LECTURE 5: SURFACES IN PROJECTIVE SPACE

1. PROJECTIVE SPACE

Definition: The n-dimensional projective space P™ is the set of lines through
the origin in the vector space R*1.

P™ may be thought of as the quotient space (R"*1\ {0})/ ~ where ~ rep-
resents the equivalence relation

(2%, 2™ ~ (A2, a2™), AN eRX
The equivalence class of the point (2°,... ,2") is denoted [z, ... ,z"].

In order to describe P™ as a homogenous space, we need to find its group
of symmetries. Since the only structure on P™ is that of lines through the
origin in R"*!, we should begin by finding those symmetries of R"*! that
preserve the set of lines through the origin. This is simply the matrix group
GL(n+ 1), so we might suppose that the group of symmetries of P" is also
GL(n+1).

However, there is a subtle point to consider here. While it is true that all
elements of GL(n + 1) are symmetries of P", some of them act trivially on
P". A matrix g € GL(n + 1) fixes every line in R"*! if and only if g = A\I
for some A # 0. Thus the most natural choice for the symmetry group of
P™ is GL(n + 1)/R*I. This group is isomorphic to SL(n + 1) if n is even
and SL(n+1)/{£I} if n is odd. In order to avoid the difficulties associated
with working with a quotient group, we will take the symmetry group of P"
to be SL(n + 1) in either case.

Now given a point [z] = [z, ... ,2"] € P", we need to find its isotropy group

Hp,. First take [zo] = [1,0,...,0]. It is straightforward to show that for
g€ SL(n+1), g-[zo] = [zo] if and only if

(det A)~Y rp ...o7y
0
9= 5 4
0
where A € GL(n). Thus
Hyp=A{leo ... en]:eo=(A0,...,0) for some X € R*}.
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Denote this group by H. For any other point [z] € P", H [z] 1S conjugate to
H, and P" is isomorphic to the set of left cosets of H in SL(n + 1). Thus
P™ may be thought of as the homogenous space P" =2 SL(n+ 1)/H.

A frame on P" is a set of vectors (eq, . .. , e,), e; € R*L with det[eg...e,] =
1. We can regard SL(n + 1) as the frame bundle of P"; it is a principal
bundle with fibers isomorphic to H. We can define a projection map 7 :
SL(n+1) — P" by

7([eg ... en]) = leo].

The Maurer-Cartan forms {w§, 0 < «,8 <n} on SL(n + 1) are defined by
the equations

n
deqy = Z es wg.
B=0

These forms satisfy the structure equations

n
[o « Y
dwg—— g wy Awg
v=0

and the single relation

n
Z wg = 0.
a=0

The forms W}, ... ,wf are semi-basic for the projection 7 : SL(n + 1) — P,
while the remaining wgf’s form a basis for the 1-forms on each fiber of © and
so may be thought of as connection forms on the frame bundle.

2. SURFACES IN P3

Consider a smooth, embedded surface [z] : ¥ — P3, where ¥ is an open set
in R?. Because P? = R*/ ~ is a quotient space, it is generally easier to work
with the 3-dimensional submanifold 3 c R*\ {0} defined by the property
that = € X if and only if [] € ¥. Clearly % consists of a 2-parameter family
of lines through the origin of R* and so may be thought of as a cone over
a 2-dimensional submanifold of R*\ {0}. We will use the geometry of the
surface to construct an adapted frame {ey(x),e1(x),ea(x),e3(x)} € SL(4)
at each point z € X.

For our first frame adaptation we will choose a frame at each point x €
> such that eg = x and T, is spanned by the vectors eg,e1,es. These
conditions are clearly invariant under the action of SL(4) on R*, and any
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other frame {€ég, €1, €2, €3} has the form
S1 89 S3

B >

[ R

[ég él 52 53]:[60 €1 €9 63]
S5

0 0 0 (detB)™!
where B € GL(2). For such a frame, dr must be a linear combination of
€o, €1, e2. Therefore the structure equation
3
dr = deg = Zegwg

£=0
implies that wi = 0, while the 1-forms w, wg,w? form a basis for the 1-forms
on ¥. Thus we have dwj = 0, and so

0=dwd = —w} ANwj — Wi Aw?.

By Cartan’s Lemma, there exist functions hq1, k12, hoo such that

wi’ . h11 h12 wé
w3 hia haol| |3

In order to make our next frame adaptation we will compute how the matrix
[hij] varies if we choose a different frame. Suppose that {€, €1, €2, €3} is
defined as above. Computing the Maurer-Cartan form of the new frame

shows that
~1 1 ~3 3
Ol =gt 7Y “1 = (det B)B! |}
“o “o Wo wa
and therefore
hin h hii h
~11 ~12 :(detB)Bt 11 N2 B
h12 h22 h12 h22

This transformation has the property that det[h;;] = (det B)*det[h;;], so
the sign of the determinant is fixed. We will assume that det[h;;] > 0; in
this case the surface is said to be elliptic. Then we can choose the matrix
B so that [hsj] is the identity matrix. This determines the frame up to a
transformation of the form

1 S§1 S92 S3
~ ~ ~ ~ 0 S4
[60 €1 €2 63]2[60 €1 €2 63] B

0 S5

0 00 1

with B € SO(2).

The quadratic form

301 3 2 1,2 22
I = wiwy+wywy = (wy)” + (wp)
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is now well-defined on ¥, but it is not well-defined on X; it varies by a
constant multiple as we move along the fibers of the projection ¥ — X.
Thus I determines a conformal structure on Y which is invariant under the
action of SL(4).

The restricted Maurer-Cartan forms on our frame now have the property

that w} = wl, wi = w?. Differentiating these equations yields

(2w1 — wf — w3) Awp + (wp +wi) Awg =0
(s + W) Awh + (203 —w) —wd) AwE =0.

By Cartan’s Lemma, there exist functions hy11, k112, h122, hooo such that

1 0 3
Ltw? | = e ham| |0
Wy + Wi = |h112 N122 9
9 2_,0_ .3 h h “o
Wy — Wy — Wwsg 122 222

In order to make further adaptations we need to compute how the h;j;;’s
vary under a change of frame. This computation gets rather complicated,
but we can make it simpler by breaking it down into two steps. Any two
adapted frames at this stage vary by a composition of transformations of
the form

10 0 0
S 0 0
(2.1) [60 €1 €9 63]:[60 €1 €9 63] 0 B 0
0 0 01
with B € SO(2) and

S1 S22 S3
~ ~ ~ ~ 0 S4

(2.2) [60 er e 63]:[60 [N D) 63] I
85
0 00 1

First consider a change of frame of the form (2.2). It is left as an exercise
that under such a change of frame,

hi11 = hi11 + 3(s1 — s4)
hi12 = hi12 + (s2 — s5)
h1g2 = h1ga + (51 — 54)
haoo = haga + 3(s2 — s5).

Thus we can choose the s; so that hios = —hq11, hi112 = —hose. For such
a frame we have w) + wj = wl + w3 = 0. (Exercise: why?) This condition
is preserved under transformations of the form (2.1) and transformations of
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the form (2.2) with sy = s1, s5 = s9. Transformations of the latter form fix
all the hj;p’s, while under a transformation of the form (2.1) we have

i1 _ g hi11
h222 h222
so the quantity h?,; + h3,, is invariant.

3. THE CASE h;j; =0

Now suppose that h?;; + h3,, = 0. Then we have

1 2 1 2
w1:w2:w2+w1:w8+w§’20.

Differentiating these equations yields
(W —wi) Awy =0
(W) —wi) Awi =0
(W) — wi) Awp + (W) —wg) Awp =0
— (@) —wg) Awp — (W —wd) Awg =0.

The fourth equation is obviously a consequence of the first two. Applying
Cartan’s lemma to the first three of these equations shows that there exists
a function A such that

W —wl =}

0 2y, 2
Wy — W3 = Awyp.

Now consider a change of frame of the form

1 0 0 s3
(6o €1 é é3l=len e ez e 8 I 8
00 0 1
It is left as an exercise that under this change of frame,
A=)\— 2s3.
Thus we can choose a frame with A = 0, and for such a frame we have
wlowd w2l

Differentiating these equations yields
2w§ Awp =0
20§ A wd = 0.

By Cartan’s lemma we have wg = 0. Finally, differentiating this equation
yields an identity.
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At this point the Maurer-Cartan form for the reduced frame bundle is

r,0 0 0 .
wy wi wy 0

1 1
wg 0 wy wj
2 1

1 2 0
0 wy wy —wpl

We have not found a unique frame over each point of %, but since differ-
entiating the structure equations yields no further relations, this is as far
as the frame bundle can be reduced. What this means is that ¥ is itself a
homogenous space G/H where G is the Lie group whose Lie algebra g is the
set of matrices with the symmetries of the Maurer-Cartan form above. All
that remains is to identify this group G and to describe Y as a homogenous
space G/H. Because Y is a homogenous space, perhaps it will not come as
a surprise that ) is, up to a projective transformation, the cone over the
sphere S2. The details will be left to the exercises.

Exercises

1. Suppose that instead of being elliptic, ¥ has hij = 0. Prove that X is
a plane in P3. (Hint: ¥ is a plane if and only if ¥ is a hyperplane in R%.
Show that the plane spanned by the vectors eg, e1, e2 is constant, and that
therefore ¥ must be contained in this plane.)

2. Suppose that ¥ C P3 is elliptic and that we have adapted our frames so
that wi = W}, wi = wd. Show that

a) The quadratic form I is well-defined on X.

b) Iy, = A2I,, where I, denotes the quadratic form I based at the point
re. (Hint: moving from x to Az corresponds to making a change of frame
with €y = Aeg. Since I is well-defined, the change of frame can otherwise be
made as simple as possible for ease of computation. Set

A0 O 0

0 g 0 0

[éo él ég ég]:[eo €1 €9 63] 0 0 % 0
1

0 0 O TMQ

and show that in order to preserve the condition that w} = wi, i = 1,2,
we must have ¢ = £1. Now show that under this change of frame, &} =
Awl, i =1,2 so that I, = \2I,.)

3. Fill in the details of the frame computations:
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a) Suppose that the surface ¥ C P? is elliptic and that we have restricted
to frames for which wj} = wj, wj = w3. Show that differentiating these
equations yields

(ch%—wg—wg)/\wé—i-(w%—i-w%)/\wg:()
(w%—i—w%)/\wé—l—(2w§—w8—wg)/\wg:0

and that Cartan’s Lemma implies that there exist functions h111, h112, h122,
ho9o such that

1_,0_ 3
2wi —wy — wi hiin - hiie 1
1, .2 0
wy + wi = |h112  hize [ 2]
2_ . 0_ .3 0
2w; — wy — wi higa  hazo

b) Show that under a change of frame of the form (2.2),

hi11 = hi1 + 3(s1 — s4)

hi12 = hiia + (s2 — 85)

hi2z = h1ga + (s1 — 54)

hago = hoss + 3(s2 — s5).
When we restrict to those frames for which hios = —hy11, hi12 = —haoo,
why do we have wi + w3 = wi +wi = 0?

c) Suppose that the invariant h? ; + h3,, vanishes identically. Show that
differentiating the equations

1 2 1 2 0 3

yields

(W) — wi) Awp + (W —wi) Aw§ =0

—(w) —wy) Awg — (W — wi) Awp = 0.

Use Cartan’s lemma to conclude that there exists a function A such that

W —wl =}

Wl —w?r = Awi.

d) Show that under a change of frame of the form

o

)

»
w

[éo él éQ ég]:[eo €1 €9 63]

S OO
—_= o O
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we have
5\ =A— 283
so we can choose a frame for which A = 0.

e) Show that differentiating the equations wi = w?, w? = W? yields

2w§ Awp =0
20§ A wd = 0.

Use Cartan’s lemma to conclude that wg = 0. Show that differentiating this
equation yields no further relations among the wg’s.

4. In this exercise we will show that when h%;; + h3,, = 0, ¥ is a sphere in
P2.

Let @@ be the matrix

S O = O
O = OO
o O O

Q represents the quadratic form

q= (LEI)Q + (1'2)2 _ 21‘01’3
which is a Lorentzian metric on R*. The Lie Group O(Q) is the group of
matrices which preserves this metric; it is defined by

0(Q) = {A € GL(4) : 4QA = Q}
and is isomorphic to the Lie group O(3,1).
a) Differentiate the equation

AQA=Q

to show that the Lie algebra o(Q) is defined by

0(Q) = {a €gl(4) : aQ + Qa = 0.
b) Show that 0(Q) consists of the matrices of the form
[a) a) ad 0]
a(l) 0 a% a(l)
a@ —ai 0 a

1 2 0
[0 ap a5 —ag)

Conclude that the reduced Maurer-Cartan form at the end of the lecture
takes values in 0(Q).
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c¢) Recall that for a given reduced frame
g(@) = [eo(x) er(z) ea(z) es(2)]

the Maurer-Cartan form is w = g~'dg. Show that any reduced frame has
the form

g(z) = CA(z)
where C' € SL(4) is a constant matrix and A(z) € O(Q). C may be thought

of as a symmetry of P3, so the surface ¥ is equivalent to the surface C~1- 3.
Thus we can assume that g(z) € O(Q).

d) Define a projection map 7 : O(Q) — R*\ {0} by

7'('([60 €1 €9 63]) = €9.
Show that in the Lorentzian metric defined by @, eg is a null vector, i.e.,
{eg, e0) = 0. Since the set of null vectors in R*\ {0} is 3-dimensional, 3. must
be an open subset of the hypersurface defined by the equation (z,z) = 0.

This hypersurface is the cone over the unit sphere S? of the hyperplane
{20 = 1} C R*; therefore ¥ is an open subset of the sphere in P3.



