Finish spinning disk, 2
photon, super resolution



e Last class
e Confocal
e Hyperspectral imaging
e Spinning disk
 This class
e Finish spinning disk
e 2-photon imaging



Spinning disk — sample many confocal spots
simultaneously .
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P O S S | b | e a rt I fa Ct S Unsynchronized Image Capture in Spinning Disk Microscopy
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e Spin speed has to be
synched with
exposure time

e Mismatches will look
like stripes in samples

e Camera readout can
also add streaks

* No matter what frame

rate you are running, S ESEE S e e
you SHOULD be able = = 11T -Engf' I
to avoid streaks ——— fen ' “Banding Faiten
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Voltage and calcium in vivo




Applications of spinning disk

e Live cell, 3D imaging
at fast rates
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Gene territories in chromatin DNA
DNA diffuses quickly, high time resolution required



Cell migration in vivo

Fig. 3 Spinning disk confocal imaging of organelle subcellular localization. Time-lapse maximum intensity
projection image of a neutrophil exprassing -Aubulin-GFP | greem and a muclesr probe, mCherry-histonae H2B
[rech. The Microtubule Organizing Center (MTOC- arrowd is localized in front of the nuclews during neutraphil
random motility invivie. Scale bars 10 pm



Two photon imaging

* Because 2 photons are better than 1
* Very high axial resolution



Moving from ground state to excited state

e The energy between
the ground state and
the excited state is a
void

e However, if you send in
a photon, the electron
will live in the void for a
VERY short time

e If the atom gets hit by a
second photon during
that VERY short time,
the electron can be
promoted completely
Into the excited state +
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2 Photon characteristics

[ I NnoO rd er to Sti mu |ate B Temporal compression of photons during Photon flux for CW or ultrafast laser:

the same p
fluorophore twice
during the lifetime
of the virtual state,

Continuous laser CW 1 W @ 488 nm
-> 2.5 x 108 photons/sec

the intensity has to e e e y\?\;g:%o nm
be VER.Y hlg . e 100 fs pulse
([ TO aCh.leve the hlgh Femtosecond-pulsed laser 80 MHZ rep rate
intensities, we have 1908
to use pulsed lasers ->125,000 W/sec during pulse
* Pulses are very He—tom—fs = 5.8 x10% photons/sec
short, so during that ime

time they have a
high intensity

More power, or shorter pulse, lead to higher intensities



2 Photon absorption a Intensity?

A Spatial compression of photons by objective lens

* Absorption needs 2 N SEEE
photons, so absorption T -
3 Single photon

is proportional to 12 | : Multiphoton
- @ e Excitation Ermnission Excitation Emission

e Doubling absorption . . = /

requires quadrupling / N / \ / \ / \a \

Intensity Photons <" Y _-* \ / \ / \ / \ /
e Excitation ONLY occurs a Il a ~

in focused region where “:" . ] ‘\:’ “-.

intensity is high enough Focal spot 20

e Pulsed light is
(relatively) harmless to
cells, so that’s good.




Localized excitation in 2 Photon

Confocal

Single and Two-Photon Excitation

Photomultiplier -
Detector '

e Since we control the
only point where

: Optical
(a) B Configurations (b)

excitation occurs, we — Laser
don’t need the ' Single WO Expander Dichromatic (1)
pinhole

 We don’t photobleach Figure 3
the out of plane
sample

e Allows for scattered
photons to be

CO”ECtEd n,: probability of excitation ) t-ﬂ) (d)
6: excitation cross section
° M ove dEtECtor as P, average power incident light
close to obj jective as M (peak power)
possible. We're not hm : pulsewidth
I m agl n g . l'epefinon rate

NA: Numerical aperture
I: Planck’s constant
c: Speed of light

A: Wavelength
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Resolution in 2 photon

* The x,y resolution

is the product of Widefield Confocal 2 Photon
the excitation and . 0614 . 0464 L 3252
emission PSF %Y " NA Y " NA %Y T AN A9
* Since we’re
exciting with IR 1amn 2 0.532 1 ,
light (large A) = = — x
resolution is worse N V2 n—+vn?—-NA?

than confocal of
similar dyes

e Better than
widefield, but
occurs only at a
single z plane

I(x.y,2) | I(x,y,2)?




Two photon spectra
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2 Photon

B Temporal compression of photons during

femtosecond pulses

Continuous laser
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n,: probability of excitation

8: excitation cross section

P, average power incident light
(peak power)

1:  pulsewidih

f: repetition rate

NA: Numerical aperture

h: Planck’s constant

c: Speed of light
A: Wavelength




Common dyes and FPs

In general, very hard
to predict 2 photon
absorption spectrum

If it’s a good 1 photon
dye, it’s Ilkely it’s a
good 2 photon dye

Best to use something
that has been
reported before

2 photon cross
section often given in
GM (Goeppert Mayer)
— Nobel winner for
predicting 2 photon in
the 30s
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for 2 photon

Table 1. Fluorophores and Chromophores for Two-Fhoton Excitation

Fiuorophores/Ghoromophones @ o) 2PE" g Em. (i) Mot Rederen ces

Calcium indicators

Fluo 3, <4, 5F, 4FF &t al, B107 SH0-530 (Yesudaatal, 2004

Oregaon Green BAFTA -1, -2 st al. il 520 (Yesudaetal., 2004)

Calchm green-1 + Ga™; Calkium 30,2 820 530 ¥y and Webb, 1986; Xu et al., 1985)

green-1 — Co®*

Furs-2 + Ca™; Fura-2 = Ca™ 6 02 800 505 (Wokosin gt al, 2004)

Indo-1 + Ca®™; Indo-1 = Ca™ 3515 700 A0 (Xuand Webb, 1986; Xu et al., 1085

Quantum dots

Quantum dots up to 47,000 broad wanable (Larson et al., 2003

Fluorescent proteins

eCFF 100-200 E00-200 505 (Ziptel et al, 2003)

eGFF 100-200 BO0-1000 510 (Zpfel et al, 2003)

efFP 100-200 B30-1000 530 (Zpfel et al, 2003)

mRFP, mCherry 10307 10 Yiterbium-doped laser (Campbell et al., 2002, Shaner
et al., 2004)

Photoswitchahla fluarescent proteins (522 also Lukyanov et al., 2005)

paG P 7507 515 (Patterson and Lippincott-Schwartz,
2002, Schneider st al., 2005)

Kaada 7a0d EX0)B50 graen to red tetramar [Anda st al, 200

KFP1 1 00 tetramer (Chudakov et al, 2003)

Drompa 78S, 1010 520 reversble (Ando et al, 2004; Hatuchi
et al., 2005

psCFP s00¢ 470510 cyan to green (Chudako et al., 2004)

PA-mRFF T80 805 (Verkhushaand Sorkin, 2005)

KikGR 0" 520—590 green 1o red 1etamer  (Teasuietal, 2008

Dencra ag0d 505575 green to red (Gurskaya et al, 2006)

mEosFP 780¢ 520540 green to red (Wisdenmann et al, 2004)

Caged glutamate

MNI-glutamate 008 730 (Matsuzaki st al., 2001)

Caged calcium

Ot -nitrophen 03 730 Kz 2 0", 1.5 it (Brown &t &, 1998 Momotzke
et al., 2008)

AzidH 1.4 T Ka: 230 nM" 01 2mM' (Brown t 2., 1999 Momaotake
et al., 2008)

NDBF-EGTA [iX:] o Ka: 14 nh", 1 m' (Mom otake et al,, 2006)




2 Photon enables deep tissue imaging

Confocal Two-Photon
* Tissue scatters, making mpéi mctp%i
confocal impossible conmpuatons e T AR o [e
 Two photon can collect the . osgome o *} @ o
scattered photons because \ = |
we do not need the pinhole Ay &{\

Objective -

e The excitation light can
travel further because it is in  Frigures
the IR

* Imaging deep in tissue is

primary reason to use 2 . 2 4y 2
photon 7, = 2 d’ (n® 1
3 At \n?242

(e) (a) (d) (@) (h) (i)




On to Matlab...
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