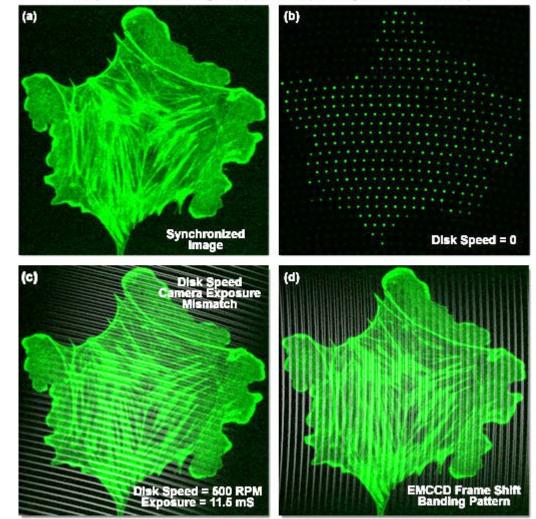
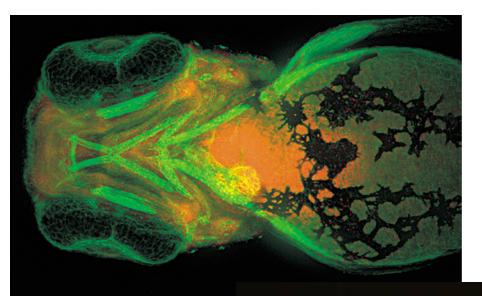
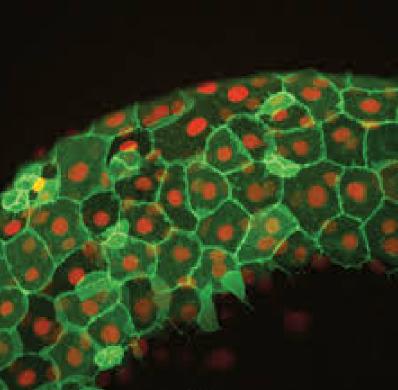

Finish spinning disk, 2 photon, super resolution

- Last class
 - Confocal
 - Hyperspectral imaging
 - Spinning disk
- This class
 - Finish spinning disk
 - 2-photon imaging

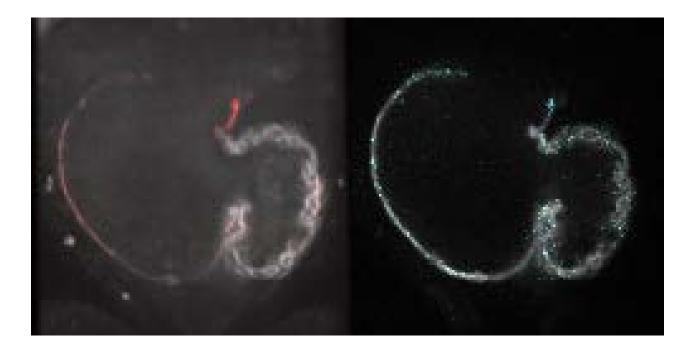
Spinning disk – sample many confocal spots simultaneously

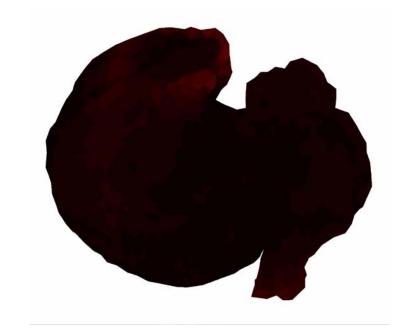


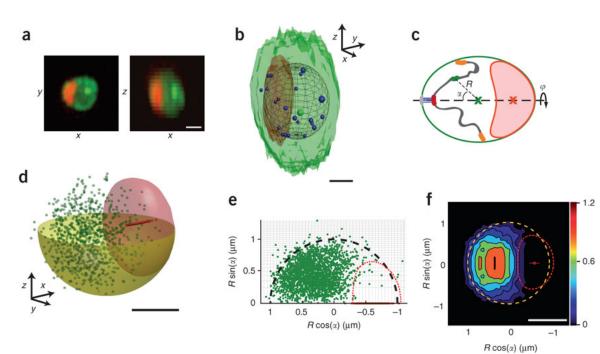

Possible artifacts

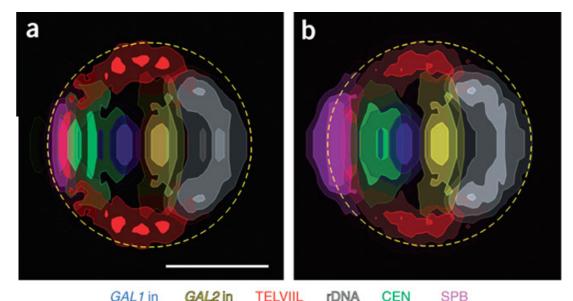

- Spin speed has to be synched with exposure time
- Mismatches will look like stripes in samples
- Camera readout can also add streaks
- No matter what frame rate you are running, you SHOULD be able to avoid streaks

Unsynchronized Image Capture in Spinning Disk Microscopy





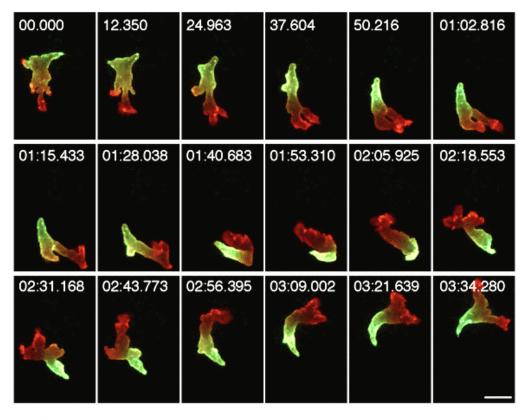

Voltage and calcium in vivo



Applications of spinning disk

• Live cell, 3D imaging at fast rates

Gene territories in chromatin DNA DNA diffuses quickly, high time resolution required

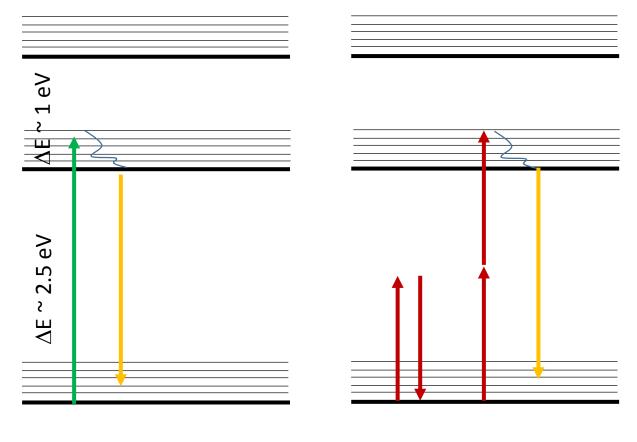


GAL1 in GAL2 in TELVIIL I glucose glucose

/IIL rDNA CEN

Likelihood of gene sequence in nuclear space

Cell migration in vivo

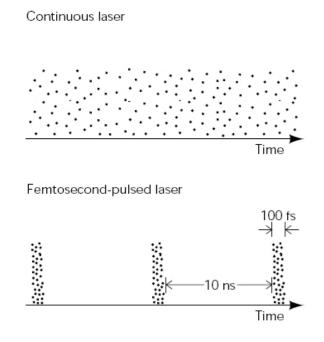

Fig. 3 Spinning disk confocal imaging of organelle subcellular localization. Time-lapse maximum intensity projection image of a neutrophil expressing γtubulin-GFP (*green*) and a nuclear probe, mCherry-histone H2B (*red*). The Microtubule Organizing Center (MTOC-*arrow*) is localized in front of the nucleus during neutrophil random motility in vivo. Scale bar: 10 µm

Two photon imaging

- Because 2 photons are better than 1
- Very high axial resolution

Moving from ground state to excited state

- The energy between the ground state and the excited state is a void
- However, if you send in a photon, the electron will live in the void for a VERY short time
- If the atom gets hit by a second photon during that VERY short time, the electron can be promoted completely into the excited state



$$E = \frac{hc}{\lambda} = \frac{1240 \ eVnm}{\lambda}$$

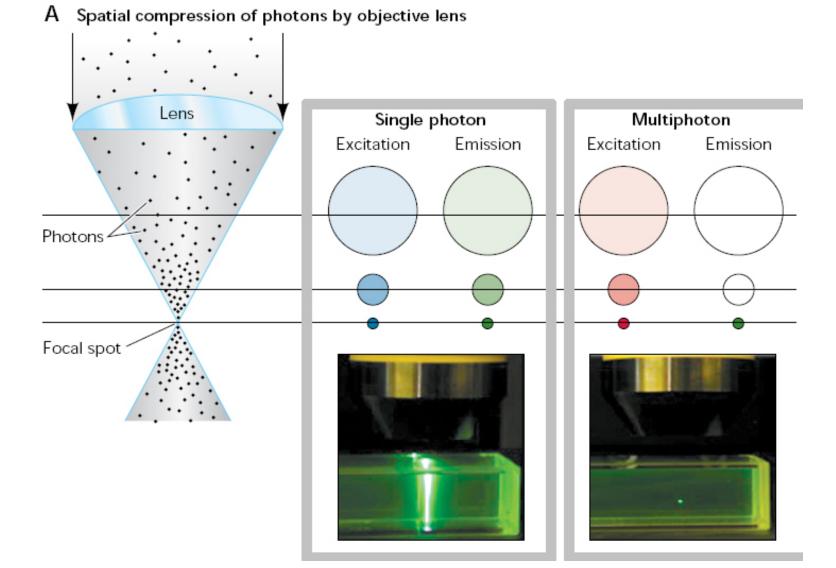
2 Photon characteristics

- In order to stimulate the same fluorophore twice during the lifetime of the virtual state, the intensity has to be VERY high
- To achieve the high intensities, we have to use pulsed lasers
- Pulses are very short, so during that time they have a high intensity

B Temporal compression of photons during femtosecond pulses

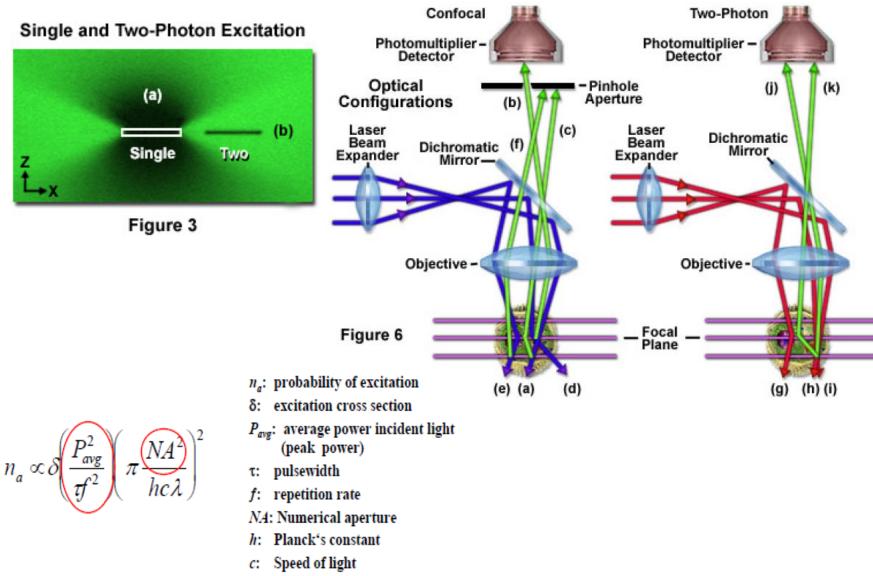
Photon flux for CW or ultrafast laser:

CW: 1 W @ 488 nm -> 2.5 x 10¹⁸ photons/sec


MaiTai: 1 W @ 920 nm 100 fs pulse 80 MHz rep rate

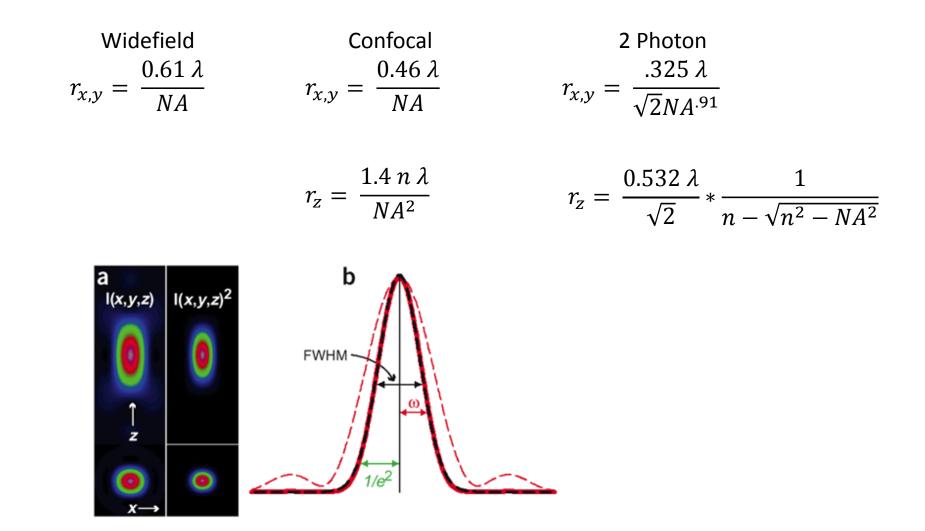
->125,000 W/sec during pulse = 5.8 x 10²³ photons/sec

More power, or shorter pulse, lead to higher intensities


2 Photon absorption α Intensity^2

- Absorption needs 2 photons, so absorption is proportional to I²
- Doubling absorption requires quadrupling intensity
- Excitation ONLY occurs in focused region where intensity is high enough
- Pulsed light is (relatively) harmless to cells, so that's good.

Localized excitation in 2 Photon


- Since we control the only point where excitation occurs, we don't need the pinhole
- We don't photobleach the out of plane sample
- Allows for scattered photons to be collected
- Move detector as close to objective as possible. We're not imaging

λ: Wavelength

Resolution in 2 photon

- The x,y resolution is the product of the excitation and emission PSF
- Since we're exciting with IR light (large λ) resolution is worse than confocal of similar dyes
- Better than widefield, but occurs only at a single z plane

Two photon spectra

- For still mostly unknown reasons, the 2 photon spectrum is not just 2 times longer than the single photon
- Unpredictable, but it's almost always blue shifted to what you expect
- Fluorescence emission is exactly the same as 1 photon

100

90

80

70

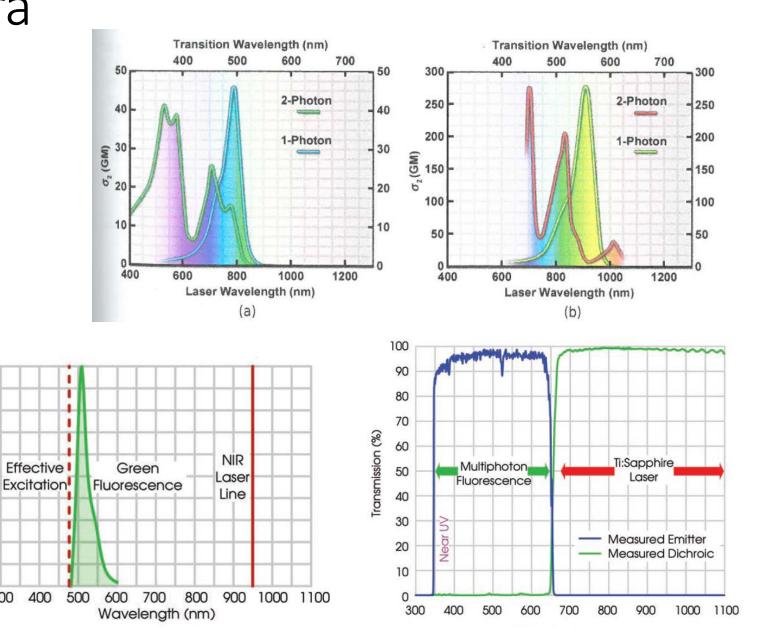
60

50

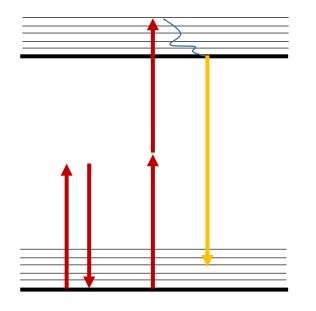
40

30

20


10

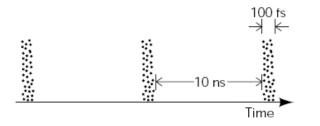
n 300

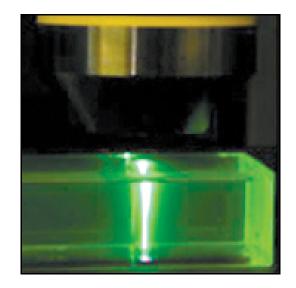

(%)

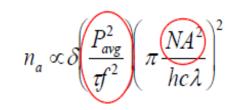
ransmission

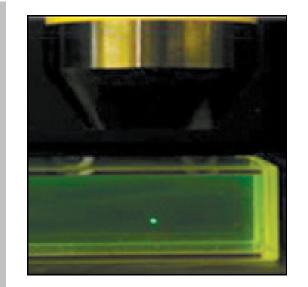
Excitation and emission \bullet filters unique to 2 photon modality

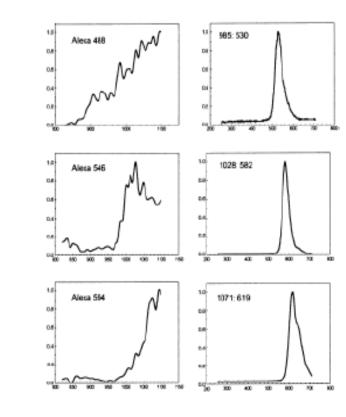
2 Photon


1240 eVnm hc E =λ


B Temporal compression of photons during femtosecond pulses


Continuous laser





- n_a : probability of excitation
- δ: excitation cross section
- P_{avg} : average power incident light (peak power)
- τ: pulsewidth
- f: repetition rate
- NA: Numerical aperture
- h: Planck's constant
- c: Speed of light
- λ: Wavelength

Common dyes and FPs for 2 photon

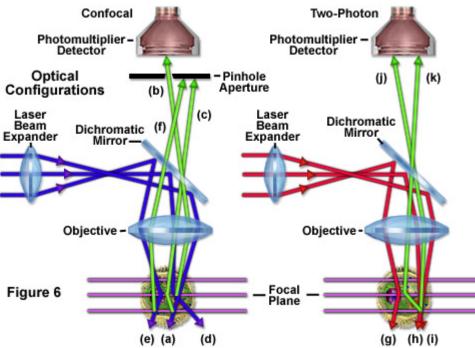

- In general, very hard to predict 2 photon absorption spectrum
- If it's a good 1 photon dye, it's likely it's a good 2 photon dye
- Best to use something that has been reported before
- 2 photon cross section often given in GM (Goeppert Mayer) – Nobel winner for predicting 2 photon in the 30s

Table 1. Fluorophores and Chromophores for Two-Photon Excitation					
Fluorophores/Choromophores	Φ [*] (GM)	2PE ^b (nm)	Em. (nm)	Note	References
Calcium indicators					
Fluo -3, -4, -5F, 4FF et al.		810°	520-530		(Yasuda et al., 2004)
Oregon Green BAPTA -1, -2 et al.		810°	520		(Yasuda et al., 2004)
Calcium green-1 + Ca ²⁺ ; Calcium green-1 - Ca ²⁺	30, 2	820	530		(Xu and Webb, 1996; Xu et al., 1996)
Fura-2 + Ca2+; Fura-2 - Ca2+	6, 0.2	800	505		(Wokosin et al., 2004)
Indo-1 + Ca2+; Indo-1 - Ca2+	3.5.1.5	700	400		(Xu and Webb, 1996; Xu et al., 1996)
Quantum dots	,				(
Quantum dots	up to 47,000	broad	variable		(Larson et al., 2003)
Fluorescent proteins					
eCFP	100-200	800-900	505		(Zipfel et al., 2003)
eGFP	100-200	900-1000	510		(Zipfel et al., 2003)
eYFP	100-200	930-1000	530		(Zipfel et al., 2003)
mRFP, mCherry		1030°	610	Ytterbium-doped laser	(Campbell et al., 2002; Shaner
,					et al., 2004)
Photoswitchable fluorescent protei	ns (see also Lu	kyanovetal., 2	2005)		
paGFP	-	750 ⁹	515		(Patterson and Lippincott-Schwartz, 2002; Schneider et al., 2005)
Kaede		730 ^d	$520 \rightarrow 580$	green to red; tetramer	(Ando et al., 2002)
KFP1		1120 ^d	600	tetramer	(Chudakov et al., 2003)
Dronpa		780 ^{d,e} , 1010 ^{d,f}	520	reversible	(Ando et al., 2004; Habuchi et al., 2005)
psCFP		800 ^d	470→510	cyan to green	(Chudakov et al., 2004)
PA-mRFP		760 ^d	605		(Verkhushaand Sorkin, 2005)
KikGR		760	520→590	green to red; tetramer	(Tsutsuiet al., 2005)
Dendra		960 ^d	$505 \rightarrow 575$	green to red	(Gurskaya et al., 2006)
mEosFP		780 ^d	520→580	green to red	(Wiedenmann et al, 2004)
Caged glutamate				•	
MNI-glutamate	0.06	730			(Matsuzaki et al., 2001)
Caged calcium					
DM-nitrophen	0.013	730		K _d : 2 nM ^h , 1.5 mM ⁱ	(Brown et al., 1999; Momotake et al., 2006)
Azid-1	1.4	700		Ka: 230 nM ^h , 0.12 mM ⁱ	(Brown et al., 1999; Momotake et al., 2006)
NDBF-EG TA	0.6	710		Ka: 14 nM ^b , 1 mM ¹	(Mom otake et al., 2006)

2 Photon enables deep tissue imaging

- Tissue scatters, making confocal impossible
- Two photon can collect the scattered photons because we do not need the pinhole
- The excitation light can travel further because it is in Figure the IR
- Imaging deep in tissue is primary reason to use 2 photon

$$\sigma_{\rm s}=\frac{2\pi^5}{3}\frac{d^6}{\lambda^4}\left(\frac{n^2-1}{n^2+2}\right)^2$$

On to Matlab...