Polarization, DIC, fluorescence

- Last class
 - Morphological operators
 - Matlab morphological image processing
- This class
 - Polarization microscopy
 - DIC
 - Intro to fluorescence

Diffraction limited spot vs resolution limit

Magnification

Imagine 10x objective Image on the camera, would be 10x larger

Cell that is 20 um in diameter, would appear 200 um diameter on camera

Conversely, a 10 um pixel on the camera would represent 1 um on the sample

Polarization microscopy

• Another way to add contrast to samples

Properties of light

Waveforms of Electromagnetic Radiation States

$$y(x,t) = A\cos(kx - \omega t + \varphi)$$
$$y(x,t) = \vec{A}\cos(kx - \omega t + \varphi)$$

Properties of polarization

Eyes and cameras can not detect polarization. Only able to detect intensity.

Vertebrate vs cephalopod eyes

- Invertebrate eyes are different than our own
- Some invertebrates can detect polarization of light

First step is isomerization from 11 cis to all trans

Manipulating polarization

Relationship Between Long-Chain Molecule Orientation and the Orientation of the Polarization Axis

When molecules in the filter are aligned vertically, the polarization axis is horizontal.

When molecules in the filter are aligned horizontally, the polarization axis is vertical.

Manipulating polarization

- Half wave plate, converts to linear polarization
- Quarter wave plate, converts to circular polarization

Linear polarizers

Cross polarizer puzzle

Have to apply Malus' law twice

$$_2 = I_1 \cos^2(\theta)$$

Then

$$I_3 = I_2 \cos^2(\theta)$$

Forms the basis for polarization microscopy

Polarization microscopy

Biological samples:

- -Mitotic spindles
- -Actin filament bundles
- -Condensed DNA
- -Helical strands of cellulose
- -Some lipid bilayers

Microtubules in A Dividing Plant Cell

Figure 1

Birefringent – refraction is different for different polarizations

Differential Interference Contrast

- Interference technique similar to phase contrast
- The magic starts with a Wollaston prism
- Wollaston prism is birefringent, and rays will exit at different points in space

Wollaston splits polarization

Beams are split by small amount (nanometers)

If there is a difference in optical path between them, they will negatively interfere at camera

Only get contrast at the edges

Form what looks like a 3d image on the camera

DIC vs phase contrast

Transparent Specimens in Phase Contrast and DIC

Characteristic	Phase Contrast	DIC
Image Brightness	1.3 Percent	0.36 - 2.3 Percent
(Brightfield = 100 Percent)		
Epi-Fluorescence Light Loss	28 Percent	73 Percent
(Brightfield = 0 Percent)		
Lateral Resolution	Condenser	Superior
	Annulus	
	Restricted	
Axial Resolution	Poor	Superior
(Depth Discrimination)		
Illuminating Aperture	10 Percent of	Variable
	Objective NA	
Phase Shift	< I/100	< I/100
Detection Limit		
Utility at High Phase Shifts	Not Useful	Useful
Azimuthal Effects	No	Yes
Halos and Shade-Off	Yes	No
Stained Specimens	Not Useful	Useful
Birefringent Specimens	Useful	Not Useful
Birefringent Specimen	Yes	No
Containers		
Brightfield Image	Slight	None
Deterioration		
Cost	Moderate	High

And on to Matlab...

Optical coherence tomography

- Another interference based technique
- Non destructive, and no labelling
- Limited resolution, but high applicability

OCT contrast

• When light in sample goes through index change, the reflected light interferes with reference arm light – giving rise to bumps in the signal

