Imaging, reflection, and diffraction

- Last class
- Refraction
- Thin lens equation, magnification
- Imaging with different lenses
- This class
- Reflection off mirrors
- Reflection off glass
- Components of a microscope

$$
\mathrm{n}=1
$$

$$
\mathrm{n}=1.5
$$

Simple Thin Lens Geometrical Optics

Figure 2

Lenses and imaging

Image Formation by a Converging Lens

- Ray that goes through focal point emerges parallel

Beam expanders/condensers

Galilean Beam expanders
f2 L2

$$
d=f 2-f 1 \quad M=f 2 / f 1
$$

General considerations for beam expanders

Imaging with lenses

Imaging

$$
\begin{gathered}
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right] \\
\frac{1}{o}+\frac{1}{i}=\frac{1}{f} \text { Thin lens equation }
\end{gathered}
$$

 $\mathrm{f}=20 \mathrm{~cm}$

Image
distance

$$
\mathrm{i}=60 \mathrm{~cm}
$$

	Lenses
Focal Length (\boldsymbol{f})	+ for a converging lens
	- for a diverging lens
Object Distance $\left(\boldsymbol{d}_{\boldsymbol{o}}\right)$	+ if the object is to the left of the lens (real object)
	- if the object is to the right of the lens (virtual object) ${ }^{*}$
Image Distance $\left(\boldsymbol{d}_{\boldsymbol{i}}\right)$	+ for an image (real) formed to the right of the lens by a real object
	- for an image (virtual) formed to the left of the lens by a real object
Magnification (\boldsymbol{m})	+ for an image that is upright with respect to the object
	-for an image that is inverted with respect to the object.

Relay lens - $2 f$ away

Object is between 2 f and f

Infinity imaging system (4f imaging)

Changing second lens

Changing second lens

Modern infinity systems

Finite and Infinity Optical Systems

Manufacturer	Tube Lens Focal Length (Millimeters)	Parfocal Distance (Millimeters)	Thread Type
Leica	200	45	M25
Nikon	200	60	M25
Olympus	180	45	RMS
Zeiss	165	45	RMS

Off-Axis Light Flux versus Tube Length in Infinity Systems

Imaging

$$
\begin{gathered}
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right] \\
\frac{1}{o}+\frac{1}{i}=\frac{1}{f} \text { Thin lens equation }
\end{gathered}
$$

 $\mathrm{f}=20 \mathrm{~cm}$

Image
distance

$$
\mathrm{i}=60 \mathrm{~cm}
$$

	Lenses
Focal Length (\boldsymbol{f})	+ for a converging lens
	- for a diverging lens
Object Distance $\left(\boldsymbol{d}_{\boldsymbol{o}}\right)$	+ if the object is to the left of the lens (real object)
	- if the object is to the right of the lens (virtual object) ${ }^{*}$
Image Distance $\left(\boldsymbol{d}_{\boldsymbol{i}}\right)$	+ for an image (real) formed to the right of the lens by a real object
	- for an image (virtual) formed to the left of the lens by a real object
Magnification (\boldsymbol{m})	+ for an image that is upright with respect to the object
	-for an image that is inverted with respect to the object.

On to Matlab...

