Watershed, Biosensors

- Last class
 - SIM
 - Fancy SIM
- This class
 - Biosensors
 - Schemes
 - Practical thoughts

Watershed

- Common means to segment cells
- Segmenting is hard, watershed may help

Flow of image processing

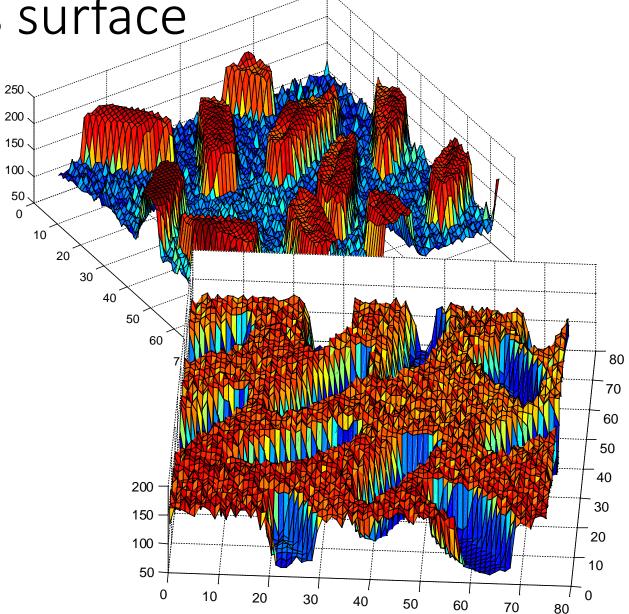
- 1. Preprocess image
 - 1. Reduce noise
 - 2. Even illumination

2. Segment features

- 1. Identify individual cells/tissues, etc...
- 2. Separate them from background

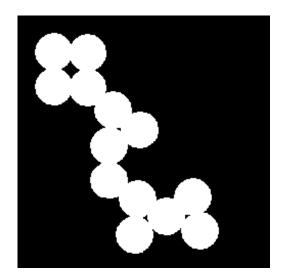
3. Extract features

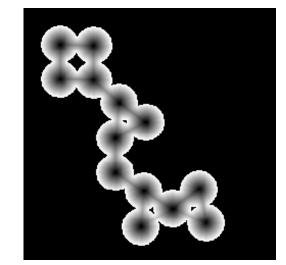
- 1. Pull out image characteristics
- 2. Pull data from least processed image possible


Morphological operators Geometric operators 2D Fourier transforms

Global thresholds

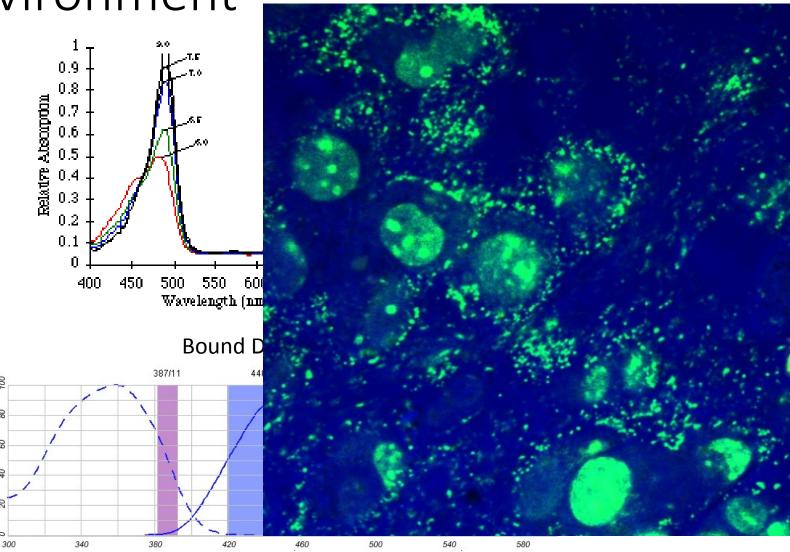
Regionprops


Think of intensity as surface



Watershed fills

- Your goal is to get each object as a basin
- Watershed will fill in until it reaches the background or comes into contact with another watershed
- If you've marked all your features, they will all be marked

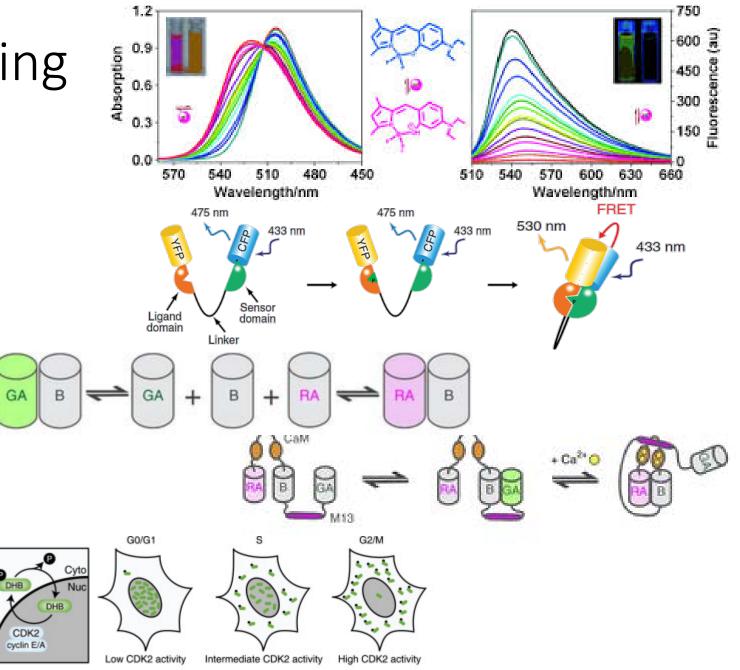


Biosensors

• Using fluorescence to learn about cellular function

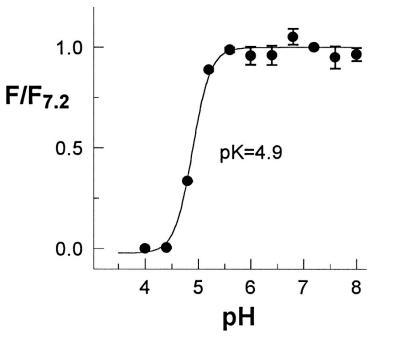
Biosensor = change in fluorescence depending on environment

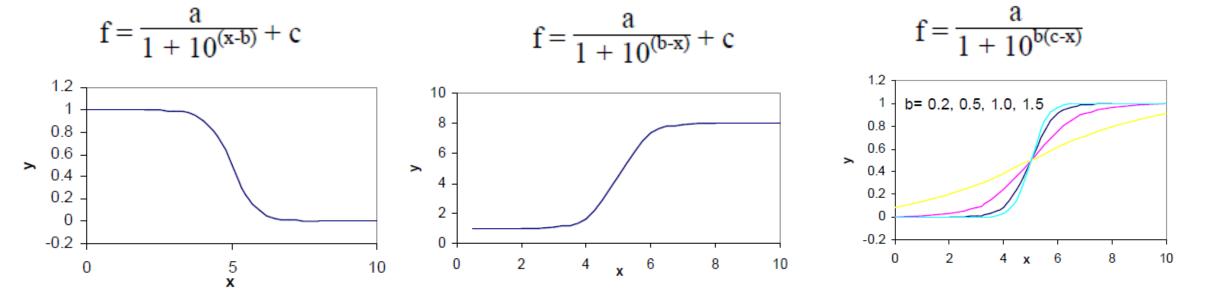
- If we change the # fluorophores, quantum yield or absorbance upon changes in environment, that is now a sensor
- Fluorescein pH and hydrophobicity sensor
- DAPI DNA sensor



Schemes of biosensing

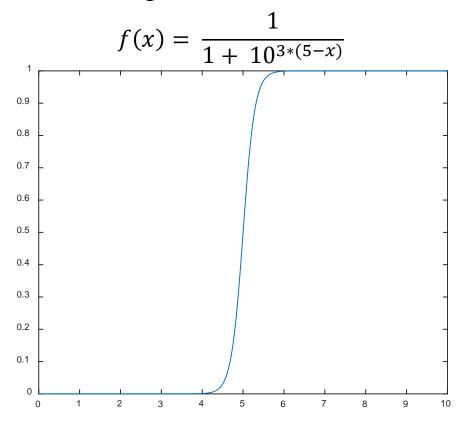
а

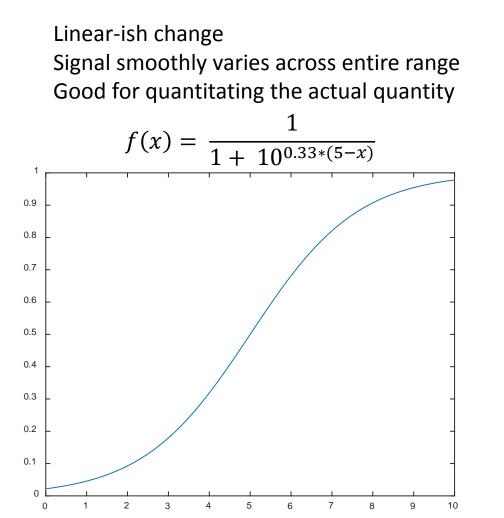

С


- 1. Presence or absence directly affects fluorescent molecule
- Presence or absence causes a binding or conformational shift > FRET change
- 3. Dimerization dependent biosensors
- 4. Location dependent sensors

Basics of biosensors

- Almost all sensors have hill function sensitivity
- Most sensitive range is at the K_d
- Any single molecule has some probability of being in each state





Different regimes of sensing

Binary change

Signal is on or off, but the signal to noise is VERY high

Basics of biosensors

Complex

Avidin:biotin

Zif268:DNA(d)

lacrep:DNAoper(c)

GroEL:r-lactalbumin(e)

LDH (pig): NADH(g)

Creatine Kinase: ADP

Acetylcholine:Esterase

Η,

- Dynamic range
- Response time
- Sensitivity

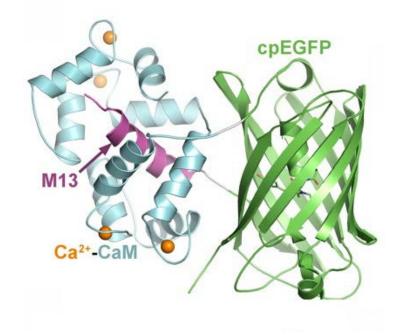
 $K_d = \frac{[A][B]}{[AB]}$

 $v_f = v_r @ equilibrium$

 $k_f[A][B] = k_r[AB]$

$$\frac{k_{on}}{k_{off}} = K_{eq} = \frac{1}{K_d}$$

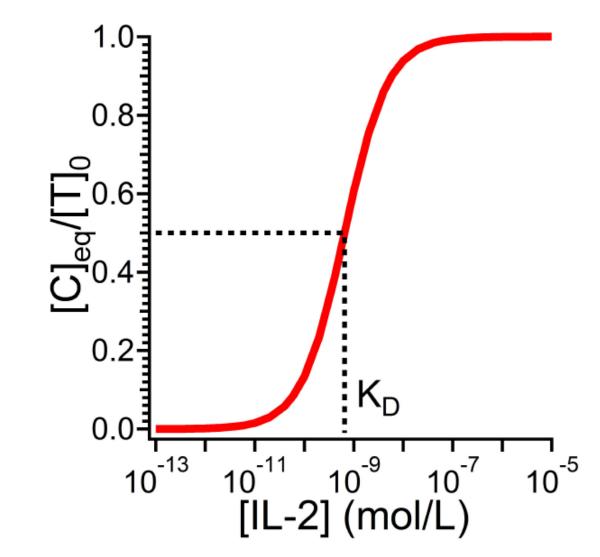
$$SNR = \frac{I_{obs} - I_{basal}}{I_{basal}}$$


Two ways to improve SNR: Reduce I_{basal} Increase I_{obs}

KD (M)	<i>koff</i> (s ⁻¹)	<i>t</i> 1/2
1 x 10 ⁻⁷¹	1 x 10 ⁻⁶³	2 x 10 ⁵⁵ yr
10 ⁻¹⁵	1 x 10 ⁻⁷	80 days
1 x 10 ⁻¹³	1 x 10 ⁻⁵	0.8 days
10-11	1 x 10 ⁻³	700 s
10 ⁻⁹	0.1	7 s
7.1 x 10 ⁻⁷ (j)	7.1 x 10 ¹	10 ms
8.2 x 10 ⁻⁴ (j)	8.2X10 ⁴	10 ms
1.2 x 10 ⁻³	1.2 x 10 ⁵	6 ms

Real life trade-offs

- GCaMP6 is a family of calcium sensors
- Physical limitation between sensor kinetics and sensitivity
- Fast sensors have higher binding coefficients


Sensor	K _d (nM)	k _{off} (s⁻¹)
GCaMP3	345±17	2.57
GCaMP5G	447±10	2.52
GCaMP6s	144±4	1.12
GCaMP6m	167±3	2.06
GCaMP6f	375±14	3.93

Resting calcium concentrations: Cytoplasm ~ 100 nM Endoplasmic Reticulum ~ 200 μ M Mitochondria ~ 30 μ M

Dynamic range, limit of detection, sensitivity

- LOD lowest concentration at which a sensor can detect a clearly distinguishable signal (SNR > 1)
- Dynamic range range of *reliable* detection concentrations
- Sensitivity Smallest change in analyte concentration that can be *reliably* detected

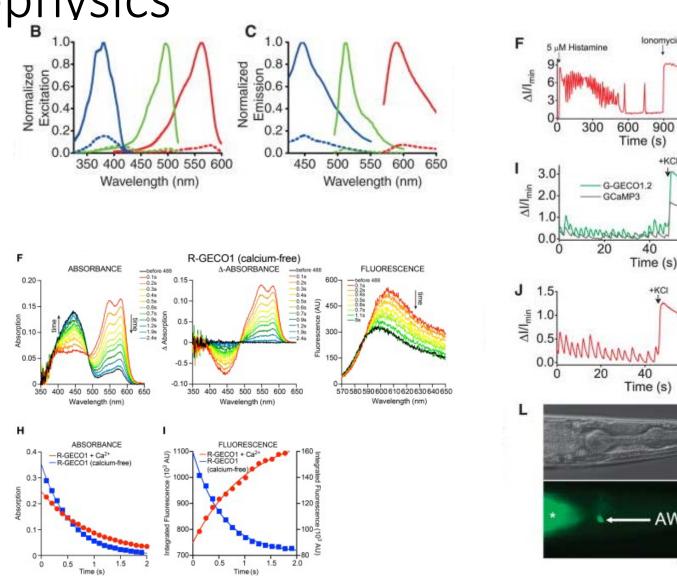
Dangers of biosensors

- Does it over-compete for your analyte?
- Does it inhibit other cellular processes?
- Does it respond to other cellular components (pH!!, others)?
- Does it get sequestered by cellular machinery?
- Is the sensitivity range useful?

Calcium:

Free calcium – 80 nM How many proteins do you need to express to buffer that [Ca]?

Protons:


pH 7.2 How many free protons in cells?

 $[H] = 10^{-7.2} = 63 \, nM$

Sensor	Dynamic range (F _{max} / F _{min})	K _d (nM)	Hill coefficient	k _{off} (s ⁻¹)	pK _{a, apo}	pK _{a, sat}
GCaMP3	13.5±0.7	345±17	2.54±0.04	2.57	8.44±0.01	7.13±0.07
GCaMP5G	45.4±0.9	447±10	2.46±0.04	2.52	8.61±0.15	6.58±0.02
GCaMP6s	63.2±3.1	144±4	2.90±0.17	1.12	9.77±0.70	6.20±0.02
GCaMP6m	38.1±1.8	167±3	2.96±0.04	2.06	8.68±0.09	6.90±0.04
GCaMP6f	51.8±2.8	375±14	2.27±0.10	3.93	8.77±0.16	6.34±0.01

Dangers of photophysics

- In 2011, there was a hunt for a good red calcium indicator
- Group A published in Science their sensor, RGECO
- One hope was to pair it with channelrhodopsin – blue light will stimulate cells, and read calcium transients with red

lonomycin/Ca2

900 1200

60

60

- AWA

*intestine

40

40

Ionomycin/EGTA

80

80

On to Matlab...