FLIM, Confocal

- Last class
 - Single molecule imaging
 - Deconvolution
- This class
 - FLIM
 - Confocal

FLIM – Fluorescence Lifetime IMaging

FLIM – Fluorescence lifetime imaging

- Easier and more accurate quantitation
- Much harder to measure

For a population of fluorophores

 $B = QY * \varepsilon$

$$F(t) = I_0(t) * N(t) * QY(t) * \varepsilon * \gamma(t)$$

 $\gamma(t)$ = photobleaching as a function of time N(t) = number of fluorophores

 k_{f} is mostly constant for a given molecule k_{f}^{-1} is the radiation lifetime – how long it lives in the excited state before decay

Fluorescence Lifetime Imaging (FLIM)

- Examine physical properties of fluorophores
- Can avoid complications like photobleaching and concentration effects

Lifetime [ns]	Excitation Max [nm]	Emission Max [nm]	Solvent
3.6	655	690	Water
2.0	500	530	PB pH 7.8
4.1	494	519	PB pH 7.4
1.0	651	672	Water
5.7	502	510	Methanol
2.5	460	505	Ethanol
2.8	558	572	PBS
0.3	548	562	PBS
1.0	646	664	PBS
4.0	495	517	PB pH 7.5
4.1	493	520	РВ рН 9
375	458	650	Water
> 100	341	376	Water
0.52	780	820	Water
1.68	562	583	PB 7.8
	Lifetime [ns] 3.6 2.0 4.1 1.0 5.7 2.5 2.8 0.3 1.0 4.0 4.1 375 > 100 0.52 1.68	Lifetime [ns]Excitation Max [nm]3.66552.05004.14941.06515.75022.54602.85580.35481.06464.04954.14933754583753410.527801.68562	Lifetime [ns]Excitation Max [nm]Emission Max [nm]3.66556902.05005304.14945191.06516725.75025102.54605052.85585720.35485621.06466644.04955174.1493520375458650> 1003413760.527808201.68562583

Measuring lifetime

- Need a very short excitation pulse
- Need to measure on very short time scales
- Collect image many times, at each delay to build up total image
- Takes a long time to image

phospho screen

Fitting multiple time constants

Can only realistically fit up to 3 time constants. More than that will introduce artifacts

Frequency domain measurements

- Instead of watching decay, apply sinusoidal light
- Lifetime can be calculated from the phase delay of the fluorescence relative to the excitation
- Typically only works on one lifetime species
- If τ_{phase} is not equal to τ_m , then there is more than one lifetime

Frequency domain

- Can take images fast
- Somewhat reasonable for live cell

FLIM advantages

- Insensitive to concentration
- Insensitive to photobleaching
- Easily able to convert to absolute units
- In FRET, you only measure the donor lifetime, reduces quantification errors
- Much harder to analyze if there are multiple species of fluorophores

$$E = \frac{k_T}{k_T + k_D} = 1 - \frac{\tau_{\text{DA}}}{\tau_{\text{D}}}$$

 $(\tau_{DA})^{-1} = k_T + k_D$ Donor lifetime in the presence of acceptor

FLIM applications

- Measurements of pH use dye that has a lifetime dependent on the local environment
- FRET interactions in cells

Peptide conformations

Weak fluorescence

Rho

D (N

Strong fluorescence

С

Rho

Table 3:	Fluorescence	Lifetime	Parameters	of	Intact	and	Cleaved
Labeled	Peptides ^a						

sample	τ_1 (ns)	fi	α_1	τ_2 (ns)	ſ2	α2
pepF1-5R	2.44	0.95	0.52	0.14	0.05	0.48
pepF1-5R + Pronase	2.43	1.00				
pepF1-6R	2.50	0.95	0.37	0.076	0.05	0.63
pepF1-6R + Pronase	2.50	1.00				

Confocal microscopy

- 3D sectioning
- Increased resolution

Widefield fluorescence

Fluorescence signal

Bright light source illuminates the entire field of view at the same time

Fluorescence cube is placed between the objective and the camera

In epi-illumination, the objective acts as both the condenser and the objective – typically use high NA with low fluorescence glass

Widefield images

human medulla

rabbit muscle fibers

sunflower pollen grain

- Images are bright, but blurry and low contrast
- Epi-illuminator excites the whole thickness of the specimen, unable to control the depth of the field
- Bright fluorescent signal from out-of-focus objects give low-contrast
- Autofluorescence (fluorescence signal from unlabeled objects) of the cell increases the background

Confocal principle

Confocal principle

- Light is focused to a point in the sample
- Emitted photons imaged on to a plane
- Aperture is placed at the image plane
- Single element detector placed behind aperture

Widefield Versus Point Scanning of Specimens

Improved resolution in confocal

- Resolution is now set both by excitation and emission light.
- New PSF is product of excitation (diffraction limited spot) and emission (diffraction limited, but with different wavelength).

Scan to form an image

- Confocal only illuminates a single point
- Have to scan the point around the sample to build up spatial information
- Use fast moving galvo mirrors to rapidly move the laser across the sample
- Typically move in a raster pattern
- Tradeoff between time on pixel and frame rate

kHz

Confocal principle

Confocal images

Confocal advantages:

Blocks out of focus light rays, increasing resolution and contrast
Higher flexibility in image size and acquisition
Allows 3D sectioning

$d_{x,y} = \frac{0.4\lambda}{NA}$

3D PSF

- PSF has a width in x and y, we've seen this before
- In confocal, now we can think about a z- detection PSF as well, set by the pinhole
- Narrower the pinhole, the better z resolution

$$d_z = \frac{1.4\lambda n}{NA^2}$$

3D imaging

- Use galvo mirrors to take X-Y image
- Motorized stage to move sample in Z
- Take another X-Y image
- Repeat

Pollen Grain Serial Optical Sections by Confocal Microscopy

Figure 6

Voxels

- Regular grid in 3D space
- Has dimensions in x, y, and z
- Z dimensions set by confocal system
- Each voxel is assigned an intensity value in each color
- Z resolution is lower than x,y resolution
- Sampling at least at the Nyquist frequency (1/2 size of smallest feature)

3D reconstruction

And on to Matlab