Single molecule imaging,
localization



e Last class
* TIRF
e Geometrical operators

 This class
e Single molecule imaging

e Localization
e FLIM



Single molecule imaging



Single molecule imaging

* Single kinesin
GFP on a
microtubule




Single molecule imaging

* Single molecules are
neither bright nor
photostable

e Have to restrict the size
of illumination or
emission

e Photons captured with
very high efficiency

Nobel prize in 2014 — WE Moerner
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Figure 1.2. A. The Airy pattern of a diffraction-lmitad spot in two dimensions. B, Floorescenoe images of several
single Cy3-DMA molecules immobilized on a glass surface. The data were taken with a total inkermal refection
Aporescence microscope in 0.5 sec. . Expanded view of one point spread fumciion (PSF) with two-dimensionsl
ellrptical Ganssian curve fit (sofid lines) The center of this PAF can be located o within 1.5 nm (o ). (From Yikd
etal [14])



Recent technologies have made single

molecule imaging easier

e Ideal Hardware:

 High NA objectives allow
TIRF with low aberrations

* Improved fluorophore
brightness and stability

e Sensitive and fast cameras

e Stable illumination sources

Ideal single molecule fluorophore:
High brightness (absorption and QY)

Steady emission (no blinking)
Photostable (under high illumination)

Non-toxic



Single molecule brightness

Population at concentration c
Population of fluorophores
B=QY * ¢ P P

QY = Quantum Yield
€ = absorption coefficient

e Single fluorophore
emission

* Process of absorption, [, =1, *QY * (1 — ePec)
vibrational decay, and
fluorescence emission

are repeated many Single fluorophore

times 23 Single fluorophore
_ . . OE& QY = Quantum Yield
e Rate of fluorescenceis Bs = QY * 0 =QY * N « = cross section
dependent on rates of A N, = Avagadro’s #
absorption and QY. Iem — Iex % Bs ¢ = absorption coefficient

e Cross section of GFP is:
6.5 x 1017 cm?



Single molecule detection

* |n practice

Expect ~10% photon detection
efficiency by your scope

Do you want to take a movie

Brightness of fluorophore
(population) > 3 x 10% (1.0 for
single fluorophore) to detect
individual

Blue/green excites more
autofluorescence, harder to
detect

TIRF, confocal, or some other
background rejection is
necessary
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Photobleaching now an irreversible step.

Best way to verify you are looking at single fluorophore
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Blinking is a reversible dark state. Dependent
on illumination intensity
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Fluorophore blinking e -

150 Cy5 + IME - - ?: Cy5 + Trolox
t=0.13s §1'm t=0014s
e Part of every fluorophore . -
* Often due to reversible . S —
isomerization around pi bond :n a1 pooe 1 B AR WO i
. . . ((s) T
e Organic dyes will enter triplet T T T3
state 2 ATTOBATN + BME 3 “:?]5':” + Trolox
e Quantum dots blink due to £ £ |

'l
0,00 0.05% 0,10
t(s)

ejection of electrons from
small cores

e Can be reduced using triplet e ot
state quenchers = Spontansous et
blinking CH
* Can be used for good — see =

super resolution imaging in a
few lectures...
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Single molecu
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Holliday junctions are tethered via biotin-neutravidin conjugation on the
bovine serum albumin (BSA}-coated surface. The conformational
dynamics of Holliday junction is shown in a fluorescence time trace



Single molecules in cells

e Autofluorescence — both in
cells and medium, try to use
red light. YFP and reds are
preferred FPs

e Laser induced photodamage
—very high intensities, can
kill cells, try to separate
exposures in time, lowest
possible intensity

Autofluorescence

* Protein diffusion — harder to — = .. Expressing

detect across a large area EGFP-Actin

e Environmental controls — do
you need heat and CO,?



Stochastic gene expression in bacteria..
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Single molecule applications,

0 .

Stoichiometry ......-.I
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Single molecule localization

 We can localize individual
fluorophores to better than
the diffraction limit of our
optics, IF they are single
fluorophores TN

* We have to know the point
spread function of the scope

Intensity
N
/

* Best is FIONA — fluorescent / \{
imaging with one nanometer = % —
accuracy Position

e N~ 10,000 photons for Bins = pixels

FIONA



Calculating uncertainty in localization

3 | -1y ] 42
~fylkasinid) PSF fits to Bessel function if your
kasm (&) scope is well aligned (or Gaussian)

e Have to know your  [ifi) = rill] [
point spread
function very
accurately

e Measure with beads
smaller than
diffraction limit

= In a perfect world, localization
Oy = Sifv only depends on # of photons

; L S +ail 4[5
{(Ax)?) = -

e Accuracy is a - 7
function of N aN
fluorophore, N = number of photons
microscope PSF, a = pixel size
background noise b = background signal

s = standard deviation of PSF
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Defocusing fluorescence microscopy

Dipole position

€
= ¢ —\ — _ 3w
§ =50
e — & 200
F A E s Fooesdi st
nk 50|
E 100
o
ep ﬁ“ 50
J Vs T = 15
& . i b e
0=45 0=980° = ] ; |
A :
3 R i
a2z =0 1'5 ai als.
Tiene (&) Time (8

181 3.4 ]

B8 =80 43 a=15
-1

B = 6
& = 1aF

e [ [
g=TE  Aa=7g
=148 @ =dn

Image

R
Il
o

" w11 @ =

- u =




Future of single molecule imaging...

* Brighter fluorophores
e Better FPs or organic dyes HE

HH  4+H  Function Display

Single-Molecule Localization Procedure

Gaussian
Fit

(c) Pixel TRy

e Less intrusive quantum dots i
* Diamond nitrogen vacancy L
centers L
* Better hardware . ST mm.

 Higher NA objectives with
sapphire coverslips

* More sensitive cameras with
lower background noise

e Ultrastable lasers



And on to Matlab...
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