More biosensors, optical
actuators



e Last class
 Watershed
* |Intro to biosensors

 This class
e Dye based sensors
* Protein based sensors
* Actuators
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Measuring signals

e Easy thing to think about is
change in fluorescence
divided by original
fluorescence (dF/F)

* Unfortunately it’s useless

 Signal to noise ratio = signal
— background/std

 Smallest feature you can
resolve is when SNR =1

 What is the smallest amount
of signal you can resolve in
some time measurement

dF/F = (12-2)/2=5

dF/F = 500%
Hooray!

dF/F = (10-.1)/.1 =99 °}

dF/F = 9900%
Hooray?

dF/F = (12-2)/2 =5

dF/F = 500%
Hooray?

0




This is what we’re interested in

Ratiometric Imaging

Total Fluorescence = #Flourophores * QY (env) * absorption + background

Ratiometric imaging is by
far the easiest way to get
absolute units on a [ A A O A O

measurement
Measuring a single color r\ Ratio = Ny x QY7 *&;

makes it impossible __ N, * QY, *&5
unless you know the o

number of the \ — QYq *&q
fluorophores present . =
(usually impossible) QY2 *&2

Having two colors at a
defined stoichiometry
can correct for this issue

Doesn’t affect
localization based
sensors




Calibrating ratiometric sensor
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e Use fit as look-up table
for future experiments

e You can NOT change laser
intensities or alighment
after determining fit

Determine laser intensities to use

Determine non-expressing autofluorescence from each laser
Look at bleed through from each excitation — should be 0
Subtract background from non-cell region

Subtract bleed through equivalent from each channel

Divide to get ratio

ok wneE



Principles of sensor design

. Ima%me a FRET pair — r = Ro[<l> — 1]1/6
highly sensitive to distance
between fluorophores

e Find a protein, somewhere
in nature, that binds to the
ligand you’re interested in
measuring

e Attach FPs to either side of

|orote|n that undergoes |

arge conformational Linker
change

* Try to maximize
conformational distance




Issues with this process

* Nearly every prototype
8e£1§or had the same range of

e Crazy given the large
conformational changes

e Remember that proteins are
flexible beasts, not static
crystal structures

* Even if the FPs are on the
same IObe' still see same FRET NMR structure of DNA repair protein
changes

e Knowledge: Large
conformational changes are
NOT needed




Circularly permuted proteins_

e GFP folding is RS
robust, so you can Permutation
change where the C L -
and N termini live Normal FP

e Circularly permuted
GFP has a very high
sensitivity to pH

e Sensors can be
made that modulate
chromophore
stability (pK,)




Two main schemes for detection

N C
* Find active domain Permutation 1N
e Attach FRET pairs ‘g g &E
e Attach to cpGFP Normal FP CP-FP

e For both schemes,
you need a protein
domain that will
change conformation
in the presence of
what you want to
detect




Dye based sensors



FUN1 — Starts green, live cells convert it to red
Counterstain all cells with Calcofluor White (blue)

LiveDead stains

e Important thing to
test both live and
dead stains,
hopefully all cells fall
into one category

e Kits come with a dye
to mark living cells
and a second dye
that will only stain
dead cells

e Can be counted by
microscopy or FACS

Calcein AM — used to detect funcinoal esterases
Ethidium Homodimer — Loss of membrane integrity




oH sensors

* pH changes everything,
so it’s very easy to
generate pH sensitive
fluorophores

* Numerous dyes and
FPs, variety of colors
and sensitivities

 Want to worry about
color, photostability,
solubility, pK,

SNARF

Fluorescence excitation

Em = 580 nm
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New red pH sensor
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Calcium sensors

Fluorescence emission
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extracallular

Voltage sensors 20000 200000 333000 Pae0w
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Sodium an potassium ions

* No exceptional
fluorescent dyes (or
FPs)

e Usually extremely
sensitive to changes
in pH

* Hard to get dyes that
are selective for one
ion over another

SFBI — Na sensitive salt

Fluorescence excitation

T T T
300 325 350 75 400
Wavelength (nm)

Figure 2. SBFI's excitation spectral response to Na+: A) in K*free solution and B) in
solutions containing K+ with the combined Na+ and K+ concentration equal to 135 mM.
The scale on the vertical axis is the same for both panels.



Additional dye based sensors

e Other metals (Zn, Mg) — Similar to Ca sensitive domains — come in a
variety of colors

» Reactive oxygen species — One or more reactive species modifies the
dye to become fluorescent

 Na, K, Cl — Crown ether chelators

* Endocytosis — OxyBURST, oxidated endosomes turn on fluorescence,
fluorescent growth factors

* lon channels — Fluorescently labeled toxins



Fluorescent protein sensors
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 http://biosensor.dpb.carnegiescience.edu/



http://biosensor.dpb.carnegiescience.edu/

Calmodulin (opened) Calmodulin (closed)

Calcium FP sensors

e First one was based on
FRET Cameleon

e Calmodulin M13 domain

* Emerged from Tsien lab
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h SHlo=inChid MUlngonssis
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Newer Ca** sensors
c
e GCaMP, Twitch, Pericames, il
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HyPer — FP to detect H,0O,

* Fuse cpYFP to

hydrogen peroxide
sensing domain from
prokaryotes, OxyR

* Increased H,0, will
cause an increase in

fluorescence

* Based on modification
of cysteine (sulfur)

groups

e Bright enough to get
sub-cellular resolution
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Perceval — ATP sensing

a Astrocyte expressing PercevalHR 28
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On to Matlab...
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