the premises
true and the conclusion false. Consequently, if no interpretation at all makes
the conclusion false, then no interpretation makes the premises true and the
conclusion false, and so semantic consequence holds no matter what the pre-
mises are. Thus every semantic sequent with a tautology (such as ‘(A ∨ ~A)’) as
its conclusion is correct.

Chapter 3, §7

(I) The formula in {~,&,∨} for table 2 is:

(A & ~B & C) ∨ (A & ~B & ~C) ∨ (~A & ~B & C) ∨ (~A & ~B & ~C).

To eliminate all occurrences of ‘∨’ we have to apply the substitution-rule given
on page 79 three times. Eliminating the first occurrence of ‘∨’ yields:

✖

✖

✖✖

✖✖
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~[~(A & ~B & C) & ~[(A & ~B & ~C) ∨ (~A & ~B & C) ∨ (~A & ~B & ~C)]].

Here we put ‘(A & ~B & C)’ for r and ‘(A & ~B & ~C) ∨ (~A & ~B & C) ∨ (~A & ~B
& ~C)’ for s in the substitution rule. Eliminating the first occurrence of ‘∨’ in
the latter formula yields

~[~(A & ~B & C) & ~{~[(A & ~B & ~C) & ~[(~A & ~B & C) ∨ (~A & ~B & ~C)]]}].

Finally, we eliminate the remaining ‘∨’ to obtain

~[~(A & ~B & C) & ~{~[(A & ~B & ~C) & ~[~{~(~A & ~B & C) & ~(~A & ~B & ~C)}]]}].

In this last step, the subformula �r ∨ s� for which substitution has been made
is ‘(~A & ~B & C) ∨ (~A & ~B & ~C)’.

(II.3) �p ← q� has the table � � ⊥ �. Since {~,&,∨} is functionally complete, then
given any truth-table, we can find a formula p in {~,&,∨} which has that table.
We need two substitution rules, one of which allows us to replace the occur-
rences of ‘&’ in p (if any), the other of which allows us to replace the occurrenc-
es of ‘∨’ (if any). Since the rules will replace formulae with logically equivalent
formulae, the result will be a formula in {~,←} which also has the given truth-
table. The following rules are correct: 

(1) Replace every subformula of p of the form �r & s� with �~(~r ← s)�.
(2) Replace every subformula of p of the form �r ∨ s� with �r ← ~s�.

(3) The simplest solution is to show that, using just ‘~’ and ‘↔’, there is no way
of expressing a two-place truth-function which over the four possible inputs
has exactly one or exactly three �s in its output. In other words, no formula in
‘~’ and ‘↔’ with two sentence-letters p and q has an odd number of �s in its
four-row truth-table. First we establish the Minor Lemma, that if any formula
has an even number of �s in its table, so does its negation. Proof: The number
of rows in any truth-table is even, so a formula with an even number of �s also
has an even number of ⊥s, producing an even number of �s for the formula’s
negation.

Next, we prove the Major Lemma, that if two columns L and R in a four-
row truth-table each have an even number of �s, so does the result of applying
the biconditional truth-function to these columns. Proof: Assume that L and R
each have an even number of �s. Then there are three possibilities, (1) no �s
in L, (2) two �s in L, (3) four �s in L. Each of cases (1), (2) and (3) subdivides into
three further cases (a), (b) and (c). Case 1: (a) No �s in R. Then each column has
four ⊥s, so the resulting table has four �s; (b) Two �s in R. For Case 1 this
means two rows have the same values and two rows have different values;
hence the resulting table has two �s; (c) Four �s in R. Then the resulting table
has no �s. Case 2: (a) No �s in R. This is essentially the same as Case 1b; (b)
Two �s in R. If these �s face the two �s in L then there are four �s in the table.
If neither faces a � in L then there are no �s in the table. If just one faces a �
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in L then two rows have the same value and two rows have different values, so
there are two �s in the table; Case 3: (a) No �s in R. Essentially the same as Case
1c; (b) Two �s in R. See Case 2c; (c) Four �s in R. Then all rows have �s on them
and so the table has four �s as well. This proves the Major Lemma. (The argu-
ment is a special case of a more general argument that can be given for any
number 2n of rows.)

Now let B be an arbitrary formula in p, q, ‘~’ and ‘↔’. We show that B’s 4-
row truth-table contains an even number of �s (and hence of ⊥s) in its final col-
umn. (a) Suppose B contains no occurrences of ‘↔’. Then B is either a sentence-
letter, in which case its column contains an even number of �s, or a sentence-
letter prefixed by one or more ‘~’s, in which case, by repeated applications of
the Minor Lemma, it still contains an even number of �s. (b) Suppose B contains
one occurrence of ‘↔’. Then in case (b1), B is a biconditional with two sides,
each of which contains no occurrence of ‘↔’, and so by (a), each side of B has
an even number of �s in its table. Hence by the Major Lemma, B has an even
number of �s in its table. In case (b2), B consists in a biconditional C prefixed
with one or more occurrences of ‘~’; by (b1), C has an even number of �s in its
table, so by repeated applications of the Minor Lemma, B has an even number
of �s in its table. (c) Suppose B contains two occurrences of ‘↔’. Then in case
(c1), B is a biconditional with two sides, each of which contains one or no occur-
rence of ‘↔’, and so by (a) and (b), each side of B has an even number of �s in
its table. Hence by the Major Lemma, B has an even number of �s in its table.
In case (c2), B consists in a biconditional C prefixed with one or more occur-
rences of ‘~’; by (c1), C has an even number of �s in its table, so by repeated
applications of the Minor Lemma, B has an even number of �s in its table.

Continuing in this way we can show that for any n, if B is a formula in two
sentence-letters p, q, ‘~’ and ‘↔’ with n occurrences of ‘↔’, B has an even num-
ber of �s in its table (the reader who is familiar with strong mathematical
induction should think about how we could go about making ‘continuing in this
way’ rigorous). Hence {~,↔} is expressively incomplete; for example, ‘→’ is
undefinable.

Chapter 3, §8

(3) (i) Let ‘A’ mean ‘the speed of light does not vary with the motion of its
source’. Then ‘A’ is true and also ‘It is surprising that A’ is true. (ii) Let ‘A’ mean
‘there are more robberies when the police are on strike’. Then ‘A’ is true but ‘It
is surprising that A’ is false. Thus no entry can be made in the top row of a pur-
ported function-table for ‘It is surprising that’.

(5) (i) Let ‘A’ mean ‘lead sinks in water’ and ‘B’ mean ‘lead is denser than water’.
Then ‘A’ and ‘B’ are both true, and in addition, ‘A, which means that B’ is true.
(ii) Let ‘A’ mean ‘lead sinks in water’ and ‘B’ = ‘Moses wrote the Pentateuch’.
Then ‘A’ and ‘B’ are true, but ‘A, which means that B’ is false. So no entry can
be made in the top row of a purported function-table for ‘…, which means
that…’.
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Chapter 4, §2

(2) 1 (1) A → B Premise
2 (2) A → C Premise
3 (3) A Assumption

1,3 (4) B 1,3 →E
2,3 (5) C 2,3 →E

1,2,3 (6) B & C 4,5 &I
1,2 (7) A → (B & C) 3,6 →I     ♦

(5) 1 (1) (A & B) → C Premise
2 (2) A Assumption
3 (3) B Assumption

2,3 (4) A & B 2,3 &I
1,2,3 (5) C 1,4 →E

1,2 (6) B → C 3,5 →I
1 (7) A → (B → C) 2,6 →I     ♦

(16) 1 (1) A → B Premise
2 (2) A Assumption
3 (3) C Assumption

1,2 (4) B 1,2 →E
1,2 (5) C → B 3,4 →I

1 (6) A → (C → B) 2,5 →I     ♦

Chapter 4, §3

(4) 1 (1) A → (B & C) Assumption
2 (2) A Assumption

1,2 (3) B & C 1,2 →E
1,2 (4) B 3 &E

1 (5) A → B 2,4 →I
1,2 (6) C 3 &E

1 (7) A → C 2,6 →I
1 (8) (A → B) & (A → C) 5,7 &I

(9) [A → (B & C)] → [(A → B) & (A → C)] 1,8 →I     ♦

Chapter 4, §4

(1) 1 (1) A → ~B Premise
2 (2) B Assumption
3 (3) A Assumption

1,3 (4) ~B 1,3 →E
1,2,3 (5) � 4,2 ~E

1,2 (6) ~A 3,5 ~I
1 (7) B → ~A 2,6 →I     ♦
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(8) 1 (1) A & ~A Assumption
2 (2) ~B Assumption
1 (3) A 1 &E
1 (4) ~A 1 &E
1 (5) � 3,4 ~E
1 (6) ~~B 2,5 ~I
1 (7) B 6 DN

(8) (A & ~A) → B 1,7 →I     ♦

(13) 1 (1) A → B Premise
2 (2) B → ~A Premise
3 (3) A Assumption

1,3 (4) B 1,3 →E
1,2,3 (5) ~A 2,4 →E
1,2,3 (6) � 5,3 ~E

1,2 (7) ~A 3,6 ~I     ♦

(18) 1 (1) (A & ~B) → ~A Premise
2 (2) A Assumption
3 (3) ~B Assumption

2,3 (4) A & ~B 2,3 &I
1,2,3 (5) ~A 1,4 →E
1,2,3 (6) � 5,2 ~E

1,2 (7) ~~B 3,6 ~I
1,2 (8) B 7 DN

1 (9) A → B 2,8 →I     ♦

Chapter 4, §5

(4) 1 (1) A ∨ ~~B Premise
2 (2) A Assumption
2 (3) A ∨ B 2 ∨I
4 (4) ~~B Assumption
4 (5) B 4 DN
4 (6) A ∨ B 5 ∨I
1 (7) A ∨ B 1,2,3,4,6 ∨E     ♦

(10) 1 (1) A ∨ B Premise
2 (2) A → B Assumption
3 (3) A Assumption

2,3 (4) B 2,3 →E
5 (5) B Assumption

1,2 (6) B 1,3,4,5,5 ∨E
1 (7) (A → B) → B 2,6 →I     ♦
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(13) 1 (1) A ∨ B Premise
2 (2) ~A & ~B Assumption
3 (3) A Assumption
2 (4) ~A 2 &E

2,3 (5) � 4,3 ~E
6 (6) B Assumption
2 (7) ~B 2 &E

2,6 (8) � 7,6 ~E
1,2 (9) � 1,3,5,6,8 ∨E

1 (10) ~(~A & ~B) 2,9 ~I     ♦

Chapter 4, §6

(4) 1 (1) (A ∨ B) ↔ A Premise
2 (2) B Assumption
1 (3) ((A ∨ B) → A) & (A → (A ∨ B)) 1 Df
1 (4) (A ∨ B) → A 3 &E
2 (5) A ∨ B 2 ∨I

1,2 (6) A 4,5 →E
1 (7) B → A 2,6 →I     ♦

(10) 1 (1) (A ∨ B) ∨ C Premise
2 (2) B ↔ C Premise
2 (3) (B → C) & (C → B) Df
4 (4) A ∨ B Assumption
5 (5) A Assumption
5 (6) C ∨ A 5 ∨I
7 (7) B Assumption
2 (8) B → C 3 &E

2,7 (9) C 8,7 →E
2,7 (10) C ∨ A 9 ∨I
2,4 (11) C ∨ A 4,5,6,7,10 ∨E
12 (12) C Assumption
12 (13) C ∨ A 12 ∨I
1,2 (14) C ∨ A 1,4,11,12,13 ∨E  ♦

Chapter 4, §8

(I.5) ‘~(M ∨ N) ∨ (W & U) �NK (M ∨ N) → (W & U)’ is a substitution-instance of
(Imp): this sequent may be obtained from Imp by putting ‘M ∨ N’ for ‘A’ and
‘W ∨ U’ for ‘B’.

(II.iii) This sequent is a substitution-instance of (a). To obtain (iii) from (a), put
‘~~(R & S)’ for ‘A’, ‘~T & S’ for ‘B’, ‘~~W’ for ‘C’ and ‘~T’ for ‘D’.
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(III.4) 1 (1) ~B → A Premise
2 (2) B → A Assumption

(3) B ∨ ~B TI (LEM)
4 (4) B Assumption

2,4 (5) A 2,4 E
6 (6) ~B Assumption

1,6 (7) A 1,6 →E
1,2 (8) A 3,4,5,6,7 ∨E

1 (9) (B → A) → A 2,8 →I     ♦

(III.8) 1 (1) (A ∨ B) → (A ∨ C) Premise
2 (2) ~[A ∨ (B → C)] Assumption
2 (3) ~A & ~(B → C) 2 SI (DeM)
2 (4) ~A 3 &E
2 (5) ~(B → C) 3 &E
6 (6) B Assumption
6 (7) A ∨ B 6 ∨I

1,6 (8) A ∨ C 1,7 →E
1,2,6 (9) C 8,4 SI (DS)

1,2 (10) B → C 6,9 →I
1,2 (11) � 5,10 ~E

1 (12) ~~[A ∨ (B → C)] 2,11 ~I
1 (13) A ∨ (B → C) 12 DN     ♦

(III.13) 1 (1) (A ↔ B) ↔ (C ↔ D) Premise
1 (2) A ↔ [B ↔ (C ↔ D)] 1 SI ((15), page 119)
1 (3) {A → [B ↔ (C ↔ D)]} & {[B ↔ (C ↔ D)] → A}     2 Df
1 (4) A → [B ↔ (C ↔ D)] 3 &E
1 (5) [B ↔ (C ↔ D)] → A 3 &E
6 (6) A Assumption

1,6 (7) B ↔ (C ↔ D) 4,6 →E
1,6 (8) (B ↔ C) ↔ D 7 SI ((15), page 119)
1,6 (9) [(B ↔ C) → D] & [D → (B ↔ C)] 8 Df
1,6 (10) (B ↔ C) → D 9 &E
1,6 (11) D → (B ↔ C) 9 &E
12 (12) D Assumption

1,6,12 (13) B ↔ C 11,12 →E
1,6,12 (14) C ↔ B 13 SI ((2), page 119)

1,6 (15) D → (C ↔ B) 12,14 →I
16 (16) C ↔ B Assumption
16 (17) B ↔ C 16 SI ((2), page 119)

1,6,16 (18) D 10,17 →E
1,6 (19) (C ↔ B) → D 16,18 →I
1,6 (20) [(C ↔ B) → D] & [D → (C ↔ B)] 19,15 &I
1,6 (21) (C ↔ B) ↔ D 20 Df
1,6 (22) C ↔ (B ↔ D) 21 SI ((15), page 119)

1 (23) A → [C ↔ (B ↔ D) 6,22 →I
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24 (24) C ↔ (B ↔ D) Assumption
24 (25) (C ↔ B) ↔ D 24 SI ((15), page 119)
26 (26) B ↔ C Assumption
26 (27) C ↔ B 26 SI ((2), page 119)
24 (28) [(C ↔ B) → D] & [D → (C ↔ B)] 25 Df
24 (29) (C ↔ B) → D 28 &E
24 (30) D → (C ↔ B) 28 &E

24,26 (31) D 29,27 →E
24 (32) (B ↔ C) → D 26,31 →I
33 (33) D Assumption

24,33 (34) C ↔ B 30,33 →E
24,33 (35) B ↔ C 34 SI ((2), page 119)

24 (36) D → (B ↔ C) 33,35 →I
24 (37) [(B ↔ C) → D] & [D → (B ↔ C)] 32,36 &I
24 (38) (B ↔ C) ↔ D 37 Df
24 (39) B ↔ (C ↔ D) 38 SI ((15), page 119)

1,24 (40) A 5,39 →E
1 (41) [C ↔ (B ↔ D)] → A 24,40 →I
1 (42) {A → [C ↔ (B ↔ D)]} & {[C ↔ (B ↔ D)] → A}    23,41 &I
1 (43) A ↔ [C ↔ (B ↔ D)] 42 &E
1 (44) (A ↔ C) ↔ (B ↔ D) 43 SI (15, page 119) ♦

Chapter 4, §9

(1) In the same style as the tree-format schema for ∨E on page 131, the sche-
mata for the remaining rules are as follows:

p

p ∨ q

p

q ∨ p

~~p

p
∨I ∨I DN

p & q

p

p & q

q

p q

p & q
&E &E &I

p p → q

q

~p p

�
→E ~E

[p]

q

(i)

p → q
→I (i)

[p]

�

(i)

~p
~I (i)
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In the rules →I and ~I, the notation indicates that we discharge every occur-
rence of p as leaf node on a path that contains the nodes labelled q and �
respectively. Also, the rules permit but do not require the making and discharg-
ing of the assumption p. Thus the two-line proof A//B → A is a correct proof by
→I in tree format of the sequent A �NK B → A. One reason for this divergence
from Lemmon format, in which the assumption ‘B’ would be displayed, is that
in tree format there is no sensible place to put the assumption ‘B’, as some
experimentation will reveal.

(2) A tree-format proof of Example 5.6, A ∨ (B ∨ C) �NK (A ∨ B) ∨ C:

B

A A ∨ B C

A ∨ B B ∨ C (A ∨ B) ∨ C (A ∨ B) ∨ C

A ∨ (B ∨ C) (A ∨ B) ∨ C (A ∨ B) ∨ C

(A ∨ B) ∨ C

Chapter 4, §10

(3) First we show that every S-sequent is an NK-sequent. Suppose an S-proof
contains a step of CR at line (m), and that this is the first application of CR. At
line j we have the assumption �~p� and at line k we have ‘�’, so in NK we may
repeat the S-proof to line k and then by →I add the extra line �~p → ��, depend-
ing on {a1,…,an}/j. Then if we also have the sequent ~A → � �NK A, we can apply
SI to infer p in NK. To show ~A → � �NK A:

1 (1) ~A → � Premise
2 (2) ~A Assumption

1,2 (3) � 1,2 →E
1 (4) ~~A 2,3 ~I
1 (5) A 4 DN     ♦

Every application of CR in an S-proof can be dealt with by the same combina-
tion of →I and SI; consequently, every sequent provable in S is also provable in
NK. Conversely, we show that every sequent provable in NK is provable in S. NK
proofs may use ~I and DN, which S lacks. But we can use SI in S to get the effect
of an NK-application of DN, since we have ~~A �S A.

1 (1) ~~A Premise
2 (2) ~A Assumption

1,2 (3) � 1,2 ~E
1 (4) A 2,3 CR     ♦

(1)

(3) ∨I (2)

(4) ∨I∨I∨I

∨E (1,2)∨I

∨E (3,4)
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To get the effect of ~I in S we show A → � �S ~A. We already know ~~A �S A,
so we can use this sequent.

1 (1) A → � Premise
2 (2) ~~A Assumption
2 (3) A 2, SI (~~A �S A)

1,2 (4) � 1,3 →E
1 (5) ~A 2,4 CR     ♦

(6) The difficult part is showing that every S-provable sequent is NK-provable,
since Df~Gen can be applied to an arbitrary subformula of a formula on a line in
an S-proof, and we need to provide a general explanation of why the same
effect can always be obtained in NK. For example, in an S-proof we can move in
one step from ‘A ∨ (~(B & ~~C) → D)’ to ‘A ∨ (~(B & ~(C → �)) → D)’. But what
guarantee do we have in advance that there is an NK-derivation of ‘A ∨ (~(B &
~(C → �)) → D)’ from ‘A ∨ (~(B & ~~C) → D)’? The guarantee is provided by a
procedure or algorithm P which can be applied to any formula φ to produce an
NK-derivation of ψ from φ if ψ is S-derivable from φ by one application of
Df~Gen. The procedure is given as a collection of instructions, which may be
applied to generate the next line of the derivation according to the main con-
nective of the formula on the current line. If ψ is obtained from φ in S by apply-
ing Df~Gen to the subformula �~r�, we call �~r� the target negation and �r → ��
its transform. If ξ is a subformula of φ which contains the target negation �~r�
we write ξ* for the result of replacing �~r� with �r → �� in ξ. If ξ is a subfor-
mula of ψ which contains the target negation’s transform �r → �� we write ξ*
for the result of replacing �r → �� with �~r� in ξ (because of the way →I and ~I
work, we may find ourselves working with formulae in which substitution of
�r → �� for �~r� has already been made). In understanding how the following
procedure works the reader would be well-advised to apply it to ‘A ∨ (~(B &
~~C) → D)’ to see how it leads to a proof of ‘A ∨ (~(B & ~(C → �)) → D)’.

(&) If �p & q� is the formula at the current stage and p is the conjunct contain-
ing the target negation or its transform, apply &E to obtain p and q and contin-
ue to execute P on p until p* is obtained; then apply &I to obtain �p* & q�. If q
is the conjunct containing the target negation or its transform, apply &E to
obtain p and q and continue to execute P on q until q* is obtained; then apply
&I to obtain �p & q*�.

(∨) If �p ∨ q� is the formula at the current stage and p is the disjunct containing
the target negation or its transform, assume p and continue to execute P until
p* is obtained, then infer �p* ∨ q� by ∨I; then assume q and immediately infer
�p* ∨ q� by ∨I. Finally, infer �p* ∨ q� by ∨E. If q contains the target negation
or its transform, proceed analogously to obtain �p ∨ q*� by ∨E.

(→) If �p → q� is the formula at the current stage and the antecedent p contains
the target negation or its transform (as a proper subformula), assume p* (note:
not p) and continue to execute P until p is obtained. Then apply →E using �p →
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q� to obtain q, then →I to obtain �p* → q�. If �p → q� is the formula at the cur-
rent stage and the consequent q contains the target negation or its transform,
assume p, derive q by →E, then continue with P until q* is obtained, and then
apply →I to obtain �p → q*�.

(~) If �~p� is the formula at the current stage and p contains the target negation
(as a proper subformula) or its transform, then assume p* and continue to exe-
cute P until p is obtained; then apply ~E using �~p� followed by ~I, thereby
rejecting p* to obtain �~p*�.

(SI) If none of the previous instructions apply then the formula at the current
stage is the target negation or its transform. In this case we apply SI using
~A ��NK A → �.

Since the same instructions serve to produce a derivation of φ from ψ, we have
shown that every S-provable sequent is NK-provable.

Chapter 4, §11

(4) Given Σ �NK A, then Σ,~A �NK A also, by definition of ‘�NK’ (‘Σ �NK p ’ requires
only that p depend on a subset of Σ, so we get Σ,~A �NK A by using the subset
Σ of Σ,~A). Obviously, Σ,~A �NK ~A, hence by ~E, Σ,~A �NK �. Thus Σ,~A is
inconsistent. Conversely, if Σ,~A �NK �, then by ~I, Σ �NK ~~A, and hence by
DN, Σ �NK A.

Chapter 5, §2

(3) ‘It is not the case that there is at least one person x such that x is a mathe-
matician and x is famous’: ‘~(∃x)(Mx & Fx)’; where ‘F_’ is ‘_ is famous’ and ‘M_’
is ‘_ is a mathematician’.

(12) ‘There is at least one thing x such that x is polluted, x is a city and x is
smoggy and there is at least one thing x such that x is a city and x is polluted
and x is not smoggy’: ‘(∃x)((Px & Cx) & Sx) & (∃x)((Px & Cx) & ~Sx)’; where ‘C_’ is
‘_ is a city’, ‘P_’ is ‘_ is polluted’ and ‘S_’ is ‘_ is smoggy’.

(15) ‘If there is at least one person x such that x is wealthy and x is an econo-
mist, then there is at least one person x such that x is famous and x is a math-
ematician’: ‘(∃x)(Wx & Ex) → (∃x)(Fx & Mx)’; symbols as in (3), plus ‘W_’ is ‘_ is
wealthy’ and ‘E_’ is ‘_ is an economist’.

Chapter 5, §3

(3) ‘For all x, if x is an expensive university then x is private’: ‘(∀x)((Ux & Ex) →
Px)’. The italics in the English rule out the readings ‘for all x, if x is private and
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expensive, then x is a university’, which says that the only expensive private
things are universities (‘only private universities are expensive’), and ‘for all x,
if x is expensive then x is a private university’, which says that the only expen-
sive things are private universities (‘only private universities are expensive’).

(7) ‘It is not the case that for all x, if x glitters then x is gold’. Or: ‘there is at
least one thing x such that x glitters and x is not gold’. So: ‘~(∀x)(Gx → Ox)’, or
‘(∃x)(Gx & ~Ox)’. Note that ‘(∀x)(Gx → ~Ox)’ is wrong, since it says that every-
thing which glitters is not gold, i.e., nothing which glitters is gold, and this is
not what the English saying means.

(12) ‘For all x, if x is an elected politician, then x is corrupt’; or, ‘there does not
exist an x such that x is an elected politician and x is incorrupt’. ‘(∀x)((Ex & Px)
→ Cx)’ or ‘~(∃x)((Ex & Px) & ~Cx)’.

(16) ‘For all x, if x is a wealthy logician then x is a textbook author’; ‘(∀x)((Wx &
Lx) → Tx)’.

Chapter 5, §4

(I.5) This formula is not a wff since the formation rule f-~ does not introduce
parentheses around the formula which is formed when this rule is applied. The
formula should be: ‘(∃x)~(∃y)(Fx & ~Gy)’.

(II.3) ‘~’ is within the scope of ‘&’ since the ‘~’ already occurs in the formula
formed at the node where the ‘&’ is introduced by f-& in the parse tree for (iii).
In other words, the node where the ‘&’ is introduced dominates the node where
the ‘~’ is introduced.

Chapter 6, §1

(3) ‘(∃x)(Fx & Gx)’ is false because ‘Fa & Ga’, ‘Fb & Gb’ and ‘Fc & Gc’ are all false.

(8) ‘(∀x)(Hx → (∃y)(Jx & Iy))’ has three instances, ‘Ha → (∃y)(Ja & Iy)’, ‘Hb →
(∃y)(Jb & Iy)’ and ‘Ha → (∃y)(Jb & Iy)’. The first instance is true since its ante-
cedent is true and its consequent, ‘(∃y)(Ja & Iy)’, is true (since ‘Ja & Ic’ is true).
But the second instance is false, since ‘Hb’ is true but ‘(∃y)(Jb & Iy)’ is false,
because ‘Jb & Ia’, ‘Jb & Ib’ and ‘Jb & Ic’ are all false, ‘Jb’ being false in each case.

Chapter 6, §2

(I.4) D = {α}, Ext(F) = ∅, Ext(G) = ∅, Ext(H) = ∅. Then ‘(∀x)(Fx ∨ Gx) ∨ (∀x)(Fx
∨ Hx)’ is false since ‘(∀x)(Fx ∨ Gx)’ is false (because ‘Fa ∨ Ga’ is false) and
‘(∀x)(Fx ∨ Hx)’ is false (because ‘Fa ∨ Ha)’ is false). ‘(∀x)((Fx & Gx) → Hx)’ is true
because  ‘(Fa & Ga) → Ha’ is true, since its antecedent is false.
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(I.13) D = {α,β}, Ext(F) = {α,β}, Ext(G) = {α}, Ext(H) = {α}, Ext(J) = ∅. ‘(∃x)(Fx & Gx)
→ (∀x)(Hx → Jx)’ is false because ‘(∃x)(Fx & Gx)’ is true (‘Fa & Ga’ is true) while
‘(∀x)(Hx → Jx)’ is false (‘Ha → Ja’ is false). ‘(∀x)(Fx → Gx) → (∀x)(Hx → Jx)’ is true
since ‘(∀x)(Fx → Gx)’ is false, because ‘Fb → Gb’ is false.

(I.20) D = {α,β}, Ext(F) = {α}, Ext(G) = ∅. ‘(∀x)(Fx → (∃y)Gy)’ is false because ‘Fa
→ (∃y)Gy’ is false, since ‘Fa’ is true and ‘(∃y)Gy’ is false (‘Ga’ and ‘Gb’ are both
false). ‘(∀x)Fx → (∃y)Gy’ is true because ‘(∀x)Fx’ is false, since ‘Fb’ is false.

(I.27) D = {α,β}, Ext(F) = {α}, Ext(G) = {α}. ‘(∀x)[(∃y)Gy → Fx]’ is false because
‘(∃y)Gy → Fb’ is false (‘(∃y)Gy’ is true because ‘Ga’ is true, ‘Fb’ is false).
‘(∀x)(∃y)(Gy → Fx)’ is true because ‘(∃y)(Gy → Fa)’ and ‘(∃y)(Gy → Fb)’ are both
�, respectively because ‘Gb → Fa’ and ‘Gb → Fb’ are �.

(II.2) Suppose I is an interpretation which verifies the sentence σ, that I’s
domain D contains n objects, and that F1…Fk are all the monadic predicates to
which I assigns an extension from D. Choose any element x in D. Then x has a
signature in I, which we can take to be a k-membered sequence of pluses and
minuses, where a plus in j th position in the signature indicates that x is in the
extension of Fj and a minus that it is not in the extension of Fj . Two objects in
D are said to be indistinguishable if they have the same signature (in terms of
matrices, x and y have the same signature if they have the same pattern of plus-
es and minuses across their rows in the matrix). Though it can be proved rigor-
ously, reflection on examples should be sufficient to convince the reader that
adding an object to an interpretation and giving it the same signature as an
object already in the interpretation does not affect the truth-value of any sen-
tence in the interpretation. Hence, if I verifies σ and I’s domain contains n
objects, expanding I by adding an object with the same signature as one
already in I yields an interpretation with n + 1 objects on which σ is still true.

Chapter 6, §3

(I.3) 1 (1) (∀x)(Fx → Gx) Premise
2 (2) (∀x)Fx Assumption
1 (3) Fa → Ga 1 ∀E
2 (4) Fa 2 ∀E

1,2 (5) Ga 3,4 →E
1,2 (6) (∀x)Gx 5 ∀I

1 (7) (∀x)Fx → (∀x)Gx 2,6 →I     ♦

(I.7) 1 (1) (∃x)Fx → Ga Premise
2 (2) Fa Assumption
2 (3) (∃x)Fx 2 ∃I

1,2 (4) Ga 1,3 →E
1 (5) Fa → Ga 2,4 →I
1 (6) (∃x)(Fx → Gx) 5 ∃I     ♦
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(II.2) All tigers are fierce: (∀x)(Tx → Fx)
No antelope is fierce: (∀x)(Ax → ~Fx)
No antelope is a tiger: (∀x)(Ax → ~Tx)

This symbolization is the most convenient. If you symbolize ‘no antelope is
fierce’ as ‘~(∃x)(Ax & Fx)’ you will probably have trouble finding a proof.

1 (1) (∀x)(Tx → Fx) Premise
2 (2) (∀x)(Ax → ~Fx) Premise
3 (3) Ac Assumption
2 (4) Ac → ~Fc 2 ∀E

2,3 (5) ~Fc 4,3 →E
1 (6) Tc → Fc 1 ∀E

1,2,3 (7) ~Tc 6,5 SI (MT)
1,2 (8) Ac → ~Tc 3,7 →I
1,2 (9) (∀x)(Ax → ~Tx) 8 ∀I     ♦

Chapter 6, §4

(I.2) 1 (1) (∃x)Fx ∨ (∃x)Gx Premise
2 (2) (∃x)Fx Assumption
3 (3) Fa Assumption
3 (4) Fa ∨ Ga 3 ∨I
3 (5) (∃x)(Fx ∨ Gx) 4 ∃I
2 (6) (∃x)(Fx ∨ Gx) 2,3,5 ∃I
7 (7) (∃x)Gx Assumption
8 (8) Ga Assumption
8 (9) Fa ∨ Ga 8 ∨I
8 (10) (∃x)(Fx ∨ Gx) 9 ∃I
7 (11) (∃x)(Fx ∨ Gx) 7,8,10 ∃E
1 (12) (∃x)(Fx ∨ Gx) 1,2,6,7,11 ∨E     ♦

(I.8) 1 (1) (∃x)(Fx ∨ (Gx & Hx)) Premise
2 (2) (∀x)(~Gx ∨ ~Hx) Premise
3 (3) Fa ∨ (Ga & Ha) Assumption
2 (4) ~Ga ∨ ~Ha 2 ∀E
2 (5) ~(Ga & Ha) 4 SI (DeM)

2,3 (6) Fa 3,5 SI (DS)
2,3 (7) (∃x)Fx 6 ∃I
1,2 (8) (∃x)Fx 1,3,7 ∃E     ♦

(I.13) 1 (1) (∃x)Gx Premise
2 (2) Ga Assumption
2 (3) Fb → Ga 2 SI (PMI)
2 (4) (∃y)(Fb → Gy) 3 ∃I
2 (5) (∀x)(∃y)(Fx → Gy) 4 ∀I
1 (6) (∀x)(∃y)(Fx → Gy) 1,2,5 ∃E     ♦



378 Solutions to Selected Exercises

(I.17) 1 (1) ~(∃x)(∀y)(Fx → Fy) Assumption
2 (2) ~Fa Assumption
2 (3) Fa → Fb 2 SI (PMI)
2 (4) (∀y)(Fa → Fy) 3 ∀I
2 (5) (∃x)(∀y)(Fx → Fy) 4 ∃I

1,2 (6) � 1,5 ~E
1 (7) ~~Fa 2, 6 ~I
1 (8) Fa 7 DN
1 (9) Fb → Fa 8 SI (PMI)
1 (10) (∀y)(Fb → Fy) 9 ∀I
1 (11) (∃x)(∀y)(Fx → Fy) 12 ∃I
1 (12) � 1,11 ~E

(13) ~~(∃x)(∀y)(Fx → Fy) 1,12 ~I
(14) (∃x)(∀y)(Fx → Fy) 13 DN     ♦

(II.2 (�)) 1 (1) (∃x)(A ∨ Fx) Premise
2 (2) A ∨ Fb Assumption
3 (3) A Assumption
3 (4) A ∨ (∃x)Fx 3 ∨I
5 (5) Fb Assumption
5 (6) (∃x)Fx 5 ∃I
5 (7) A ∨ (∃x)Fx 6 ∨I
2 (8) A ∨ (∃x)Fx 2,3,4,5,7 ∨E
1 (9) A ∨ (∃x)Fx 1,2,8 ∃E     ♦

(III.1) (1) (∃y)Fy ∨ ~(∃y)Fy TI (LEM)
2 (2) (∃y)Fy Assumption
3 (3) Fb Assumption
3 (4) (∃y)Fy → Fb 3 SI (PMI)
3 (5) (∃x)[(∃y)Fy → Fx] 4 ∃I
2 (6) (∃x)[(∃y)Fy → Fx] 2,3,5 ∃E
7 (7) ~(∃y)Fy Assumption
7 (8) (∃y)Fy → Fb 7 SI (PMI)
7 (9) (∃x)[(∃y)Fy → Fx] 8 ∃I

(10) (∃x)[(∃y)Fy → Fx] 1,2,6,7,9 ∨E   ♦

Chapter 6, §5

(8) 1 (1) ~(∃x)(∀y)(Fx → Fy) Assumption
1 (2) (∀x)~(∀y)(Fx → Fy) 1 SI (QS)
1 (3) ~(∀y)(Fa → Fy) 2 ∀E
1 (4) (∃y)~(Fa → Fy) 3 SI (QS)
5 (5) ~(Fa → Fb) Assumption
5 (6) Fa & ~Fb 5 SI (Neg-Imp)
5 (7) ~Fb 6 &E
5 (8) Fb → Fc 7 SI (PMI)
5 (9) (∀y)(Fb → Fy) 8 ∀I
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5 (10) (∃x)(∀y)(Fx → Fy) 9 ∃I
1,5 (11) � 1,10 ~E

1 (12) � 4,5,11 ∃E
(13) ~~(∃x)(∀y)(Fx → Fy) 1,12 ~I
(14) (∃x)(∀y)(Fx → Fy) 13 DN     ♦

Chapter 6, §7

(19) Determine whether (∃x)(Fx ↔ Gx) � (∀x)Fx ↔ (∀x)Gx).

T: (∃x)(Fx ↔ Gx) ✔

F: (∀x)Fx ↔ (∀x)Gx

T: (∀x)Fx F: (∀x)Fx ✔

F: (∀x)Gx ✔ T: (∀x)Gx ✔

T: Fa ↔ Ga ✔ T: Fa ↔ Ga ✔

T: Fa F: Fa T: Fa F: Fa
T: Ga F: Ga T: Ga F: Ga

F: Gb F: Gb T: Ga T: Ga
✖

Since three branches do not close, (∃x)(Fx ↔ Gx) � (∀x)Fx ↔ (∀x)Gx).

Chapter 6, §8

(I.2) Show (∃x)Fx ∨ (∃x)Gx �NK (∃x)(Fx ∨ Gx).

Fa Ga

Fa ∨ Ga Fa ∨ Ga

(∃x)Fx (∃x)(Fx ∨ Gx) (∃x)Gx (∃x)(Fx ∨ Gx)

(∃x)Fx ∨ (∃x)Gx (∃x)(Fx ∨ Gx) (∃x)(Fx ∨ Gx)

(∃x)(Fx ∨ Gx)

(1) (2)

∨I ∨I

(3) (4)∃I ∃I

∃E (1) ∃E (2)

∨E (3,4)
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Chapter 7, §1

(I.3) ‘~(∃x) no one loves x’; ‘no one loves x’ = ‘~(∃y)Lyx’; so ‘~(∃x)~(∃y)Lyx’ or
‘(∀x)(∃y)Lyx’.

(I.6) ‘(∀x)(if x loves x then x is a lover)’. ‘x is a lover’ = ‘x loves someone’ =
‘(∃y)Lxy’. So: ‘(∀x)(Lxx → (∃y)Lxy)’.

(III.4) ‘(∃x) x is a student and x does not read any books’; ‘x does not read any
books’ = ‘(∀y) if y is a book then x does not read y’. So: ‘(∃x)(Sx & (∀y)(By →
~Rxy))’. Domain: things.

(III.12) ‘(∀x) if x is a play attributed to Shakespeare then Marlowe wrote x’; ‘x is
a play attributed to Shakespeare’ = ‘x is a play and x is attributed to Shakes-
peare’. So: ‘(∀x)((Px & Axa) → Wbx)’. Domain: things.

(III.17) ‘(∃x) x is a number and (x is prime if and only if all numbers � x are com-
posite)’. ‘all numbers � x are composite’ = ‘(∀y) if y is at least as large as x then
y is not prime’. So: ‘(∃x)(Nx & [Px ↔ (∀y)((Ny & Qyx) → ~Px)])’. [N.B.: The state-
ment is true—let x be any composite number. Then because there are infinitely
many primes, both sides of the biconditional are false.] Domain: things.

(III.22) ‘~(∃x) x is a person who trusts a politician who makes promises he can’t
keep’ = ‘~(∃x)(Px & (∃y)(y is a politician who makes promises y can’t keep & x
trusts y))’. ‘y is a politician who makes promises y can’t keep’ = ‘Ly & (∃z) z is a
promise & y makes z & y can’t keep z’. So: ‘~(∃x)(∃y)(Px & (Ly & [(∃z)(Rz & (Myz
& ~Kyz)) & Txy]))’. Domain: things.

(III.27) ‘(∃x)(x is a composer and x is liked by anyone who likes any composer
at all)’; ‘x is liked by anyone who likes any composer at all’ = ‘(∀y)(if y likes any
composer at all then y likes x)’; ‘y likes any composer at all’ = ‘y likes at least
one composer’. So: ‘(∃x)(Cx & (∀y)[(∃z)(Cz & Lyz) → Lyx])’. Domain: people.

(III.30) ‘(∀x) if x pities those who pity themselves then x is lonely’. ‘x pities those
who pity themselves’ = ‘(∀y)(y pities y → x pities y)’. So: ‘(∀x)[(∀y)(Pyy → Pxy)
→ Lx]’. Domain: people.

(IV.2) ‘Some sequents have only finite counterexamples.’

Chapter 7, §2

(I.6) ‘~(∃x) x is wiser than someone else’; ‘x is wiser than someone else’ =
‘(∃y)(y ≠ x & Wxy)’. So: ‘~(∃x)(∃y)(y ≠ x & Wxy)’. (The English means that all peo-
ple are equally wise.)

(I.13) ‘(∀x)(∀y)(∀z)(if (Cx & Cy & Cz) then (if x answers every question & y
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answers every question & z answers every question then x = y ∨ y = z ∨ x = z))’;
‘x answers every question’ = ‘(∀w)(Qw → Axw)’, ‘y answers every question’ =
‘(∀w)(Qw → Ayw)’, ‘z answers every question’ = ‘(∀w)(Qw → Azw)’. So:

(∀x)(∀y)(∀x){(Cx & Cy & Cz) → ([(∀w)(Qw → Axw) & (∀w)(Qw → Ayw) &
(∀w)(Qw → Azw)] → (x = y ∨ y = z ∨ x = z))}.

We can use a single quantifier for the three “every”’s, which allows us to sim-
plify the antecedent of the internal conditional to ‘(∀w)(Qw → (Axw & Ayw &
Azw))’.

(18) There is exactly one composer liked by anyone who likes any composer at
all and he is (identical to) Mozart. 

‘(∃x) (x is a composer liked by anyone who likes any composer at all and (∀y)(if
y is a composer liked by anyone who likes any composer at all then y = x) and
x = Mozart))’.

‘x is a composer liked by anyone who likes any composer at all’ = ‘(∀y)(if y likes
any composer at all then y likes x)’; ‘y likes any composer at all’ = ‘y likes at
least one composer’ = ‘(∃z)(Cz & Lyz)’. For this treatment of ‘any’, see the dis-
cussion of Examples 5.3.18–5.3.20 on page 162.

So: ‘x is liked by anyone who likes any composer at all’ = ‘(∀y)[(∃z)(Cz & Lyz) →
Lyx]’. Thus ‘y is a composer liked by anyone who likes any composer at all’ =
‘(∀w)[(∃z)(Cz & Lwz) → Lwy]’. So for the whole formula:

(∃x)[{Cx & (∀y)([(∃z)(Cz & Lyz) → Lyx]} &
(∀y)({Cy & (∀w)[(∃z)(Cz & Lwz) → Lwy]} → y = x) & x = m].

Chapter 7, §3

(I.3) The left parenthesis between the two quantifiers should not be there if the
subformula following it was formed by an application of (f-q), since (f-q) does
not put outer parentheses around the formulae formed using it. And either this
parenthesis or the one immediately preceding ‘Rxy’ has no matching right
parenthesis.

Chapter 7, §4

(I.4) The two readings are (a) that he would sell to no one, and (b) that he would
not sell to just anyone, that is, there are certain people he would not sell to.

(a) John would sell a picture to no one: (∀x)(Tx → ~(∃y)(Py & Sjxy))
(b) John would not sell to just anyone: (∀x)(Tx → (∃y)~(Py & Sjxy)).
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So the ambiguity lies in the relative scopes of ‘∃’ and ‘~’.

(II.2) The three readings are: (a) only private universities are expensive (nothing
else is expensive); (b) only private universities are expensive (no other kind of
university is); (c) only private universities are expensive (no other private things
are).

(a) (∀x)(Ex → (Px & Ux)); (b) (∀x)((Ex & Ux) → Px); (c) (∀x)((Ex & Px) → Ux).

Chapter 8, §1

(I.5) ‘(∀x)(Rxx → (∃z)Sxz)’ is false because ‘Rdd → (∃z)Sdz’ is false, since ‘Rdd’
is true and ‘(∃z)Sdz’ is false. ‘(∃z)Sdz’ is false because ‘Sda’, ‘Sdb’, ‘Sdc’ and
‘Sdd’ are all false, since none of 〈δ,α〉, 〈δ,β〉, 〈δ,γ〉 or 〈δ,δ〉 belongs to Ext(S).

(II.4) ‘(∀x)(∀y)(Rxy ↔ ~Syx)’ is false because ‘(∀y)(Ray ↔ ~Sya)’ is false, because
‘Rab ↔ ~Sba’ is false, because ‘Rab’ is true and ‘Sba’ is true.

(III.4) ‘(∃x)(∀y)(y ≠ a → (∃z)Sxyz)’ is true because ‘(∀y)(y ≠ a → (∃z)S1yz)’ is true,
since for every element y from the domain other than 10, z = 1 + y is a member
of the domain.

(IV.3) ‘(∀x)(x ≠ 1 → (∃y) y > x)’ is true since for any number n ∈ [0,1], ‘n ≠ 1 →
(∃y) y > n’ is true; when n = 1 the antecedent is false, and for every other n,
‘(∃y) y > n’ is true since ‘1 > n’ is true. Here we use boldface ‘n’ to mean the stan-
dard numeral for the number n. (In fact, for any particular n ≠ 1, there are infi-
nitely many numbers y in [0,1] such that y > n, but 1 can be used in every case).

Chapter 8, §2

(I.4) D = {α,β}, Ext(R) = {〈α,β〉, 〈β,β〉}. ‘(∃x)~Rxb’ is false because ‘~Rab’ is false
and ‘~Rbb’ is false. ‘(∀x)(Rxa → ~Rxb)’ is true because ‘Raa → ~Rab’ and ‘Rba →
~Rbb’ are both �. ‘(∀x)(∃y)Rxy’ is true because ‘(∃y)Ray’ and ‘(∃y)Rby’ are both
�, respectively because ‘Rab’ and ‘Rbb’ are both �.

(I.12) D = {α,β}, Ext(F) = Ext(G) = Ext(H) = {α}, Ext(R) = {〈α,α〉}. ‘(∀x)(∀y)((Fx & Hx)
→ Rxy)’ is false because ‘(Fa & Ha) → Rab’ is false. ‘(∀x)(Hx → Gx)’ is true
because ‘Ha → Ga’ and ‘Hb → Gb’ are true. ‘(∀x)(Fx → (∀y)(Gy → Rxy))’ is true
because ‘Fb → (∀y)(Gy → Rby)’ is true (false antecedent) and ‘Fa → (∀y)(Gy →
Ray)’ is true because ‘Fa’ is true and ‘(∀y)(Gy → Ray)’ is true. ‘(∀y)(Gy → Ray)’ is
true since ‘Gb → Rab’ is true (false antecedent) and ‘Ga → Raa’ is true (� → �).

(II.3) D = {α}, Ext(F) = {α}. Then ‘Ga’ is false, and ‘Ga → Fa’ is true so ‘(∀x)(Gx →
Fx)’ is true. α is the only thing which is F, so the first premise is also true.

(III.2) D = {α,β}, Ext(∈) = {〈α,β〉, 〈β,α〉}, Ext(S) = {α,β}. (E) is true since α ≠ β,
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α ∈ β, β ∉ β. But ‘(∃x)(∀y)y ∉ x’ is false since ‘(∀y)y ∉ a’ and ‘(∀y)y ∉ b’ are both
false.

Chapter 8, §3

(I.3) 1 (1) (∃x)Fx → (∀x)(Fx → Gxa) Premise
2 (2) (∃x)Hx → (∀x)(Hx → Jxa) Premise
3 (3) (∃x)(Fx & Hx) Assumption
4 (4) Fa & Ha Assumption
4 (5) Fa 4 &E
4 (6) Ha 4 &E
4 (7) (∃x)Fx 5 ∃I

1,4 (8) (∀x)(Fx → Gxa) 1,7 →E
4 (9) (∃x)Hx 6 ∃I

2,4 (10) (∀x)(Hx → Jxa) 2,9 →E
1,4 (11) Fa → Gaa 8 ∀E
1,4 (12) Gaa 11,5 →E
2,4 (13) Ha → Jaa 10 ∀E
2,4 (14) Jaa 13,6 →E

1,2,4 (15) Gaa & Jaa 12,14 &I
1,2,4 (16) (∃y)(Gay & Jay) 15 ∃I
1,2,4 (17) (∃x)(∃y)(Gxy & Jxy) 16 ∃I
1,2,3 (18) (∃x)(∃y)(Gxy & Jxy) 3,4,17 ∃E

1,2 (19) (∃x)(Fx & Hx) → (∃x)(∃y)(Gxy & Jxy) 3,18 →I     ♦

(I.7) 1 (1) (∀x)(∀y)(Exy → Eyx) Premise
2 (2) (∀x)(∀y)(Exy → Exx) Premise
3 (3) (∃y)Eya Assumption
4 (4) Eba Assumption
1 (5) (∀y)(Eby → Eyb) 1 ∀E
1 (6) Eba → Eab 5 ∀E

1,4 (7) Eab 6,4 →E
2 (8) (∀y)(Eay → Eaa) 2 ∀E
2 (9) Eab → Eaa 8 ∀E

1,2,4 (10) Eaa 9,7 →E
1,2,3 (11) Eaa 3,4,10 ∃E

1,2 (12) (∃y)Eya → Eaa 3,11 →I
1,2 (13) (∀x)[(∃y)Eyx → Exx] 12 ∀I     ♦

Note that ∃E at (11) is legal since the name used to form the instance of (3) is
‘b’, and ‘b’ does not occur in 3, 10, or 1 and 2.

(I.12) 1 (1) (∃x)(∀y)((Fx∨Gy)→ (∀z)(Hxy→Hyz)) Premise
2 (2) (∃z)(∀x)~Hxz Premise
3 (3) (∀y)((Fa ∨ Gy) → (∀z)(Hay → Hyz)) Assumption
4 (4) (∀x)~Hxb Assumption



384 Solutions to Selected Exercises

5 (5) Fa Assumption
3 (6) (Fa ∨ Gc) → (∀z)(Hac → Hcz) 3 ∀E
5 (7) Fa ∨ Gc 5 ∨I

3,5 (8) (∀z)(Hac → Hcz) 6,7 →E
3,5 (9) Hac → Hcb 8 ∀E

4 (10) ~Hcb 4 ∀E
3,4,5 (11) ~Hac 9,10 SI (MT)

3,4 (12) Fa → ~Hac 5,11 →I
3,4 (13) (∀x)(Fa → ~Hax) 12 ∀I
3,4 (14) (∃y)(∀x)(Fy → ~Hyx) 13 ∃I
1,3 (15) (∃y)(∀x)(Fy → ~Hyx) 2,4,14 ∃E
1,2 (16) (∃y)(∀x)(Fy → ~Hyx) 1,3,15 ∃E   ♦

(II.4) T_: _ is tall; A_: _ applied; L_,_: _ is taller than _; b: John; c: Mary

1 (1) (∀x)(Ax → ~Tx) Premise
2 (2) Tc & Lbc Premise
3 (3) (∀x)[(∃y)(Ty & Lxy) → Tx] Premise
4 (4) Ab Assumption
1 (5) Ab → ~Tb 1 ∀E

1,4 (6) ~Tb 4,5 →E
3 (7) (∃y)(Ty & Lby) → Tb 3 ∀E
2 (8) (∃y)(Ty & Lby) 2 ∃I

2,3 (9) Tb 7,8 →E
1,2,3,4 (10) � 6,9 ~E

1,2,3 (11) ~Ab 4,10 ~I     ♦

(II.7) S_: _ is a student; C_: _ cheated; P_: _ is a professor; B_,_: _ bribed _; A_: _
was accused

1 (1) (∀x)((Sx & Cx) → (∃y)(Py & Bxy)) Premise
2 (2) (∃x)[(Sx&Ax)& (∀y)((Py&Bxy)→Ay)] Premise
3 (3) (∀x)((Sx & Ax) → Cx) Premise
4 (4) (Sd & Ad) & (∀y)((Py & Bdy) → Ay) Assumption
4 (5) Sd & Ad 4 &E
3 (6) (Sd & Ad) → Cd 3 ∀E

3,4 (7) Cd 6,5 →E
4 (8) Sd 5 &E

3,4 (9) Sd & Cd 8,7 &I
1 (10) (Sd & Cd) → (∃y)(Py & Bdy) 1 ∀E

1,3,4 (11) (∃y)(Py & Bdy) 10,9 →E
12 (12) Pe & Bde Assumption
4 (13) (∀y)((Py & Bdy) → Ay) 4 &E
4 (14) (Pe & Bde) → Ae 13 ∀E

4,12 (15) Ae 14,12 →E
3 (16) (Se & Ae) → Ce 3 ∀E

17 (17) Se Assumption
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4,12,17 (18) Se & Ae 17,15 &I
3,4,12,17 (19) Ce 16,18 →E

3,4,12 (20) Se → Ce 17,19 →I
3,4,12 (21) ~Se ∨ Ce 20 SI (Imp)

12 (22) Pe 12 &E
3,4,12 (23) Pe & (~Se ∨ Ce) 22,21 &I
3,4,12 (24) (∃x)(Px & (~Sx ∨ Cx)) 23 ∃I

1,3,4 (25) (∃x)(Px & (~Sx ∨ Cx)) 11,12,24 ∃E
1,2,3 (26) (∃x)(Px & (~Sx ∨ Cx)) 2,4,25 ∃E     ♦

Chapter 8, §4

(I.7) 1 (1) (∃x)(∃y)Hxy Premise
2 (2) (∀y)(∀z)(Dyz ↔ Hzy) Premise
3 (3) (∀x)(∀y)(~Hxy ∨ x = y) Premise
4 (4) (∃y)Hay Assumption
5 (5) Hab Assumption
2 (6) Dba ↔ Hab 2 ∀E twice

2,5 (7) Dba 5,6 SI
3 (8) ~Hab ∨ a = b 3 ∀E twice
3 (9) Hab → a = b 8 SI (Imp)

3,5 (10) a = b 9,5 →E
3,5 (11) Hbb 10,5 =E
2,5 (12) Dbb 10,7 =E

2,3,5 (13) Hbb & Dbb 11,12 &I
2,3,5 (14) (∃x)(Hxx & Dxx) 13 ∃I
2,3,4 (15) (∃x)(Hxx & Dxx) 4,5,14 ∃E
1,2,3 (16) (∃x)(Hxx & Dxx) 1,4,15 ∃E     ♦

(III.2) 1 (1) (∀x)(∀y)((Sx & Sy) →
(x = y ↔ (∀z)(z ∈ x ↔ z ∈ y))) Premise

2 (2) (Sa & Sb) & [~(∃z)z∈ a & ~(∃z)z∈b] Assumption
1 (3) (Sa & Sb) →

(a = b ↔ (∀z)(z∈ a ↔ z∈b)) 1 ∀E
2 (4) Sa & Sb 2 &E

1,2 (5) a = b ↔ (∀z)(z ∈ a ↔ z ∈ b) 3,4 →E
2 (6) ~(∃z)z ∈ a & ~(∃z)z ∈ b 2 &E
2 (7) ~(∃z)z ∈ a 6 &E
2 (8) ~(∃z)z ∈ b 6 &E
2 (9) (∀z)z ∉ a 7 SI (QS)
2 (10) (∀z)z ∉ b 8 SI (QS)
2 (11) c ∉ a 9 ∀E
2 (12) c ∉ b 10 ∀E
2 (13) c ∉ a & c ∉ b 11,12 &I
2 (14) (c ∈ a & c ∈ b) ∨ (c ∉ a & c ∉ b) 13 ∨I
2 (15) c ∈ a ↔ c ∈ b 14 SI ((16), page 119)
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2 (16) (∀z)(z ∈ a ↔ z ∈ b) 15 ∀I
1,2 (17) a = b 5,16 SI

1 (18) ((Sa & Sb) &
[~(∃z)z∈ a&~(∃z)z∈b])→ a = b 2,17 →I

1 (19) (∀y)[((Sa & Sy) &
[~(∃z)z∈ a&~(∃z)z∈ y])→ a = y] 18 ∀I

1 (20) (∀x)(∀y)[((Sx & Sy) &
[~(∃z)z∈x&~(∃z)z∈ y])→x = y] 19 ∀I     ♦

Chapter 8, §5

(I.4) ‘is similar in color to’ is reflexive and symmetric, but not transitive. Con-
sider a sequence of objects each of which is similar in color to objects adjacent
to it. The last object in the sequence may not be similar in color to the first. (See
further Chapter Eleven.)

(I.6) ‘semantically entails’ is single-premise reflexive and transitive, since for
every p, p � p and for every p, q, r, p � q and q � r imply that p � r (suppose
that p � q and q � r; then if some assignment makes p true and r false, that
assignment makes q false, since q � r, but then p � q, contrary to hypothesis).
But ‘semantically entails’ is not symmetric: A & B � A but A � A & B.

(II.2) D = {α,β}; Ext(R) = {〈α,β〉,〈β,α〉,〈α,α〉,〈β,β〉}. Then R is reflexive and tran-
sitive (note that ‘(Rab & Rba) → Raa’ and ‘(Rba & Rab) → Rbb’ are both true, and
also totally connected, but R is not anti-symmetric: ‘((Rab & Rba) → a = b)’ is
false. 

(II.6) D = {α,β,γ}; Ext(R) = {〈α,α〉,〈β,β〉,〈γ,γ〉,〈α,β〉,〈a,γ〉}. Then R is reflexive and
transitive, but not directed, since ‘(Rab & Rac) → (∃w)(Rbw & Rcw)’ is false. ‘Rab
& Rac’ is true but ‘(∃w)(Rbw & Rcw)’ is false, since ‘Rba & Rca’, ‘Rbb & Rcb’ and
‘Rbc & Rcc’ are all false.

(III.2) 1 (1) (∀x)(∀y)(∀z)((Rxy & Ryz) → Rxz) Premise
2 (2) (∀x)(∀y)(∀z)((Rxy & Ryz) → ~Rxz) Premise
3 (3) Rab Assumption
4 (4) Rba Assumption

3,4 (5) Rab & Rba 3,4 &I
1 (6) (Rab & Rba) → Raa 1 ∀E thrice

1,3,4 (7) Raa 6,5 →E
2 (8) (Rab & Rba) → ~Raa 2 ∀E thrice

2,3,4 (9) ~Raa 8,5 →E
1,2,3,4 (10) � 9,7 ~E

1,2,3 (11) ~Rba 4,10 ~I
1,2 (12) Rab → ~Rba 3,11 →I
1,2 (13) (∀y)(Ray → Rya) 12 ∀I
1,2 (14) (∀x)(∀y)(Rxy → ~Ryx) 13 ∀I     ♦
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(IV) 1 (1) (∀x)(∀y)(∀z)((Rxy & Rxz) → Ryz) Premise
2 (2) Rab Assumption
1 (3) (Rab & Rab) → Rbb 1 ∀E thrice
2 (4) Rab & Rab 2,2 &I

1,2 (5) Rbb 3,4 →E
1 (6) Rab → Rbb 2,5 →I
1 (7) (∀y)(Ray → Ryy) 6 ∀I
1 (8) (∀x)(∀y)(Rxy → Ryy) 7 ∀I     ♦

Chapter 8, §8

(I.2) (∃X)(Xa & ~Xb). (I.5) (∀x)(Xa ↔ Xb).

(II.2) Let D = {1,2,3,…,10}, Ext(F) = {1,2,3,4,5,6}, Ext(G) = {1,2}. Then ‘Few Fs are
G’ is true because only two of the six Fs are G. But ‘(Wx)(Fx → Gx)’ is false since
it has six true instances on this interpretation. Therefore ‘(Wx)(Fx → Gx)’ is not
a correct symbolization of ‘Few Fs are G’.

Chapter 9, §2

(6) W = (w*, u); w*: A � ⊥, B � ⊥; u: A � �, B � ⊥. Then w*[A → B] = �, hence
w*[�(A → B)] = �. But u[A]= � so w*[�A] = �, while w*[B] = ⊥ and u[B] = ⊥, so
w*[�B] = ⊥. Therefore w*[�A → �B] = ⊥.

(11) W = (w*, u); w*: A � ⊥, B � � (or ⊥); u: A � �, B � ⊥. u[A → B] = ⊥, hence
w*[�(A → B) = ⊥. But w*[�A] = ⊥ since w*[A] = ⊥. Hence w*[�A → �B] = �.

Chapter 9, §3

(I.4) Trans[�(A → ��)] = (∀w)Trans[A → ��] = (∀w)(Trans[A] → Trans[��]) =
(∀w)(A�w → (∃w)Trans[�]) = (∀w)(A�w → (∃w)�).

(II.2) ‘(∃w)(∀w)A�w → A�w’ is the translation of the conditional ‘��A → A’.

Chapter 9, §4

(6) 1 (1) �(A & �B) Premise
1 (2) A & �B 1 �E
1 (3) A 2 &E
1 (4) �B 2 &E
5 (5) B Assumption

1,5 (6) A & B 3,5 &I
1,5 (7) �(A & B) 6 �I

1 (8) �(A & B) 4,5,7 �E     ♦
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(19) 1 (1) �(A → �B) Premise
2 (2) �A Assumption
3 (3) A Assumption
1 (4) A → �B 1 �E

1,3 (5) �B 4,3 →E
1,2 (6) �B 2,3,5 �E
1,2 (7) B 6 �E

1 (8) �A → B 2,7 →I
(9) �(�A → B) 8 �I     ♦

Chapter 9, §5

(5) W = {w*,u}, w*(D) = {α}, u(D) = {α} (or ∅), w*[F] = {α}, w*[G] = ∅, u[F] = ∅,
u[G] = {α}. Then w*[�Fa] = ⊥, w*[�Ga] = ⊥, so w*[(∀x)(�Fx ↔ �Gx)] = �. How-
ever, w*[Fa ↔ Ga] = ⊥ so w*[�(Fa ↔ Ga)] = ⊥ so w*[(∀x)�(Fx ↔ Gx)] = ⊥.

(10) W = {w* ,u}, w*(D) = {α}, u(D) = {β}. w*[R] = ∅, u[R] = 〈α,β〉. Then u[(∃y)Ray]
= � so w* [�(∃y)Ray] = �. α ∈ w* (D), so w* [(∃x)�(∃y)Rxy] = �. However,
w* [(∃x)(∃y)Rxy] = ⊥ and also u[(∃x)(∃y)Rxy] = ⊥ (‘(∃y)Ray’, though true at u,
does not make ‘(∃x)(∃y)Rxy’ true at u since α ∉ u(D)). So w*[�(∃x)(∃y)Rxy] = ⊥.

(16) W = {w*,u}, w* (D) = ∅, u(D) = {α}, w* [F] = {α} (or ∅), u[F] = {α}. Then
w*[(∀x)�Ex] = � since w*(D) = ∅, and w*[(∃x)�Fx] = ⊥ for the same reason. But
u[(∃x)Fx] = � so w*[�(∃x)Fx] = �.

Chapter 9, §6

(5) 1 (1) (∀x)�Ex Premise
2 (2) (∃x)�Fx Assumption
3 (3) Ea & �Fa Assumption
3 (4) Ea 3 &E
1 (5) Ea → �Ea 1 ∀E

1,3 (6) �Ea 5,4,→E
7 (7) �Ea Assumption
3 (8) �Fa 3 &E
9 (9) Fa Assumption
7 (10) Ea 7 �E

7,9 (11) Ea & Fa 10, 9 &I
7,9 (12) (∃x)Fx 11 ∃I
7,9 (13) �(∃x)Fx 12 �I
7,3 (14) �(∃x)Fx 8,9,13 �E

3 (15) �Ea → �(∃x)Fx 7,14 →I
1,3 (16) �(∃x)Fx 15,6 →E
1,2 (17) �(∃x)Fx 2,3,16 ∃E

1 (18) (∃x)�Fx → �(∃x)Fx 2,17 →I     ♦
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(12) 1 (1) �(∀x)�Ex Premise
2 (2) �(∀x)Fx Assumption
3 (3) (∀x)�Ex Assumption
3 (4) Ea → �Ea 3 ∀E
2 (5) (∀x)Fx 2 �E
2 (6) Ea → Fa 5 ∀E
7 (7) �Ea Assumption
7 (8) Ea 7 �E

2,7 (9) Fa 6,8 →E
2,7 (10) �Fa 9 �I
2,7 (11) Ea → �Fa 10 SI (PMI)

2 (12) �Ea → (Ea → �Fa) 7,11 →I
2,3 (13) Ea → (Ea → �Fa) 4,12 SI (Chain)
2,3 (14) Ea → �Fa 13 SI (NK)
2,3 (15) (∀x)�Fx 14 ∀I

3 (16) �(∀x)Fx → (∀x)�Fx 2,15 →I
3 (17) �[�(∀x)Fx → (∀x)�Fx] 16 �I
1 (18) �[�(∀x)Fx → (∀x)�Fx] 1,3,17 �E     ♦

(19) 1 (1) �(∀x)�Ex Premise
2 (2) A Premise
3 (3) �(∀x)(Fx → �(A → ~Fx)) Premise
4 (4) �A Assumption
1 (5) �Ea 1 SI (Example 3)
6 (6) (∀x)(Fx → �(A → ~Fx)) Assumption
7 (7) �(A → ~Fa) Assumption
8 (8) A Assumption
7 (9) A → ~Fa 7 �E

7,8 (10) ~Fa 9, 8 →E
7,8 (11) �~Fa 10 �I
4,7 (12) �~Fa 4,8,11 �E

4 (13) �(A → ~Fa) → �~Fa 7,12 →I
(14) Fa ∨ ~Fa TI (LEM)

15 (15) Fa Assumption
6 (16) Ea → (Fa → �(A → ~Fa)) 6 ∀E
1 (17) Ea 5 �E

1,6 (18) Fa → �(A → ~Fa) 16,17 →E
1,4,6 (19) Fa → �~Fa 18,13 SI (Chain)

1,4,6,15 (20) �~Fa 19,15 →E
21 (21) ~Fa Assumption
21 (22) �~Fa 21 �I

1,4,6 (23) �~Fa 14,15,20,21,22 ∨E
1,3,4 (24) �~Fa 3,6,23 �E
1,3,4 (25) Ea & �~Fa 17,24 &I
1,3,4 (26) (∃x)�~Fx 25 ∃I
1,3,4 (27) �(∃x)�~Fx 26 �I

1,3 (28) �A → �(∃x)�~Fx 4,27 →I
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(29) A → �A TI
1,3 (30) A → �(∃x)�~Fx 29,28 SI (Chain)

1,2,3 (31) �(∃x)�~Fx 30,2 →E     ♦

Chapter 10, §2

(I.5) S = {α,β,γ,δ}, � = {〈α,β〉,〈β,γ〉,〈α,δ〉}, warr(α) = ∅, warr(β) = {‘A’}, warr(γ)
= {‘A’, ‘B’}, warr(δ) = ∅. Since α � β, β � A and β � B, we have α � A → B. How-
ever, α � ~B → ~A, since α � δ, δ � ~B, δ � ~A, and there is no other state at
which ‘~B’ holds.

(I.12) S = {α,β}, � = {〈α,β〉}, warr(α) = ∅, warr(β) = {‘A’}. Since warr(α) is empty,
α � A. Since β � A and β � B, α � A → B. Hence α � A ∨ (A → B).

Chapter 10, §3

(6) S = {α,β}, � = {〈α,β〉}, dom(α) = {➊ }, dom(β) = {➊ ,➋ }, warr(α) = ∅, warr(β) =
{〈F,➊ 〉,〈G,➋ 〉}. α � (∃x)(Fx → Gx) since α � Fa → Ga, since β � Fa but β � Ga.
However, since β � (∃x)Fx and β � (∃x)Gx, we have α � (∃x)Fx → (∃x)Gx.

(9) S = {α,β}, � = {〈α,β〉}, dom(α) = {➊ }, dom(β) = {➊ ,➋ }, warr(α) = {F,➊ 〉}, warr(β)
= {F,➊ 〉}. β � (∀y)(F➊  → Fy) since β � F➊  → F➋ . Hence α � (∃x)(∀y)(Fx → Fy).


