EM waves and refraction

Homeworks

- HW 1 will be posted today, (9/1/2017)
- HW 1 will be due next Fri $(9 / 8 / 2017)$
- Analytic problems must be turned in at class (or before)
- Matlab scripts must be emailed to Quant.Optics@Colorado.edu before 11:30
- Office hours are:
- Mon 1-2 PM
- Thur 10-11 AM
- JSCBB $3^{\text {rd }}$ floor, A-wing common area
- Last class
- What is light
- Detection of light
- Properties of EM waves
- This class
- More about waves
- Refraction
- Lenses

Properties of light - propagating EM wave

Waveforms of Electromagnetic Radiation States

Polychromatic

Nonpolarized

Figure 4

Plane wave properties

$$
\begin{aligned}
& A=\text { amplitude } \\
& k=\text { wave number }=2 * \mathrm{pi} / \lambda \\
& \omega=\text { frequency }=2 *{ }^{*} \mathrm{pi}^{*} \mathrm{f}
\end{aligned}
$$

$$
y(x, t)=A \cos (k x-\omega t+\varphi)
$$

Plane wave properties

$$
y(x, t)=A \cos (k x-\omega t+\varphi)
$$

—— 400 nm
$\operatorname{Vary} \lambda$

Energy of light

$$
\begin{array}{rll}
\mathrm{E} & =\mathrm{hf} & u_{\varepsilon}=\frac{1}{2} \varepsilon_{0} E^{2} \\
& =\mathrm{uc} / \lambda & u_{B}=\frac{1}{2 \mu_{0}} B^{2}
\end{array}
$$

Wave Interference

Refraction

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/refr.html

- Wave propagates between 2 different media
- Conservation of momentum and conservation of energy
- Amount light slowed is referred to as index of refraction (n)

Snell's law

Velocity is slowed in new medium

$$
\begin{array}{ll}
v=c / n & \\
& v=v / \lambda \\
& \lambda=c / v n \\
& \lambda=\lambda_{o} / n
\end{array}
$$

Back and forth...

Total internal reflection

- Consider moving from dense to less dense material

At critical angle, an evanescent wave exists but rapidly decays

What can you do with refraction?

- Prisms:

Incident light on a curved surface (Otherwise known as a lens)

$$
\mathrm{n}=1
$$

$$
n=1.5
$$

Spherical lenses are the easiest to make - grind with a lathe

Lenses vs pinhole

- With pinhole cameras, there was always a trade off between sharpness and brightness set by the size of the aperture
- What we want is to collect all the rays emanating from a single

Clear upside down (inverted) image with a small pinhole
 spot, and put them all on the same place

- Have to change the light somehow, since light (in the absence of matter) travels in a straight line

- Lenses enable us both bright and sharp images

Lens makers equation

[^0]Positive (converging) lens

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right],
$$

Ray optics - convex lens

Changes in angle -> changes in position Changes in postion -> changes in angle

Ray optics - concave lens

Ray optics rules

Simple Thin Lens Geometrical Optics

1. Draw a line to the center of the lens, it continues
2. Draw a line perpendicular to the lens axis, it goes through the focal point
3. Draw a line through the focal point, it goes straight

Light is reversible (time invariant)

If it's before the focal plane, draw as if it came from the focal point, forms a virtual image

On to Matlab...

[^0]: : Focal Length
 f_{b} : Back Focal Length f_{f} : Front Focal Length R: Radius of Curvature t_{c} : Center Thickness t_{e} : Edge Thickness
 $\mathrm{H}^{\text {II: }}$ Back Principal Plane
 Dia: Diameter

