Fluorescence applications

- Last class
 - Fluorescence toolbox
 - Some limitations of fluorescence
- This class
 - Quantifying fluorescence
 - FRAP/FLIP
 - Co-localization

A few more limitations

- Resolution
- Autofluorescence
- Bleedthrough
- Blinking
- Photostability
- Phototoxicity

Labeling

- Does the presence of the fluorescent molecule affect the function you're trying to study?
- Attaching FP sequence will change transcription factor concentration, ribosome occupancy, already crowded cytoplasm, trafficking of the protein of interest?
- Adding dye can also affect cellular properties, they're just smaller

Proteolysis can be very different if you have a FP Tag

Same types of cells labeled with GFP and tdTomato

Figure 2

The Helical MreB Cytoskeleton in Escherichia coli MC1000/pLE7 Is an Artifact of the N-Terminal Yellow Fluorescent Protein Tag 1.<u>Matthew T. Swulius</u>^a and 2.<u>Grant J. Jensen^a,^b</u>

Signal Quantitation

- Limited by the above factors
- Have to consider photobleaching and background
- We want to know #fl at a given pixel

 To quantitate fluorescence, we try to model other parameters

Dynamic applications of fluorescence microscopy

• Cavalcade of acronyms...

Fluorescence Recovery after Photobleaching (FRAP)

- Selectively bleach some portion of the sample
- Image fluorescence return to that spot
- Originally developed to ^B monitor lipid movement in membranes

300

400

VsVg-GFP in ER

Quantifying FRAP

• We want to find the time constant of recovery

$$\mathsf{F}(t) = A\big(1 - e^{-t/\tau}\big)$$

 $\tau_{1/2} = \frac{\ln 0.5}{-\tau}$

Assuming disc bleach and diffusion is in 2D

$$D = \frac{0.88 \, w^2}{4t_{1/2}} \qquad t \approx \frac{x^2}{2D}$$

Diffusion

 $D = \frac{0.88 \, w^2}{4t_{1/2}}$

 $D = \frac{k_B T}{6\pi\eta r}$

molecule	measured context	diffusion coefficient (µm²/s)	BNID
H ₂ O	water	2000	104087, 106703
H ₂ O	nucleus of chicken erythrocyte	200	104645
H^+ (from H_3O^+ to H_2O)	water	7000	106702
0 ₂	water	2000	104440
CO ₂	water	2000	102625
tRNA (≈20 kDa)	water	100	107933, 107935
protein (≈30 kDa GFP)	water	100	100301
protein (≈30 kDa GFP)	eukaryotic cell (CHO) cytoplasm	30	101997
protein (≈30 kDa GFP)	rat liver mitochondria	30	100300
protein (NLS-EGFP)	cytoplasm of D. melanogaster embryo	20	109209
protein (≈30 kDa)	<i>E. coli</i> cytoplasm	7-8	100193, 107985
protein (≈40 kDa)	<i>E. coli</i> cytoplasm	2-4	107985
protein (≈70-250 kDa)	<i>E. coli</i> cytoplasm	0.4-2	107985
protein (≈140 kDa Tar-YFP)	<i>E. coli</i> membrane	0.2	107985
protein (≈70 kDa LacY-YFP)	<i>E. coli</i> membrane	0.03	107985
fluorescent dye (carboxy-fluorescein)	A. thaliana cell wall	30	105033
fluorescent dye (carboxy-fluorescein)	A. thaliana mature root epidermis	3	105034
transcription factor (Lacl)	movement along DNA (1D, in vitro)	0.04 (4×10 ⁵ bp ² s ⁻¹)	102036
morphogen (bicoid-GFP)	cytoplasm of D. melanogaster embryo	7	109199
morphogen (wingless)	wing imaginal disk of D. melanogaster	0.05	101072
mRNA	HeLa nucleus	0.03-0.10	107613
mRNA	various localizations and sizes	0.005-1	110667
ribosome	E. coli	0.04	108596

FRAP and diffusion

$$F(t) = A(1 - e^{-t/\tau}) \qquad D = \frac{0.88 w^2}{4t_{1/2}}$$

More on... Quantifying FRAP

FRAP experimental data

- Corrections
 - Background
 - Photobleaching

$F_{ROI1}\left(t\right)$

1. Subtract background $F_{ROI1,BG}(t) = F_{ROI1}(t) - F_{ROI4}(t)$

2. Correct photobleaching

$$F_{ROI1,BG,PB}(t) = \frac{F_{ROI1,BG}(t)}{F_{ROI2}(t) - F_{ROI4}(t)}$$

3. Extract time constants

FRAP applications^a

- Lipid diffusion
- Receptor binding
- Organelle diffusion
- Protein dynamics

С

 $\beta_{\rm s}\text{-}\mathsf{AR}\text{-}\mathsf{CFP}$ and $\mathsf{YFP}\text{-}\beta_{\rm s}\text{-}\mathsf{AR}$ and anti-YFP

Galtase-GFP in the Golgi. A FRAP experiment showed Galtase is exchangeable with other

FLIP – fluorescence loss in photobleaching/iFRAP

$$F(t) = Ae^{-\tau t}$$

Photobleaching and Photoactivation Techniques

Measurements are not recorded from photobleached area.

Watch diffusion back into the rest of the cell.

FLIP uses continuous inactivation. iFRAP does it once

FRAP/FLIP limitations

- Photobleaching must be very quick (assumed to be instantaneous)
- High intensities of light must be used
- Potential photodamage
- Photobleaching, or triplet state?
- Incorporating models of 3D diffusion is challenging

Photoactivatible proteins to the rescue

 Photoactivable GFPs are dark until illumination with 405 nm light

Photoactivation

A Fluorescence Recovery After Photobleaching (FRAP)

$$\mathsf{F}(t) = A e^{-\tau t}$$

DIC b RFP-Lacl С MS2-GFP a 1 <u>╡╡</u>┹╤[┷]┫╡╡╡_┛╡╡[┪]╵╵╵╸╵╵ 0.8 -0.672 0.846 Relative intensity A -0.192 Pre 0.6 0.02 0.014 . a d e 0.079 a2 0.4 AIC -2.04 -2.99 BIC -2.89 -1.990.2 3.2 6.6 15 $f(t) = 1 + A_1 e^{-a_1 t} + A_2 e^{-a_2 t}$ g h 0 ************ 1,11,11 -0.1100 200 300 400 500 0 52. 206 546 Time (s) DIC **RFP-Lacl** MS2-paGFP $f(t) = 1 + A_1 e^{-a_1 t} + A_2 e^{-a_2 t}$ m t 0.8 -0.412 Relative intensity \odot A -0.603 0.6 0.02 0.004 a Pre a 0.03 n 0 p 0.4 AIC -0.85 -2.10 BIC -2.02 -0.82 0.2 TTTTTTTTT 3.2 6.6 15 0 q S 0 -0.1-0.2200 500 100 0 300 400 52.1 206 546 Time (s)

mRNA synthesis in vivo

Advanced techniques

Photoconversion Reactions in Optical Highlighters

And on to Matlab...