Confocal, hyperspectral,
spinning disk




Administrative

e HW 6 due on Fri
e Midterm on Wed

e Covers everything since previous midterm
e 8.5x11” sheet allowed, 1 side

e Guest lecture by Joe Dragavon on Mon 10/30



e Last class
e FLIM
* Confocal

 This class
e More confocal
e Hyperspectral imaging
e Spinning disk confocal
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Pinhole size effects

* Decreasing size ->
e Sharper images
* Lower light intensity
e Better z resolution
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L Doesn't make Sense to Sample Monitor Pizel Display Monitor Pixel Display
at pixels < Nyquist frequency of
your diffraction limit

* You can increase resolution
until this limit

e Zoom in confocal is set by how
far your mirrors travel, and how
many times you digitize the
signal

e Higher zooms -> greater
photobleaching

e Often in the software, you can
set an “optimal” zoom
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Confocal experimental parameters

 Magnification can be adjusted by varying the area scanned
by the mirrors. You don’t have to change the objective

* Fewer restrictions on the objective, but they have to be
color corrected, and you need to make sure your image can_

fit into the max FOV i i —

_

* Photobleaching occurs at all planes, not just the one you’re
currently imaging Point Scanning

e ~50-100 photons/pixel yield a moderately bright confocal
signal, can give SNR of around 20

 Smaller frames -> higher time resolution



Introduction to photomultiplier tubes

* Very sensitive,
single element
detector of photons

e Unlike a camera
with many pixels,
PMTs have a single
active element

 The magic occurs
bx converting
photons to
electrons, which
can then be
amplified

Incoming Photomultiplier Tube

Fhatan '"'l- Window

cpaltlilgt_a- i éﬁ_uh"“ﬂ'ﬂﬁ H d Ant?-de !".

-
Nt

Focusing
Electrode

Voltage Dropping

=
Figure 1

Power Supply



+s and —s of PMTs

* Very sensitive
detectors

* High bandwidth
(response within
nanoseconds, much
faster than cameras)

* Nonlinear gain with
voltage

e Difficult to quantify

* Necessarily a single
element detector
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Practical adjustments of the PMT

Gain and Offset Adjustment in Confocal Microscopy
e Record a first image.

e Adjust offset to set
background to zero

counts
* Add gain to occupy
~90% of saturation Figure 5 @ (b)
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Hyperspectral imaging



Spectral detection, who needs filters

Beam splitter

* Allows for arbitrary color
detection at that pixel.

e Color selection is set by
position and width of slits.
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Hyperspectral microscopy

e Compensation for
overlapping emission
spectra

e At each point, collect a
emission spectrum

o
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Measuring spectra at each point

* Need to record
intensity at each
color, at each pixel

Intenstity = 1(x,y, 1)
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Spectral Image Data Set (Cube)
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A = Weighting factor
R = spectrum of individual fluorophore

Many software packages will use a linear

algebra matrix unmixing to minimize the least
squares fit



Spectral unmixing

We have to assume that the
intensity of each fluorophore at
each pixel is linear in
concentration

If there are N different species
you want to detect, you need
to measure L>=N different
wavelengths

Assuming you can measure
each fluorophore
independently in each channel
before you start, it’s just a
linear algebra problem

If you can’t measure spectra,
you can use principal
components analysis to
estimate number and
concentration of species

Consider 3 different fluorophore colors to start,
RGB.
We need at least 3 different wavelength
measurements.
At each pixel, you record 3 intensitites

[(A) = Ig, I, Ig
The intensities are going to be proportional to
how many fluorophores, and how much bleed
through there is for each channel.

We can measure the Smear Matrix
Srr Sr,g Sr,b
Sgr Sgg Sgb
Sbr Sb,g Shbb

The intensity at each pixel can then be
calculated by multiplying the smear matrix by
the concentrations

In Sror Sr,g  Srb Cr
Ig| = |[Sgr Sgg Sgb|x|lyg
Ip Sbr  Sbg Sbpb Cp
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More spectral unmixing

e CLASI-FISH — Repertoire of 6 fluorophores {

istingui 000000 S0 0 ) N N

distinguish Sttt

many species

of bacteriaina @O OO O©®

field of view @O

using ®O

w

-+ BODIPY-FL
-+-Oregon Green 514

Normalized Intensity

o

491 521 551 581 606
Wavelength nny _

combinatorial ot
o

labeling

15 possible combinations

n! , N=6
k!(n-k)! k=2

Rhodamine Red X Selenomonas Campylobacter Gemella
Alexa fluor 514 Porphyromonas Rothia
Alexa fluor 555 Pasteurellaceae Capnocytophaga Prevotella
Neisseriaceae Strep S

Treponema ' Lep tuln: hia



Single molecule spectra
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Spinning disk — speeding up confocal



Fast confocal imaging

* |lluminate many spots on the sample

e Collect emission through many
pinholes

* Image onto a camera instead of PMT

* Collect thousands of pinholes
simultaneously

* Each frame illuminates entire FOV, so
you shouldn’t see individual pinholes
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Advantages of s

e Faster and easier to use t
scan microscope

nan line

e Can record up to 1 kHz frame
rates (2 Hz at the very fastest for

line scan)

 Quantification is easier with a CCD

camera

e Lower overall light exposure,

lower phototoxicity

oinning disk

FIGURE 2-71. Yokogawa high-speed confocal system. Microl on a second Nipkow disk increase disk
transmission to 40-60% instead of a fraction of a percent as in conventional, single-Nipkow-disk systems. The
microlens and pinhale arrays are patterned to give a homogeneous field with no sign of scan lines. (From Ichihara
et al., 1996.)

"Video Microscopy”, Inoue and Spring, 1997
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Disadvantages of spinning disk

e Light can travel through adjacent
pinholes, cross talk

* Pinhole size is fixed even if you change

objectives

* Low level of light transmission
through the pinhole, makes it tough
for dim samples

* Most excitation light is blocked by disk

e Excitation light travels through
dichroic filter

 EXPENSIVE!
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Yokagawa disks T ——

e Very little light is
coupled through
ordinary disk

Pinhole Light Focused on
ipkow Disk
inhole

e Yokagawa uses
mlcrolenses Pn One Nested spirals are designed so that 30
side of the disk to focus degrees will illuminate entire image

. . . 12 full images per disk
Ilght Into pmh0|e Fastest disks rotate at 10,000 RPM

e Drastically increases
. . . . -> 2000 frames per second
excitation mten5|ty 500 us per exposure, minimum



And on to Matlab...
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