PALM/STORM, BALM, STED



e Last class
e 2-photon
* |[ntro to PALM/STORM
e Cyanine dyes/DRONPA

 This class
e Finish localization super-res
e BALM
e STED



Localization microscopy
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Basic Principle of STORM Superresolution Imaging
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Molecular Density in Single-Molecule Superresolution Imaging

Practicalities in STORM

116 g

* To resolve small features, ot Renoon sl Sy PR B
labeling has to be VERY Sl
dense : B

* The reconstructed image will .
represent a pixelated view of g

the actual sample

e To resolve features, must
label AT LEAST at the Nyquist
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Relative Sizes of Fluorophores Useful in Single-Molecule Superresolution Imaging

e With a resolution of 30 nm,
must have probes every 15
nm

* Fluorophore size becomes an
issue — antibodies are big

 |f you're using antibodies,
have to ensure high
efficiency and high coverage
of labeling

B Ha

» . Synthetic Dye
(Cy5)




Contrast ratio and spontaneous activation

* [n active experiment, #Dark Cy5 >>

H#Active Cy5

e Noise can creep through spontaneous

activation, and dark state
fluorescence

e Contrast ratio measures fluorescence

in bright state/dark state

* The red laser can drive a little bit of

Cy5 photoactivation
e Between 1 and 5in 10,000

fluorophores turn on spontaneously
 |f sample is very densely packed, can

override ability

F
Contrast = br state ~1000
de state

1000 dark fluorophores = 1 bright
Can erode ability to detect and fit peaks

k ]
%Active = blink 0005

kpiink + Korr

k¢ = rate of switching off with red light
ky;in = rate of reactivation by red light



STORM image display

* Concatenate all fitted points
from collected images and
display them on single
picture

Microtubules
with Cy3-
Alexa647

2.4 x 106
localizations

e Often use a Gaussian of
calculated uncertainty width

* A40um x 40um image
displayed at 1 nm resolution

would take ~4.5Gb of
memory
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STORM Equipment  °

M: Dichroic mirror

: Shutter
M2 Half-wave plate
ND:  Meutral density filter
OL: Objective lens

e High NA objective (probably
TIRF)

== M S PBS A2 ND

e Multicolor laser excitation (at P o
least 2) :
. el . M L
e High sensitivity camera Ao
e Drift correction (if your v s B ] st
sample moves by 20 nm, ou -
that’s now a lot in your \ Y,
ImagE) v : QPD: Quadrant photodiode
. B T5: Translation stage
e Images take a long time to Cover glass - EF:  Emission fer
. indrical lens
COIIeCt Objective PS: Piizc stage
PBS: Polarzing b
e Autofocus (Quadrant spliter cube

photodiode with IR laser)

QPD IR beam



Multicolor STORM

 Two potential options

e Single donor, multicolor
acceptors

e Many donors, single
acceptor

Microtubules and clathrin coated pits

© 500'hm : 200 nm

Microtubule
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A B
1000
3D STORM .
Objective
, E 600 -
. . Cylindrical g E
e Use an cylindrical lens to lens S 100 {n,
purposely introduce ——r .
astigmatism ene
. EMCCD 0 r T T T T T
e PSF changes as a function RN SN

of depth

* Keep measurements with
high ellipticity, and then
assign a z-depth according
to a/b ratio

Mitochondrial network
with color encoding
depth




STORM applications

%

e Cytoskeletal | N [ o ). _ e
arrangement too | - A Xy AR IEAE S TR I
small to be seen by B L ' -
widefield

e Axon specific rings,

1 Position (pm)
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examples of new
biology using
super-resolution



STORM applications — telomere FISH
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Live cell STORM

Transferrin

e Possible, but slow
and hard

e Have to keep a thiol
reagent (toxic) and
blast cells with light

e Labels can obviously
move, now, makes it
harder to localize Two color, 3D, live cell STORM

Clathrin and transferrin

e Time resolution on
the order of seconds



PALM

 Photoswitchable proteins
instead of Cy3-Cy5 pairs

e Dronpa (photoswitchable)

and mEos
(photoconvertible) are
two most popular

* FPs are bigger and less
bright

e Gain all the advantages of

genetic labeling

DRONPA — photoswitchable protein
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1 ., 561nm 2 .. 561nm 3 .. 561nm 4
552 405 nm E’u-“I 405 nm .::F' S0 405 nm
—

B nﬂu nnu - ROOO I:|.':' .Dn.u e
Two color PALM
e Can use Dronpa and tdEos H8nm Samo 2oo T Capo Goi T Tomo 203NN €
=* —* - 7

e Dronpa significantly overlaps
td EOS pre-conve rsion o Inactive Eos = Activated Eos Bleached Eos

Inactive Dronpa eActivated Dronpa « Bleached Dronpa

e First photoactivate (405 nm)
and localize tdEos (561 nm)

e Photobleach all tdEos

e Then use 488 nm to localize
and bleach Dronpa

Two-Color PALM Imaging of Actin and Paxillin in Focal Adhesions

* There also exists a
photoswitchable mCherry

Figure 8



PALM vs STORM

e Same exact fitting
protocol

 PALM uses FPs — easier
to genetically attach,
worse as fluorophores

e STORM uses
photoswitchinghdyes,
requires toxic thiol
buffers

e Easier to do 3 colors in
STORM

e Really, not much
difference

Couldn’t find an image to represent
differences, went with this cool picture



BALM - blinking assisted localization
MICroscopy

* Rather than photoswitch, rely on
endogenous blinking to isolate
molecules

* Let laser and camera run
continuously

e Take difference images between
frames G Schematic t

* If dye blinks on, it will appear like
a negative spot ol

* |f dye blinks off, it will appear as
positive spot

e Average together those frames to
get single molecule spot

C representative molecules
from subtracted images
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BALM

e Due to higher
background,
localization is not
as good as
PALM/STORM

e Still significant
Improvement over
diffraction limited
systems

e Easy to do multi-
color BALM

diffraction-limited PALM

m
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Working model single molecule detection with big pixels
I = image pixel size (~166 nm)
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Working model single molecule detection with small pixels

smaller image pixel size (~61 nm)
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Increasing tluorophore blinking S o

* Engineering
fluorophores to _
undergo blinking : Y YT
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kinetics i F
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BALI\/I applications
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STED — Stimulated Emission Depletion

 Another way to generate superresolution images
e 2014 Nobel prize — Stefan Hell



STED theory

e Consider a laser

e Electron is living in
an excited state,
doesn’t matter how
it got there

 |f a photon arrives
with the energy
equivalent to band
gap, the electron
de-excites, and 2
photons appear

Laser

AE~2.5RV

STED




STED theory

e By sending in light at
a given wavelength,
we can control the
color of the
stimulated emission

e Possible to design
filters to let normal
fluorescent light
through, while
excluding the
stimulated photons

(©) Excitation Depletion Excitation ~ Depletion

800nm

800nm 500nm

0055

600nm

700nm 700nm

500nm 600nm
|
0647N |

750nm 780nm

640nm 640nm



@F;}gf; The Concept of Superresolution with STEI

%  —Tube
. Lens

: \ STED Microscope
STED theory ooz, & g oS s
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* The smallest spot we can N _B- L.
excite is a diffraction limited ' R > point

spot (100s of nanometers)

 [f we can selectively deplete
some chunk of that region, we
can limit the region of
fluorophores that emit
S Figure 1

¢ STED ideal iS tO_ ma.ke a donUt Courtesy of Courtial and O'Holleran, 2007
around the excitation spot,
limiting emission from a small

EB Excitation beam Depletion beam Overlay
fluorescent photons, you know g | L]

region in the center. If you see
where they came from to a

much higher precision

Saturated Effective
Depletion SF
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STED imaging

e Develop image exactly like
confocal

e Scan both excitation and
STED laser around sample _ " . 4

e But you know below
resolution limit where the
fluorescence originated
from

* Rebuild super-resolution
image

* No need to post process
images, unlike
STORM/PALM

Confocal




STED resolution

e Unlike STORM/PALM,
resolution limit is dependent
on intensity of depletion
laser

e |Intensity must be above |,
the threshold at which 50%
fluorophores undergo
stimulated emission (ie.
Depleted fluorescence)

e STED pulse must be delayed
in time to allow vibrational
relaxing. Want to catch
electrons in ground state of
excited state, but before they
decay
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STED PSF is intensity and

Dve Name .lfan;y’ﬁfr:ff'ei' Exc Afmm) STED ,1};;;” )

............ . Excitation

b ‘. Profiles .'- ) '_, .
* More power = higher RN ||| N

resolution

* Higher photobleaching
and toxicity as well

* Diminishing returns in — ‘_:;;:::"f::,f.': ey
resolution, but increasing ' = %
returns in cell death with ek —
increasing lasers 3-’::::.;%
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d =

. I Eoce> Figure 4
2nsina /1 +7 Fulllist at:
S http://nanobiophotonics.mpibpc.mpg.de/old/dyes/



STED Practicalities

e STED depletion pulse is susceptible to changes in index of refraction
* Must use oil that exactly matches glass (type F)

e Must use coverslips that are 170 um (+/- 3%). Normal coverslips can
vary by as much as 20%. Have to order special

e Ultrafast pulsed lasers can be temporally separated to optimize
depletion, but then they take longer to scan and cost more monies.



On to Matlab...
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