Co-localization, FRET

- Last class
- FRAP
- Diffusion
- This class
- Co-localization
- Correlation
- FRET

Co-localization

- Can you infer function of protein from it's intracellular location
- How do you measure if two colors are localized

Co-localization - Are two fluorophores in the

 same region- Very common to label two proteins with two colors, and ask where they go in the cell
- How do you determine if they go to the same place?
- Note - colocalization DOES NOT imply interaction
- Used to determine if molecules associate with same structure

Transferrin labeled with Alexa488 or Texas Red

Distance scales:
Colocalization, confocal -> 200 nm
Colocalization, peak fitting -> 30 nm
Electron microscopy $->\sim 0.5 \mathrm{~nm}$

Defining and testing colocalization

Easiest thing to do is overlay the two images

- Have to think about both spatial distribution of colors (co-occurance), as well as the proportion (correlation)
- Some experiments may suggest their should be defined ratios of colors, but others might have no static proportions

This suffers from the fact that image brightness will determine overlap

Side-by-side visual inspection is typically more accurate

Next easiest definition of co-localization

- Scatter plots of individual pixels with each intensity
- Colocalized images will appear as lines on the scatter plot, the slope is the proportion
- It is also useful for revealing separate populations

Quantitating correlation

- A widely used definition is the Pearson's correlation coefficient
- Varies between 1 and -1
- PCC = 1: Perfectly correlated
- PCC = 0: Zero correlation (random distributions)
- PCC = -1: Perfectly anticorrelated
- PCC assumes a linear correlation, won't work if you expect non-linear distribution

$$
P C C=\frac{\sum_{i}\left(\left(R_{i}-\bar{R}\right) *\left(G_{i}-\bar{G}\right)\right)}{\sqrt{\sum_{i}\left(R_{i}-\bar{R}\right)^{2} * \sum_{i}\left(G_{i}-\bar{G}\right)^{2}}}
$$

R_{i} is the red intensity value at pixel I
\bar{R} is the average red intensity of the image

Care with PCC, varying expression

- If different cells express different amounts of receptors, it can lead to an apparent reduction in correlation
- Best to measure cell by cell

```
PCC cell = .88, .85,.89
PCC all3
PCC
PCC
```


Care with PCC, background pixels

- Background pixels can artificially inflate PCC
- Other fluctuations in your recording can seem to be correlated

$$
\begin{aligned}
& \mathrm{PCC}_{\text {cells }}=.16 \\
& \mathrm{PCC}_{\text {imag }}=.39
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PCC}_{\text {-nuc }}=.16 \\
& \mathrm{PCC}_{\text {tnuc }}=.39
\end{aligned}
$$

Quantitating correlation

- Mander’s overlap coefficient (MOC)

MOC $=\frac{\sum_{i}\left(R_{i} x G_{i}\right)}{\sqrt{\left.\sum_{i}\left(R_{i}^{2}\right) x \sum_{i}\left(G_{i}^{2}\right)\right)}}$

- Available in imageJ, Imaris
- No negative correlation, but it can be hard to disentangle positive vs negative correlation
- Manders Colocalization Coefficients

$$
M 1=\frac{\sum_{i}\left(R_{i, \text { colocal }}\right)}{\sum_{i}\left(R_{i}\right)} \quad M 2=\frac{\sum_{i}\left(G_{i, \text { colocal }}\right)}{\sum_{i}(G)}
$$

- Requires you to set manual thresholds on what is a peak
- Very easy to count, and easy to interpret

FRET

- Ability to measure nanometer distances
- Useful for determining if two things physically interact

Distance scales:
Colocalization, confocal -> 200 nm
Colocalization, peak fitting -> 30 nm
FRET -> 5 nm
Split GFP -> 3 nm
Electron microscopy -> ~0.5 nm

FRET - Forster resonant energy transfer

- Consider two fluorophores with different spectra.
- If the energy of fluorescent photon corresponds to absorption of second fluorophore, the can

Donor
Excitation
$\left(10^{-15}\right.$ Seconds)

Donor
$\left(10^{-9}-10^{-8} \mathrm{Sec}\right)$

Donor
Non-Radiative
Relaxation
0

Internal
Conversion
and
Vibrational
Relaxation
$\left.10^{-14}-10^{-11} \mathrm{Sec}\right)$

- Non-radiative energy transfer

FRET Transfer efficiency

$F_{d}=$ fluorescence of donor
$k_{f}=$ rate of fluorescence
$\mathrm{k}_{\mathrm{nr}}=$ rate of non-radiative decay
$k_{T}=$ rate of energy transfer

- FRET competes with all the other pathways of decay
- The presence of a FRET acceptor will reduce the fluorescence of the donor
- Our goal is to experimentally determine E by intensity or lifetime measurements

$$
\begin{array}{ll}
Q Y_{d}=\frac{k_{f}}{k_{f}+k_{n r}} & \tau_{d}=\frac{1}{k_{f}+k_{n r}} \\
Q Y_{d, F R E T}=\frac{k_{f}}{k_{f}+k_{n r}+k_{T}} & \tau_{d, F R E T}=\frac{1}{k_{f}+k_{n r}+k_{T}}
\end{array}
$$

FRET efficiency

- Likelihood of FRET is highly dependent on fluorophore distance

"Spectroscopic Ruler"

$$
k_{T}=\frac{1}{\tau_{d}}\left(\frac{R_{0}}{R}\right)^{6}
$$

$$
E=\frac{k_{T}}{k_{T}+k_{D}}=\frac{1}{1+\left(\frac{R}{R_{0}}\right)^{6}}
$$

$$
R_{0}{ }^{6}=\frac{9 Q_{0}(\ln 10) \kappa^{2} J}{128 \pi^{5} n^{4} N_{A}}
$$

$$
J=\int f_{\mathrm{D}}(\lambda) \epsilon_{\mathrm{A}}(\lambda) \lambda^{4} d \lambda
$$

$\mathrm{Q}_{\mathrm{o}}=\mathrm{QY}$ of donor
$\kappa=$ orientation factor
$J=J(\lambda)=$ spectral overlap
$\mathrm{n}=$ index of refraction
$N_{A}=$ avagardro's number

Excitation (dashed lines) and emission (solid lines) spectra of TagBFP (blue) and TagGFP2 (green) are shown individually. Spectral overlap is filled with grey.

Calculating distances

$$
r=R_{0}\left[\left(\frac{1}{E}\right)-1\right]^{1 / 6}
$$

You have to look up R_{0} for your FRET pair of interest

万 "Spectroscopic Ruler"

Distances can be measured from ~ 0.5 to $1.5 \mathrm{R}_{0}$

Orientation factor (κ)

- Dipoles don't emit isotropically in all directions
- Orientation of donor and acceptor will influence FRET ration
$\kappa^{2}=1$ - parallel dipoles
$\kappa^{2}=4$ - parallel and linear
$\kappa^{2}=0$ - perpendicular
$\kappa^{2}=2 / 3-$ freely diffusing

Orientation Factor Critical Angles

$$
\begin{aligned}
K^{2} & =\left(\cos \theta_{T}-3 \cos \theta_{D} \cos \theta_{A}\right)^{2} \\
& =\left(\sin \theta_{D} \sin \theta_{A} \cos { }_{\Phi}-2 \cos \theta_{D} \cos \theta_{A}\right)^{2}
\end{aligned}
$$

FRET Bleedthrough and artifacts

Acceptor emission: How much is acceptor directly excited

Donor leakage: Does donor spectrum emit into acceptor band?

Photobleaching, gamma factor

Spectral Overlap and Bleed-Through in FRET Fluorophores

And on to Matlab...

