Finish 2 photon, super
resolution



e HW 6 due
 Midterm on Wed, covers everything since 15t midterm
e Guest lecture on Mon — Joe Dragavon



e Last class
e Spinning disk
e 2-photon

 This class
e 2-photon equipment
e 2-photon examples
e Super-resolution



2-photon imaging
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2 Photon Equipment - Laser

Laser Pulse Train

% ~10ns

* Ultrafast laser — Titanium
sapphire oscillator produces
pulses at 800 nm

e Optical parametric oscillator
(OPO) enables tuning from
~680-1200 nm

* Pulse traveling through a
lens (objective) increases
dispersion, broadens pulse

oF =i
Time (ns)
la)

=100 0 100 200
Time (fs)
(X&)

in time .

e Possible to compensate by l
applying negative dispersion »)
early on

 EXPENSIVE!!

| L]
Qa;ﬂ 960 880
Wavelength (nm)
{c)



blue red

Dispersion | VA

L aser d N Microscop
(=]

Sample

100 1s - 400 fs
L[] + -
e Requires ~ 10 Group Delay Dispersion: GDD

W/m? required for 2

. . red blue
photon excitation N\
(SU rface Of the sun iIs Laser | =—=.| Pre-Chimp ”!—- Mircroscope | ———=| Sample
~10% W/m?) 100 400 s 100 fs

-GDD +GDD
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intensity

* Intensity affects
fluorescence?

e A 4 fold increase in
time duration of
pulse -> a 16x
reduction in
fluorescence

+ Mean intensity approx. 2,5 x higher



2 Photon equipment — objectives, detectors

* |deal to have high NA
e Must transmit in the IR

e Still use PMT, but due to
low signals, choose the
most sensitive ones

e Water immersion to dip available.

into samples (or brains) e OK to have a large area, as

it will collect more
scattered fluorescent
photons

e Long working distance
e High field number
e EXPENSIVE
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Downsides of 2 photon
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TET-inducible expression system
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Applications of 2 photon |mag|n%

a Thalamocortical axon-GFP b Intracor tical axon
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Clarity/uDisco




One-photon Three-photon
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Super resolution

e When 200 nm just isn’t enough

e Superresolution is defined as resolving features better than Abbe’s
limit

e 2014 Nobel prize — Eric Betzig/Stefan Hell



Why superresolutionr . 4

e There are things in
biology smaller than 250
nm that you might be
interested in looking at

e EM has VERY high
resolution (0.5 nm), but
your samples sure aren’t
moving

* |t can also be difficult to
label electron dense
regions of your sample
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Older techniques you won't use it
NSOM

e NSOM — Near-field scanning optical
microscopy

* Bring a probe VERY close to the
surface

e Similar effects to TIRF, if you get
the probe close enough (< 100
nm), the diffraction doesn’t have
space to develop

e Can get lateral resolutions of 20-50
nm

e First instrumentin 1972
e VERY challenging

e Only useful for investigating right at
cell membrane
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Older technigues you won’t use

4P| microscopy

e 4 Piinvolves not one, but
two high NA objectives

e Allows collection of 2x the
number of photons

e Lateral resolution is
equivalent, but axial
resolution (z) can be
reduced to 100 nm

e Challenging setup, no
improvement in resolution

e First experiment in 1994 by
Stefan Hell

* Slow, but some groups still
use 4pi
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STORM/PALM microscopy —
/ \

e STORM = Stochastic Optical
Reconstruction Microscopy

Intensity
N
/

 PALM = PhotoActivated 7 N
Localization microscopy ] g&“}g ~]
. 'rl]'he probler]pI is tha’awher_\ you Bins = pixels
ave many fluorophoresin a 2 2 332
sample, they bleed together due ((Ax)?) = > +13 /12 1 4ﬁ;2b
a

to diffraction, and you can’t tell
where one starts and the next

ends

e Solution proposed in 2003 by
Eric BetziF —relies on imaging
individual fluorophores

Single-Molecule Localization Microscopy for Superresolution




STORM/PALM involves optically turning on
small subset of fluorophores in an image

* Imagine a sample densely
labeled with dark
fluorophores

e Algorithm:

Turn on some random subset
of fluorophores such that they
are individually resolvable

* Image those quoroBhores
until they all photobleach

* Fit those peaks, and put a
small dot

* Repeat steps 1-3

* Display all fit dots to
reconstruct your image

e ONLY works if you turn on
small number in FOV

Basic Principle of STORM Superresolution Imaging

(d)

Figure 1



Ooh, aah...
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Cy3-Cy5 tandem act as photosvvtmh

€y5, _cy3 C
e Cy3+Cy5+triplet quencher and . . Ll M_m_
no oxygen 8 @ mENRSE
* Red light causes Cy5 i
fluorescence and "

photobleaching
 Dark state has lifetime of hours
* Cy3 excitation causes
* Photoswitch can occur ~100x
e Eventually permanently ,___—_
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Magic Part 1 —

Photoswitchable fluorophores: Dyes

Properties of Selected Synthetic Probes for STORM Imaging

e Some spectral property
must be converted by
light

* The current preferred
method is photoactivation
(light turns on
fluorescence)

 Photoswitchable FPs -
PALM

e Cyanine dyes + thiol
molecule — STORM

Name
(Acronym)
Cy3B

Cy3.5

Cy5

Cy5.5

Cy7

Alexa Fluor 488
Alexa Fluor 568
Alexa Fluor 647
Alexa Fluor 750
ATTO 488
ATTO 520
ATTO 565
ATTO 647
ATTO 647N
ATTO 680
ATTO 740

Ex(nm)
559
581
649
675
747
495
578
650
749
501
516
563
645
644
680
740

Em(nm)
570
596
664
694
767
519
603
665
775
523
538
592
669
669
700
764

EC(x 10-3) QY

130.0 0.67
150.0 0.67
250.0 0.28
190.0 0.23
200.0 0.28
71.0 0.92
91.3 0.69
240.0 0.33
240.0 0.12
90.0 0.80
110.0 0.90
120.0 0.90
120.0 0.20
150.0 0.65
125.0 0.3

120.0 0.1

N Photons
1400
5000
4000
6000
1000
1200
2800
6000
450
1300
1200
20000
1500
3000
1500
1000



Localizing fluorophores

Based on star analysis in
astronomy

|dentify individual
fluorophore — convolve with a
Gaussian filter with the same
width as known PSF

Reduces high frequency noise
and low frequency
background

Threshold to identify
individual fluorophores



STORM peak fitting

e Square region of 7x7 pixels
centered on peak

* Fit to ellipsoidal Gaussian
(max(a,b)/min(a,b))

e Determine if it’s likely to be
1 fluorophore

* Fit to symmetric Gaussian

15t Elliptical Fit

I(x.y) = Ay + Iy e LEEY L (Y
(x,y) = Ayg + Iy tKP!—E [(E) + (3)}

xf — (JC — JC()) cos 0 — ()r’ — j/[}) sin 0
Y = (x — x0)sin 0 + (y — yo) cos 0

A, = background fluorescence

|, = Peak amplitude

a,b = widths of Gaussian distributions
Xo,Yo = Center coordinates

0 = rotation relative to camera

2nd Gaussian Fit

o= vt heol 5[ 52+ (2]}

#PhotoElectrons = 4mnal,



Analyzing images

e Great computational task

e Cottage industry around
different fitting algorithms

e Improved software borrows
from astronomy, allows for
much higher density of turned
on fluorophores

e So much so that a grou]p
recently tested many of the
Fackages for accuracy and

idelity

e Simple Gaussian fit works well
until active fluorophores get
really dense
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On to Matlab...
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