Imaging, reflection, and diffraction

- Last class
 - Refraction
 - Thin lens equation, magnification
 - Imaging with different lenses
- This class
 - Reflection off mirrors
 - Reflection off glass
 - Components of a microscope

Simple Thin Lens Geometrical Optics

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right],$$

Lenses and imaging

- Three rules of ray tracing:
 - Rays impinging on center of lens are unperturbed
 - Parallel ray goes through focal point
 - Ray that goes through focal point emerges parallel

Beam expanders/condensers

d = f2+f1 M = f2/f1

Galilean Beam expanders

General considerations for beam expanders

Imaging with lenses

Object beyond 2F

Image between F and 2F

2F,

	Lenses
Focal Length (<i>f)</i>	+ for a converging lens
	- for a diverging lens
Object Distance (<i>d</i> _o)	+ if the object is to the left of the lens (real object)
	- if the object is to the right of the lens (virtual object)
Image Distance (<i>d_i</i>)	+ for an image (real) formed to the right of the lens by a real object
	- for an image (virtual) formed to the left of the lens by a real object
Magnification (<i>m</i>)	+ for an image that is upright with respect to the object
	-for an image that is inverted with respect to the object.

$$M = -h_i/h_o = i/o$$

Infinity imaging system (4f imaging)

 $M = f_2/f_1$

Camera chip sizes – 6-13 mm big Pixel sizes are ~6-16 μm

Changing second lens

Changing second lens

Modern infinity systems

Finite and Infinity Optical Systems

Manufacturer	•	Parfocal Distance (Millimeters)	Thread Type
Leica	200	45	M25
Nikon	200	60	M25
Olympus	180	45	RMS
Zeiss	165	45	RMS

Off-Axis Light Flux versus Tube Length in Infinity Systems

Object beyond 2F

Image between F and 2F

2F,

	Lenses
Focal Length (<i>f)</i>	+ for a converging lens
	- for a diverging lens
Object Distance (<i>d</i> _o)	+ if the object is to the left of the lens (real object)
	- if the object is to the right of the lens (virtual object)
Image Distance (<i>d_i</i>)	+ for an image (real) formed to the right of the lens by a real object
	- for an image (virtual) formed to the left of the lens by a real object
Magnification (<i>m</i>)	+ for an image that is upright with respect to the object
	-for an image that is inverted with respect to the object.

On to Matlab...