
More biosensors, optical 
actuators



• Last class
• Watershed
• Intro to biosensors

• This class
• Dye based sensors
• Protein based sensors
• Actuators



Biosensors at large

• Anything that 
changes 
fluorescence in 
response to 
physiological 
change

• Difficult to 
optimize across 
every parameter

• Check pH 
sensitivity



Measuring signals

• Easy thing to think about is 
change in fluorescence 
divided by original 
fluorescence (dF/F)

• Unfortunately it’s useless
• Signal to noise ratio = signal 

– background/std
• Smallest feature you can 

resolve is when SNR = 1
• What is the smallest amount 

of signal you can resolve in 
some time measurement
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Ratiometric imaging
• Ratiometric imaging is by 

far the easiest way to get 
absolute units on a 
measurement

• Measuring a single color 
makes it impossible 
unless you know the 
number of the 
fluorophores present 
(usually impossible)

• Having two colors at a 
defined stoichiometry
can correct for this issue

• Doesn’t affect 
localization based 
sensors

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = #𝐹𝐹𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑄𝑄𝑄𝑄 𝐹𝐹𝐹𝐹𝑒𝑒 ∗ 𝑇𝑇𝑎𝑎𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝑇𝑇𝑎𝑎𝑇𝑇𝐹𝐹 + background

This is what we’re interested in

𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = 𝑁𝑁1 ∗ 𝑄𝑄𝑄𝑄1 ∗𝜀𝜀1
𝑁𝑁2 ∗ 𝑄𝑄𝑄𝑄2 ∗𝜀𝜀2

= 𝑄𝑄𝑄𝑄1 ∗𝜀𝜀1
𝑄𝑄𝑄𝑄2 ∗𝜀𝜀2



Calibrating ratiometric sensor

• Use either two 
excitations, or two 
emissions (or both)

• First have to map each 
color at known 
concentrations of analyte

• Generate, and fit ratio to 
hill curve, with known 
concentrations on the x 
axis

• Use fit as look-up table 
for future experiments

• You can NOT change laser 
intensities or alignment 
after determining fit

𝐹𝐹1 = 𝐼𝐼1 N 𝐹𝐹𝐹𝐹 ∗ 𝑄𝑄𝑄𝑄 1 ∗ 𝜀𝜀1 + 𝑄𝑄𝑄𝑄 2 ∗ N 𝐹𝐹𝐹𝐹∗ 𝜀𝜀2 + 𝑄𝑄𝑄𝑄 𝐴𝐴𝐹𝐹1 ∗ 𝜀𝜀𝐴𝐴𝐹𝐹1 + 𝑎𝑎𝑏𝑏

1.  Subtract background 

𝐹𝐹2 = 𝐼𝐼2 𝑄𝑄𝑄𝑄 1 ∗ N 𝐹𝐹𝐹𝐹∗ 𝜀𝜀1 + N 𝐹𝐹𝐹𝐹 ∗ 𝑄𝑄𝑄𝑄 2 ∗ 𝜀𝜀2 + 𝑄𝑄𝑄𝑄 𝐴𝐴𝐹𝐹2 ∗ 𝜀𝜀𝐴𝐴𝐹𝐹2 + 𝑎𝑎𝑏𝑏

1. Determine laser intensities to use
2. Determine non-expressing autofluorescence from each laser
3. Look at bleed through from each excitation – should be 0
4. Subtract background from non-cell region
5. Subtract bleed through equivalent from each channel
6. Divide to get ratio

𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 =
𝑄𝑄𝑄𝑄 1 ∗ 𝜀𝜀1
𝑄𝑄𝑄𝑄 2 ∗ 𝜀𝜀2



Principles of sensor design

• Imagine a FRET pair –
highly sensitive to distance 
between fluorophores

• Find a protein, somewhere 
in nature, that binds to the 
ligand you’re interested in 
measuring

• Attach FPs to either side of 
protein that undergoes 
large conformational 
change

• Try to maximize 
conformational distance

𝐹𝐹 = 𝑅𝑅0[
1
𝐸𝐸

− 1]1/6



Issues with this process

• Nearly every prototype 
sensor had the same range of 
0.25

• Crazy given the large 
conformational changes

• Remember that proteins are 
flexible beasts, not static 
crystal structures

• Even if the FPs are on the 
same lobe, still see same FRET 
changes

• Knowledge: Large 
conformational changes are 
NOT needed

NMR structure of DNA repair protein



CP GFP

Circularly permuted proteins

• GFP folding is 
robust, so you can 
change where the C 
and N termini live

• Circularly permuted 
GFP has a very high 
sensitivity to pH

• Sensors can be 
made that modulate 
chromophore 
stability (pKa)

GFPATG TAA

Normal GFP

GFPATG TAA

ATG TAA
cpGFP



Two main schemes for detection
• Find active domain
• Attach FRET pairs
• Attach to cpGFP
• For both schemes, 

you need a protein 
domain that will 
change conformation 
in the presence of 
what you want to 
detect



Dye based sensors



LiveDead stains
• Important thing to 

test both live and 
dead stains, 
hopefully all cells fall 
into one category

• Kits come with a dye 
to mark living cells 
and a second dye 
that will only stain 
dead cells

• Can be counted by 
microscopy or FACS

Calcein AM – used to detect funcinoal esterases
Ethidium Homodimer – Loss of membrane integrity

FUN1 – Starts green, live cells convert it to red
Counterstain all cells with Calcofluor White (blue)



pH sensors

• pH changes everything, 
so it’s very easy to 
generate pH sensitive 
fluorophores

• Numerous dyes and 
FPs, variety of colors 
and sensitivities

• Want to worry about 
color, photostability, 
solubility, pKa

SNARF



New red pH sensor

Semisynthetic fluorescent pH sensors 
for imaging exocytosis and 
endocytosis
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Calcium sensors

Fluo3

Oregon Green BAPTA

Fura Red

Fluo-4 AM
Acetoxymethlester



Voltage sensors
• Two types, those 

that localize to 
charged region of 
space (slow), and 
those that live in the 
membrane and 
sense the local 
electric field (can be 
fast)

• Dianepps is the most 
common.  
Phototoxic, low 
signal to noise ratio

• New dye by Tsien
group is the best, 
Fluuovolt

Di-4-anepps
Membrane localized



Sodium an potassium ions

• No exceptional 
fluorescent dyes (or 
FPs)

• Usually extremely 
sensitive to changes 
in pH

• Hard to get dyes that 
are selective for one 
ion over another

SFBI – Na sensitive salt



Additional dye based sensors

• Other metals (Zn, Mg) – Similar to Ca sensitive domains – come in a 
variety of colors

• Reactive oxygen species – One or more reactive species modifies the 
dye to become fluorescent

• Na, K, Cl – Crown ether chelators
• Endocytosis – OxyBURST, oxidated endosomes turn on fluorescence, 

fluorescent growth factors
• Ion channels – Fluorescently labeled toxins



Fluorescent protein sensors



FP based sensors
• GFP is pH sensitive
• pH directly modifies 

chromophore
• pHluorin, ratiometric

pHluorin, and super 
ecliptic pHluorin are 
all mutations of GFP 
that move the pKa into 
the physiological 
range

• Measuring the 
emission at 488 is a 
measure of cellular pH

pHluorin

R pHluorin

SE pHluorin



• http://biosensor.dpb.carnegiescience.edu/

http://biosensor.dpb.carnegiescience.edu/


Calcium FP sensors
• First one was based on 

FRET Cameleon
• Calmodulin M13 domain
• Emerged from Tsien lab 

in 2000

Calmodulin (opened) Calmodulin (closed)



Newer Ca++ sensors
• GCaMP, Twitch, Pericams, 

CatchER

Calcium sensors are EXTREMELY good.  
Researchers have optimized all the properties 
– brightness, sensitivity, kinetics, folding

Still lacking a really good red single color 
calcium sensor

Each of the main sensors (GCaMP6, TWITCH, 
etc.) have > 1000 citations.  Good to go.



HyPer – FP to detect H2O2
• Fuse cpYFP to 

hydrogen peroxide 
sensing domain from 
prokaryotes, OxyR

• Increased H2O2 will 
cause an increase in 
fluorescence

• Based on modification 
of cysteine (sulfur) 
groups

• Bright enough to get 
sub-cellular resolution

HeLa mitochondria undergoing 
apoptosis

Original paper 
has > 500 
citations, 
probably OK to 
use or an 
updated version



Perceval – ATP sensing
• Start with GlnK domain 

from E. coli
• Attach a circularly 

permuted Venus
• PercevalHR – sensor of 

ATP:ADP ratio
• Senses in the range of 

mammalian cytoplasmic 
ATP levels

• Ratiometric sensor, dual 
excitation

• Needs pHRed
correction, have to 
monitor changes in pH



On to Matlab…
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