
Fourier transforms, SIM



• Last class
• More STED
• Minflux
• Fourier transforms

• This class
• More FTs
• 2D FTs
• SIM
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If we can figure out cn we can 
describe any function as a sum of 
sine waves
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Why do we convert to frequency domain

• Some problems are very 
hard to solve in the time 
domain

• Imagine a repeating 
source of noise

• There may be a very easy 
solution in the frequency 
domain

• It’s easy (in Matlab) to 
convert to frequency, 
apply the correction, and 
invert back to time 
domain

x



Fourier transforms useful to pick out signal in 
noise

• If you think you have an 
oscillating signal, but it is too 
noisy, you can often pick it out in 
frequency space

• Noise is often distributed 
randomly in frequency space, 
but your signal remains at one 
peak

• Conversion from time to 
frequency domain can clear 
things up

• Frequency space is heavily used 
in audio processing
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DC components of signals

• If the mean of your 
signal is ≠ 0, then you 
will have a DC 
component (freq = 0)

• This can overwhelm 
your lower frequencies

• Common to subtract 
the mean off your 
signal first

• Can also take the log of 
the frequencies to 
display nicely
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Fourier filtering

• If we know that the 
signal we care about is 
going to fall within some 
range

• It is easy to:
• convert to frequency 

space
• Set unwanted 

frequencies to 0
• Inverse Fourier transform 

• Very easy to set low 
pass, high pass, or band 
pass filters
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More Fourier filtering

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

105

0

5

10

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5000

0

5000

450 500 550 600
0

2000

4000

6000

Low Pass Filter Band Pass Filter



Fourier transforms encode phase as complex 
number
• Consider 3 sine 

waves with 
different 
frequencies and 
phases

• The FFT will look 
exactly the same 
independent of 
the phases

• In order to 
reconstruct the 
time varying 
signal, we need 
the phases
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y1 = sin(2*pi*t + deg2rad(0));
y2 = sin(6*pi*t + deg2rad(30));
y3 = sin(8*pi*t + deg2rad(110));
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y4 = sin(2*pi*t + deg2rad(110));
y5 = sin(6*pi*t + deg2rad(0));
y6 = sin(8*pi*t + deg2rad(60));

Note, I plotted 
the absolute 
value of the 
fourier transform



2D Fourier transform
• In exactly an analogous way, 

linear combinations of 2d sine 
functions can be combined to 
form any image

• If you can calculate the 
amplitude and phase of each 
set, you can reconstruct any 
arbitrary image

• Matlab has a 2D FFT function 
that allows you to calculate 
amplitudes very quickly

• Allows image processing in the 
frequency domain



2D Fourier transforms



2D Fourier Transform of Images

• Now frequencies are 
represented by amplitude in 
space

• X axis (frequency) is periodic 
signal in y dimension, and 
vice versa

• The center of the image is 
the DC signal

• Diagonal points represent 
diagonal periodicity

• Edges represent the highest 
frequencies encoded



2D Fourier transform meaning
• In space, each pixel 

represents an intensity
• In frequency, each pixel 

represents the amount of 
that spatial frequency

• In the camera man, there 
are vertical lines (buildings), 
horizontal lines (skyline), 
and diagonal lines (tripod)



Amplitude spectra





FFT and filtering
• The more frequencies 

encoded in an image, the 
sharper the detail you can 
resolve

• By restricting higher 
frequencies you can filter 
the image



Applications: Noise removal in images

• Similar to the 1D case, 
periodic noise can be 
easily suppressed

• Regular noise appears as 
points

• Set those points in 
frequency space = 0

• IFFT to convert back to 
spatial coordinates



Applications: recognition of textures

• Repeating textures 
will have distinct 
Fourier components

• Easy to pick them out 
in frequency space

Drosophila eye
and it’s 2D FFT



Frequency sensitivity of visual system
• Campbell Robson sensitivity 

curve
• The U shape is a pattern of 

your visual system, not the 
image

• The computer doesn’t care, 
but you (and readers) can 
misinterpret images that 
contain too high or low of 
frequencies



SIM

• 3rd class of superresolution



Origins of diffraction limit

• The airy disk size is 
determined by the 
wavelength and NA

• The resolution 
between two objects 
is set by Rayleigh 
criterion

• It is the maximum 
angle that sets our 
size

𝑅𝑅 = 1.22
𝜆𝜆

2nsin 𝜃𝜃 = .61
𝜆𝜆
𝑁𝑁𝑁𝑁

Smallest distance at which we can resolve 2 points



Limit is result of sample diffracting light

• Abbe realized we can 
think of the sample 
diffracting the light

• The lens re-images those 
diffraction patterns back 
onto the sample plane

• The angle of diffraction is 
proportional to the 
spacing

sin 𝜃𝜃 =
𝜆𝜆
2𝑑𝑑

d = sample structural distance



Effects of finite objective size

• The fact that we can’t 
capture all the diffracted 
rays means that we lose the 
largest angles

• These angles correspond to 
the smallest features in the 
sample

• To resolve smaller features, 
we need to capture these 
higher frequencies



Optical transfer function

• Optical transfer 
function is the fourier
transform of the PSF

• Frequency space 
representation of 
how the image is 
formed on the 
camera

• Convolution in image 
space = multiplication 
in frequency space

k = spatial frequency
k0 = 2NA/λem = maximum observable spatial frequency



On to Matlab…



Applications: Help with anti-aliasing
• Aliasing is a feature of 

sampling two slowly
• Adds frequencies not 

present in original signal
• Shows up in images as 

blotchy regions
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