More FRET, TIRF



e Last class
 Smoothing
e Edge finding
e Sharpening

 This class

e Single molecule fluorescence
e Applications and practicalities
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Sensitized emission FRET

* Widefield (image) detection of FRET
* 3 Cube FRET for single image

e Donor Excitation/Donor emission
e Acceptor Excitation/Acceptor emission
e Donor Excitation/Acceptor emission

* Record, for your measurement
conditions, leakage intensities and
correct
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Measurement of accurate FRET

Suitable to measure
large changes in FRET
(yes or no)

Best analysis comes if
#donor < #acceptor

Quantitating in this
way always adds noise

Subtract background separately from donor and acceptor channels

Measure the percentage of donor leakage (B) into acceptor channel by imaging a
sample with donor only molecules.

Measure direct acceptor emission (a) by the donor excitation laser through
imaging a sample with acceptor only molecules.

To determine actual FRET efficiency, one has to determine the correction factor, y,
which accounts for the differences in quantum yield and detection efficiency
between the donor and the acceptor. y is calculated as the ratio of change in the
acceptor intensity, A/, to change in the donor intensity, A/, upon acceptor
photobleaching (y = A1,/ A )
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E.H.'ects Of COrreCthn 3T3 cells — V12 RAC GFP + AlexaPBD
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QY
Photobleaching FRET ~ E =1 g’;RET
(a) d

e Two images with one cube  assoption ol TAbkaraied Emission

e Donor excitation/emission

 Photobleach ONLY
acceptor

* Donor excitation/emission

e Can not photobleach
donor

e Built in control because
it’s on the same molecule

e |f there is movement, it
can confound signal
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An apparent FRET efficiency (product
of the efficiency of the FRET pair and
the amount of interacting donor) can

be calculated




Relative Absorption and Emission
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Ensure that you do NOT photobleach donor
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Spectral Overlap and Bleed-Through in FRET Fluorophores
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Limitations of FPs

e Fluorescence properties always
worse than dyes

e Broader spectra -> more
bleedthrough

e Due to their large size, high FRET
signals can’t be seen

e GFPs tend to oligomerize

e Organic dyes are far better in
practice, but hard to get into cells

e Quantum dots can be used, but can’t
get into cells

Fluorescent Protein Architectural Features

e fiverage FP Férster Radius [Rn] = 5 MU —
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Applications of FRET

Common Fluorescent Protein FRET Biosensor Strategies
Sensory Domain




|[dea of quenching goes beyond FRET —
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Smart Flares — imaging RNA in live cells
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TIRF microscopy



TIR review sinfy, vy M

Ia

sinfle, v, Ay T

* Snell’s law governs the
angle of reflection

: Tlo
f. = f#; = arcsin (—) :

T

e At the critical angle, the n, = glass = 1.52
light travels along the n, = water = 1.33
surface of the interface

e As the angle increases, N )
wave is totally reflected  E Crtcatangie rotal interna
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Total internal reflection fluorescence

TIRF basics

* Transmission does
not occur larger than
the critical angle

f. = f; = arcsin (E) :

ny

e No transmitted wave,
but there is an
evanescent wave

ﬂsthemgleufmddenmmmﬁnmﬂmgtmtermgl&s

...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)

..the angle of refraction approaches M degrees until finally
a refracted ray can no longer be seen.

giebeazte Welle



TIRF probes very close to surface

Total Internal Reflection Fluorescence

Total Internal Reflection Fluorescence

Evanescent Wavefront
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TIRF advantages

e TIRF is the first
technique to use
CONFINEMENT of
illumination light

e Wide and thin
illumination profile

 Reduced fluorescent
background

e Allows high time
resolution

e |deal for thin and wide
cell studies

Fluorescence Imaging Modes in Live-Cell Microscopy

Backgrnund\ Focus Area

Figure 12
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TWO Tl R F ge O m et rl e S TIRFM Specimen lllumination Configurations
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relatively easy to set
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e Objective TIRF-cells
are easily placed,
accessible to patch.

Requires expensive
objective (high NA)
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Micromirror TIRF — and dual emission
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And on to Matlab...
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