LECTURE 7: MINIMALITY AND VARIATIONAL
CALCULATIONS

1. MINIMAL SURFACES IN E?

We will say that a regular surface in E? is minimal if it is locally area
minimizing. More precisely, ¥ C E3 is minimal if for any sufficiently small
open set U C ¥, U has the minimum area of all surfaces in E3 with the same
boundary as U. Classical examples are the plane, catenoid, and helicoid.

How would we go about finding minimal surfaces? If we define the area
functional of a surface ¥ to be

AS) = /E A

then minimal surfaces should be critical points of this functional. But the
space of surfaces in E? is infinite-dimensional, so finding critical points of
the functional A is somewhat complicated. The idea goes something like
this: if 3 is a critical point of A, then for any smooth curve ¢ — ¥; in the
space of surfaces in E? with ¥y = ¥ we should have

d
i lt=0 A(2;) = 0.

Conversely, if ¥ is not a critical point of A then there must exist a smooth
curve t — ¥y with g = ¥ and 4 [,—0 A(Z;) # 0.

In order to make use of this idea we have to define what we mean by a
smooth curve in the space of surfaces in E2. This leads us to the notion of
a variation of a surface ¥. Given a regular surface z : ¥ — E3, consider a
smooth map

X :¥ x (—¢,¢) > E?

where ¥; = X (X,t) C E? is a regular surface for all t € (—¢,¢) and ¥ = X.
Such a map is called a variation of ¥. The variation is said to be compactly
supported if there is a compact set U in the interior of ¥ such that for every
t € (—e,e),

X(z,t) = X(z,0)

for all x € ¥\ U. If X is a compactly supported variation of ¥ and ¥ is a
critical point of A, then

d
i li=0 A(2:) = 0.
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Conversely, if % lt=0 A(X¢) = 0 for every compactly supported variation of
Y., then ¥ is a critical point of the functional A. We will use this fact to
investigate minimal surfaces.

Let {e1, €2, e3} be an orthonormal frame on ¥ with e3 normal to the tangent
plane T, at each point x € X. Recall that when the Maurer-Cartan forms
of E3 are restricted to this frame, we have w® = 0 and

w} hi1 hiz| |w!
w3 w2’

hi2  hao
Rotating the frame {e;,es} changes the matrix [h;;], but its determinant
K = hythos — h%Q and its trace 2H = hj; + hog are invariant under such
changes of frame. K is the Gauss curvature of ¥ at x, and H is called the
mean curvature of X2 at x.

Now consider a compactly supported variation

X : ¥ x (—¢,6) — E3.
Since reparametrizing the surface does not affect the area functional, we
can assume that X is a normal variation of 3. This means that the vec-

tor —— is parallel to the unit normal of the surface 3; at each point. In

ot

order to compute % lt=0 A(2¢), we will define a frame on the variation X

(ie., a lifting X : ¥ x (—e,e) — F(3)) and consider the restriction of the
Maurer-Cartan forms on E? to this frame. For each (z,t) € ¥ x (—¢,¢),
let {e1(x,t),e2(x,t), es3(x,t)} be an orthonormal frame for the surface 3; at

x with ez normal to the tangent plane 7,3;. The restrictions of the forms

w!,w?, w3 to this frame are defined by the equation

3
dX = Z €; wi.
i=1
Because {eq, ez, €3} is adapted to the surface ¥, the forms
wl = <dX7 61)
w2 = <dX7 62)

are the usual dual forms on the surface ;. But instead of having w? = 0,
we have

0X
3= (dX, es3) = | =] dt.
w <d 7€3> ‘at |d

0X

. Then w? = f dt. Differentiating this equation yields
—wi AW — w3 Aw? = df Adt,
and therefore

Wi AW+ w3 AW+ df Adt = 0.
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By Cartan’s Lemma,
w3 hin bz fi] [w!
wi| = |h12 ha fo| |w?
daf fi fo fs] dt

for some functions hi1, hi2, hoo, fi, f2, f3 on X x (—&,e). The h;; are the
coefficients of the second fundamental form of the surface ¥, while the f;
are the directional derivatives of f in the directions of the e;.

Now the area form on the surface ¥; is d4 = w! Aw?, so the area functional
is
A(Zy) = / wl AW
3¢
Its derivative at t = 0 is

d d 1 9
7‘,5:0./4(2) dt |t0/§;tw A w
Z/ﬁa/at(wlAWQ)

/_Idw A w?)

:/_l(—w%/\w‘g/\w2+w1/\w§/\w3)
/at h11—h22)fw A W2 A dt

= / —2H fw' AW
by
This computation shows that the derivative of the area functional at ¢t = 0

d
is the integral over ¥ of the function H|——|. This integral vanishes for

all compactly supported normal variations of ¥ if and only if the mean
curvature H of X is identically zero.

We have proved the following theorem, which is often taken as a definition
of minimal surfaces:

Theorem: A regular surface in E? is minimal if and only if its mean cur-
vature H is identically zero.

2. MINIMAL SURFACES IN A3

Recall that for elliptic surfaces ¥ C A% we found adapted frames {e1, ez, e3}
for which the Maurer-Cartan forms satisfy the conditions

w%:wl, wgzwz, w§:0.
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Such a frame is determined up to a transformation of the form

0
[51 éz 53]2[61 €9 63] 0
0 01

with B € SO(2), and we also have
- b ol
wg, lig oo | |w?
for some functions #11, £12,f22. The quadratic forms
I=wiw! +udw? = (W24 (W?)?

Il = wé 0.)1 + w§ wl = 511(w1)2 + 2512 wl 0.)2 + 622(w2)2

are well-defined; the affine first fundamental form I defines a metric on
Y, and the affine second fundamental form I is the analog of the second
fundamental form for surfaces in E3. Its trace

2L = {11 + {22
is well-defined, and the quantity L is called the affine mean curvature of X.

The affine first fundamental form gives rise to a well-defined affine area form
dA = w' Aw? on ¥, and we define the affine area of ¥ to be

A(E):/Ewl/\wZ.

By analogy with the Euclidean case, we can ask what properties a surface
¥ C A® must satisfy in order to be a critical point of this area functional.
Such surfaces are called affine minimal surfaces.

We proceed as in the Fuclidean case by considering a compactly supported
normal variation

X : ¥ x (—g,e) — A3

0X
Here “normal” means that the vector —— is parallel to the affine normal

of the surface ¥y = X (X,t) at each point. For each (z,t) € ¥ x (—¢,¢)
let {e1(xz,t),ea(x,t),e3(x,t)} be a frame for the surface ¥; at x which is
adapted as described above. As in the Euclidean case, the Maurer-Cartan

forms w',w? are the usual dual forms on the surface 3, while w3 = fdt

X
where f(z,t) = |W’ The derivative of the affine area functional at ¢t = 0
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18
d

d
el E - 1 A 2
& Jio A(S) = 5 lizo /&w w

Z/ﬁa/at(wl/\w2)
)
0
— = 1d 1/\ 2
/Eat_l (W' Aw?)
d
:/_l(—w%/\wl/\wQ—c4131,/\w3’/\w2
5 Ot
+wt AW AW+t AW AW
_/aJ(€11+€22)fw1/\w2Adt
5 Ot

:/2wa1/\w2.
b

This integral vanishes for all compactly supported normal variations of X if
and only if the affine mean curvature L of ¥ is identically zero. Thus we
have proved the following theorem:

Theorem: A regular surface in A® is affine minimal if and only if its affine
mean curvature L is identically zero.

Exercises

1. The catenoid is the surface ¥ C E? obtained by rotating the curve
x = cosh z about the z axis. It can be parametrized by

x(u,v) = (cos(u) cosh(v), sin(u) cosh(v), v).

a) Show that the frame

er = % = (—sin(u), cos(u), 0)
ey = ol = m(cos(u) sinh(v), sin(u)sinh(v), 1)

ez =e1 X ey = (cos(u), sin(u), —sinh(v))

1
cosh(v)
is orthonormal and that e, eo span the tangent space to Y at each point.
b) Show that the dual forms of this frame are

w! = cosh(v) du, w? = cosh(v) dv.
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c¢) Compute deg and show that
1 1
3 3
= — d y == d .
“1 cosh(v) " 2 cosh(v) Y
Use this to compute the matrix [h;;] and show that the mean curvature of
Yis H=0.

2. Repeat the computation of Exercise 1 for an arbitrary surface of revolu-
tion parametrized by

z(u,v) = (f(v) cos(u), f(v)sin(u), v)
(you may want to use a computer algebra package such as Maple to assist
with part ¢) and show that the surface is minimal if and only if f satisfies
the differential equation

= +1.
Show that the only solutions of this equation are
1
f(v) = — cosh(av + b)
a

where a,b are constants. Conclude that catenoids are the only non-planar
minimal surfaces of revolution.

3. The helicoid is the ruled surface ¥ C E? parametrized by
z(u,v) = (vcos(u), vsin(u), u).

a) Show that the frame

Ty 1 .
e1 = = —wvsin(u), vcos(u), 1
1= (2t = o (—usin(w), veos(u), 1
ey = % = (cos(u), sin(u), 0)
v
—_— —_— 1 3
e3 =€ X eg = T—i—l(_ sin(u), cos(u), —v)

is orthonormal and that e, eo span the tangent space to X at each point.

b) Show that the dual forms of this frame are
w! = V2 + 1du, w? = dv.

¢) Compute des and show that
1
wij’:Tdv, Wi = ———— du.
v2+1 v?+1
Use this to compute the matrix [h;;] and show that the mean curvature of
Yis H=0.

1

4. a) Show that for any values of a, b, ¢ with ac—b® > 0 the elliptic paraboloid
2z =ax®+bxy + cy? is affinely equivalent to the paraboloid ¥ C A3 given
by z = (2% + y?).
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b) Show that the affine frame

e1 = (1,0,2)
ez = (0,1,y)
€3 — (0,0, 1)

is adapted to X. Compute its dual and connection forms and show that they
satisfy the conditions

w§:0.

c¢) Show that the affine mean curvature of ¥ is identically zero. Conclude
that any elliptic paraboloid is affine minimal.

5. (This exercise should be done with the aid of a computer algebra package
such as Maple.) Suppose that a surface ¥ C A3 is described by a graph
z = f(x,y). Consider the affine frame

Ql = (1707 f:c)
€y = (0717fy)
e3 =(0,0,1).

a) Show that the dual forms of this frame are
w'=dr, W'=dy, W=0
and that the only nonzero connection forms are
Wi = frzdz+ foydy
W3 = fuydz + fry dy.

hyy By _
hig Doy
Assume that fr; fyy — fgy > 0, so that X is elliptic, and for simplicity assume

that f, > 0. In order to decide whether ¥ is affine minimal, we must adapt
frames so that

Thus we have

fmx fxy]
fxy fyy ‘
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Consider an affine change of frame

1
B
[61 €2 63] = [§1 (&) §3] )
0 0 (detB)™!
with B € GL(2).
b) Show that if we take
(fa:a:fyy - $2y)1/8 N f:cy
B— fma: \/E(fx:cfyy - %y)?’/g
Jax

(fx:cfyy - f%y)S/S

hll h12 _ 1 O
his hoo| |0 1

c¢) Show that under this change of basis (with r1, 79 still arbitrary),

then

so wi = wl, Wi =w?

3 _ fmﬁrl fxy"“Q fa:xf:)cyy - Qfxyfmzy + fyyfzx:p d
s [(f:mfyy - 1’2y)1/4 " (fxmfyy - x2y)1/4 4(ffrfyy - ny) ] !
fxyrl fyyr2 f:mcfyyy - 2fzyfxyy + fyyf:my d
+ (fa:xfyy - %y)l/él + (fxzfyy - x2y)1/4 + 4(fmmfyy - fx2y) ] y

Conclude that by choosing
Joafayy = 2fay faay + fyyfoza
"l (fee fay] A(faafyy = £2,)%
[TJ - |:fmy fyy:| fxxfyyy B Qfxyfxyy + fyyfxxy
A fawfyy — F3,)3/4

we can arrange that wg’ =0.

d) Show that under this change of frame we have

1 — fx:c Cl facy Cl
“ * \/E(fxwfyy_fg?y)l/S Y

(f:z:xfyy - f%y)l/S !
wg _ (fm:fyy; 9%3/)3/8 dy

Also compute w%,w% and find the functions £;; such that

w% . £11 612 wl
w§ B by loo| |2
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Show that the affine mean curvature equation
L="011+105=0

is a fourth-order differential equation for f. Pretty messy, huh?
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