Camera parameters and single element detectors

- Last class
 - CMOS
 - sCMOS
- This class
 - Think about your imaging
 - Single element detectors

sCMOS vs EMCCD

- Both are expensive
- EMCCD does better at very low light levels
- EMCCD has bigger pixels
- sCMOS has more pixels
- sCMOS can run larger fields of view, faster
- sCMOS has better dynamic range

discover new ways of seeing™

Photometrics Andor 887 Pco.Edge Andor Neo Hamamatsu Evolve 512 Flash2.8

6 parameters for image quality

- Temporal resolution
- Spatial resolution
- Quantum efficiency
- Noise
- Dynamic Range
- Signal to noise ratio

Temporal resolution

- How fast are the processes you need to measure?
- Sample at least 2x (Nyquist frequency)
- Timing will help determine which camera is necessary
- More pixels -> slower times
- Dynamic range -> slower times
- Shot noise goes as \sqrt{N}

Spatial resolution

- Maximum resolution set by the NA of the objective and wavelength
- Pixels should ideally be spaced at 2x density (1/2 of max resolution)
- On small pixel cameras, often binning at 2x2 still satisfies Nyquist
- Image size also can become an issue

Consider 100x, 1.3 NA objective 6.5 µm sCMOS pixel size

$$d = \frac{\lambda}{2NA} = \frac{650 \ nm}{2 * 1.3} = 250 nm$$
$$s_{pix} = \frac{6.5\mu m}{100x} = 65 nm$$

Lose no resolution by binning at 2x2, but decrease noise

Consider 60x, 1.49 NA objective 6.5 µm sCMOS pixel size $d = \frac{\lambda}{2NA} = \frac{520 \ nm}{2 * 1.49} = 174 nm$ $s_{pix} = \frac{6.5 \mu m}{60x} = 108 nm$

On this objective, you can maintain max resolution at 1x1

Spatial resolution Aliasing

- Aliasing occurs when there are frequencies in your image higher than your sampling rate
- Higher frequencies can be mapped into lower frequencies detected by the camera
- Often seen in periodic structures like muscle fiber
- Ensure that your pixelation is at least 2x the periodic frequency in your sample

$$f_{alias} = |f - N * f_s|$$

Quantum efficiency

80

70

10

- Front illuminated CCD 50%
- Back illuminated CCD 90%
- CCD and sCMOS cameras are peaked in the visible (500 – 650 nm), but if your dye falls outside that region, you may need to think carefully

Noise

- Photon noise (shot)
- Read noise
- Dark noise
- Other sources of noise, but they are all smaller than read or shot noise
- Each pixel will carry its own noise with all 3 components contributing
- Only in CCDs, binning will reduce the read noise (1 read for 4 pixels in 2x2 bin)
- Will be affected by exposure time, number of photons, gain

Dynamic range

- Dynamic range is number of gray levels from completely empty to completely full
- Factors of electron well size, analog to digital converter, and gain
- 8- to 16-bit cameras out there, most scientific will be at least 12 bit
- 8 bit = 256 gray levels
- 16 bit = 65535 gray levels
- Also plays a role in image size (bytes)
- Note: Printers will often only be able to handle (on 8 bit scale) from 30 – 235 (everything < 30 will be black, everything > 235 will be white)

Dynamic Range (DR)

8 bit, 2 MP image = 2 MB - 200 fr movie = 400 MB 16 bit, 2 MP image = 4 MB - 200 fr movie = 800MB

Signal to noise ratio

- Signal to noise is calculated for cameras based on single pixel
- Calculation based on #electrons, not #photons
- Your goal is to lower read noise (it's the only thing you can change) and to raise the signal
- If you're imaging slowly, use a slow ADC read speed
- Shot noise is unavoidable, will always limit SNR

Signal-to-Noise Ratios in Fluorescence Microscopy

Thinking carefully about experiments

- We know that magnification is not the only number when thinking about objectives, but it will still affect signal
- Each pixel has noise (read, dark, shot), so the more spread out your signal, the higher the noise
- Each sample emits a set number of photons, when they are spread out over more pixels, lower signal to noise

Objective Numerical Aperture Effects in Fluorescence Imaging

Single element detectors

• Good to think about for confocal and 2 photon imaging

Photodiode

- Photodiode is a single element detector typically made of semiconductor
- It's similar to a PMT, except there is no amplification
- Very fast and linear response to light, but it is not sensitive to low level applications
- Often used to measure excitation intensity (power meters, or real time measurements)
- Only reports instantaneous voltage, does not store charge

Material	Range (nm)
<u>Silicon</u>	190–1100
<u>Germanium</u>	400–1700
Indium gallium arsenide	800–2600
<u>Lead(II) sulfide</u>	<1000-3500
Mercury cadmium telluride	400-14000

Item #	Active Area	Wavelen gth	Rise Timeª	(NEP)	Dark Current	Capacita nce ^b	Bias Voltage ^c
DET10A	0.8 mm ²	200 - 1100 nm	1 ns	1.2 x 10 ⁻ 13 W/Hz ^{1/2}	0.3 nA (Typ.) 2.5 nA (Max)	6 pF	10 V
DET36A	13 mm²	350 - 1100 nm	14 ns	1.6 x 10 ⁻ 14 W/Hz ^{1/2}	0.35 nA (Typ.) 6 nA (Max)	40 pF	10 V
DET100A	75.4 mm²	350 - 1100 nm	43 ns	2.07 x 10 ⁻ ¹³ W/Hz ^{1/} 2	100 nA (Typ.) 600 nA (Max) ^d	300 pF	10 V

Photomultiplier tubes

- Single element detector
- Photons incident on photocathode turn into electrons
- Electrons accelerated and increase
- Voltage is read out as signal
- Quantum efficiency is determined by photocathode material
- Photocathodes are often semiconductors

GaAsP –

Gallium Arsenide Phosphide

Acq

- GaAsP is a very sensitive photocathode
- Quantum efficiencies in the visible are much higher than standard PMTs
- Exotic semiconductor that is hard to make expensive
- Enables turning down gain to get same signal – less background noise

PMT arrays

- Up to 32 linear elements with accessible electronics for each channel
- Like a very low resolution, linear camera
- Maintains all the gain benefits of having a PMT

Avalanche photodiode (APD)

- It's a photodiode with a region of very high electric field to produce high gain of electrons and holes
- Fancy doping of seminconductors enables high voltages to be applied – 1000V -> gains of ~1200x
- A single photon that hits the photodiode will induce the avalanche, and trigger current
- Act as single photon counters

APD issues

- Very useful for low light applications
- Semiconductor absorber, so it is possible to get QEs around 90%
- Single photon resolution
- Dark noise can become an issue at very high gains
- Age degradation of gain

Fluorescence correlation spectroscopy

