## Imaging, absorption, mirrors

- HW 1 due today
- HW 2 will be posted today
- Last class
- Ray diagrams
- Imaging with lenses
- Beam expanders
- This class
- More on lenses
- Absorption
- Reflection

Simple Thin Lens Geometrical Optics


$$
\mathrm{M}=\mathrm{f}_{2} / \mathrm{f}_{1}
$$

## Your eye has a lens



The cornea and lens serve to refract light and focus an image of the object upon the retinal surface.

$$
\frac{1}{o}+\frac{1}{i}=\frac{1}{f}
$$

## Eye can change focal distance

## Accommodation

| Object Distance | Focal Length |
| :---: | :---: |
| 0.25 m | 1.68 cm |
| 1 m | 1.77 cm |
| 3 m | 1.79 cm |
| 100 m | 1.80 cm |
| Infinity | 1.80 cm |
| 1 | 1 |
|  | $\bar{f}$ |



## Accommodation Amplitude (Dpt) vs. Age



## Dispersion

- n actually $\mathrm{n}(\lambda)$ - different colors see different index of refraction




## Dispersion through lenses

Common Objective Optical Correction Factors


10x Achromat


10x Fluorite
10x Apochromat


Figure 2


## Different types of glass

## -Substrates

- $\alpha$-BBO
- Barium Fluoride $\left(\mathrm{BaF}_{2}\right)$
- Calcite $\left(\mathrm{CaCO}_{3}\right)$
- Calcium Fluoride ( $\mathrm{CaF}_{2}$ )
- F2
- Germanium (Ge)
- Magnesium Fluoride $\left(\mathrm{MgF}_{2}\right)$
- N-BK7
- N-SF11
- Rutile $\left(\mathrm{TiO}_{2}\right)$
- Sapphire $\left(\mathrm{A}_{2} \mathrm{O}_{3}\right)$
- Silicon (Si)
- Teflon ${ }^{\circ}$
- UV Fused Silica (UVFS)
- Zinc Selenide (ZnSe)
-Physical Properties
- Knoop Hardness
- Moduli Introduction
- Young's Modulus
- Shear Modulus
- Bulk Modulus
- Poisson's Ratio
- Relationship of Moduli and Poisson's Ratio

Transmission Range of Optical Materials


## Absorption and reflection

## Specular and Diffuse Reflection



Specular Reflection


Diffuse Reflection

Absorption is inversely correlated with the color we actually see

Energy ( $\mathrm{hc} / \lambda$ ) is converted to electronic excitations, which are then lost to vibrations and heat


## Reflection




## Curved mirrors can form images

As in the case of lens optics, the angles are constrained to be very small, the paraxial assumption. In the limit of small angles,


All rays of collimated beam pass through focal point


## Ray tracing with mirrors



To see the image, have to line up your eye with one of the diverging rays

## Moving object towards mirror



## Mirror equation

$$
\mathbf{M}=\frac{\mathbf{h}_{\mathbf{i}}}{\mathbf{h}_{\mathbf{0}}}=-\frac{\mathrm{d}_{\mathbf{i}}}{\mathrm{d}_{\mathbf{o}}}
$$



$$
\frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}}
$$

- $f$ is + if the mirror is a concave mirror
-f is - if the mirror is a convex mirror
$\cdot \mathrm{d}_{\mathrm{i}}$ is + if the image is a real image and located on the object's side of the mirror.
$\cdot d_{i}$ is - if the image is a virtual image and located behind the mirror.
$\cdot h_{i}$ is + if the image is an upright image (and therefore, also virtual)
$\cdot h_{i}$ is - if the image an inverted image (and therefore, also real)


## Convex mirrors



It does not matter where you put the object, it will always be upright and virtual

This is unlike imaging with the diverging lens


Benefits of imaging with mirrors:

- No diffraction means no chromatic aberrations
- Reflections can be much larger than transmissions


## Reflection from glass



Refraction
$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{n_{2}}{n_{1}}$
Reflection
$\sin \theta_{i}=\sin \theta_{r}$


## Amount reflected given by Fresnel equations

$p=$ parallel to plane of incidence

$$
\begin{aligned}
& R_{\mathrm{p}}=\left|\frac{n_{1} \cos \theta_{\mathrm{t}}-n_{2} \cos \theta_{\mathrm{i}}}{n_{1} \cos \theta_{\mathrm{t}}+n_{2} \cos \theta_{\mathrm{i}}}\right|^{2}=\left|\frac{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}-n_{2} \cos \theta_{\mathrm{i}}}{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}+n_{2} \cos \theta_{\mathrm{i}}}\right|^{2} . \\
& R_{\mathrm{s}}=\left|\frac{n_{1} \cos \theta_{\mathrm{i}}-n_{2} \cos \theta_{\mathrm{t}}}{n_{1} \cos \theta_{\mathrm{i}}+n_{2} \cos \theta_{\mathrm{t}}}\right|^{2}=\left|\frac{n_{1} \cos \theta_{\mathrm{i}}-n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}}{n_{1} \cos \theta_{\mathrm{i}}+n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}}\right|^{2},
\end{aligned}
$$



- S.Polarization, coming out of page

P-PPolarization, paratel to page
$s=$ senkrecht to plane of incidence

## Reflected light is mostly s-polar




Polarizer allows light of only 1 polarization to get through

## Anti-reflection coatings



Even at normal
incidence, glass
reflects $\sim 4 \%$ of light
Apply coating with n in between air and glass

$n_{S}$

Anti-reflection coatings work by producing two reflections which interfere destructively with each other.


One coat of proper index takes reflection 4\% -> 2\%
Set thickness $=\lambda / 4$

## Real world anti-reflective coatings





On to Matlab...

