Diffraction and resolution, aberrations

- Last class
 - Microscope components
 - Diffraction
- This class
 - Diffraction and imaging
 - Aberrations

Single slit diffraction

Quick side note

Solution to the diffraction pattern is a sinc function Intensity is given by sinc².

We see INTENSITY of light, measured in watts (energy/sec).

The intensity is the square of the electric field of our plane wave

Electric field can be negative, intensity can not.

Diffraction of light

Airy disc arises from different paths of light Destructive interference creates bands of low intensity

Minimum when length difference d – r = $\lambda/2$ Completely out of phase at that point

Width of aperture determines size of airy disc

Diffraction is necessary to reform image

Increased aperture allows collection of higher order modes, can create a sharper image (higher resolution)

Increasing aperture size

Airy Disk Patterns and PSFs from Diffraction

Increasing resolution

Bigger aperture

Bigger optics are more expensive Take up more room Every downstream optic must also have >= NA

Numerical Aperture and Airy Disc Size

P2-SHR Plan Apo 0.5×
P2-SHR Plan Apo 1×
P2-SHR Plan Apo 1.6×
P2-SHR Plan Apo 2×

Smaller wavelength

Higher energy Damage to sample harder to produce enough intensity

Numerical aperture

NA = nsin(θ) n = 1 (Air) = 1.33 (Water) = 1.48 (Oil) Olympus objective: 60x magnification, NA 1.45

NA = n sin θ θ = sin⁻¹ (NA/n) = sin⁻¹ (1.45/1.48) = 79 ° Olympus objective: 60x magnification, NA 1.35

NA = n sin θ θ = sin⁻¹ (NA/n) = sin⁻¹ (1.35/1.48) = 65 °

Pct of light collected Pct = -1/2 (cos (θ) - 1) = -.5 * (cos(79) - 1) = 40 % Pct of light collected Pct = -1/2 (cos (θ) - 1) = -.5 * (cos(65) - 1) = 28 %

NA and resolution

Numerical Aperture and Image Resolution

Another word on NA

Objective (f_o)

Olympus objectives expect a tube lens of 18 cm.

Consider 6.5 μm pixel size 60x mag -> 108 nm Diffraction Limit:

d = λ/2 * NA = 700 nm / (2*1.45) = 241 nm (AT BEST)

Tube lens (f_t) Nyquist frequency says sample at 2x minimum resolvable feature

100x doesn't buy any additional resolution. Adds noise as each pixel produces noise

Why oil

Oil has the same index as glass Allows a larger cone

Oil objectives cost more money You have to deal with oil

Only way to do TIRF microscopy

 $\theta_{c} = \sin^{-1}(n_{1}/n_{2})$ $= \sin^{-1}(1.33/1.49)$ $= 64^{\circ}$

Because they are index matched, the amount of reflection at each interface is also reduced

Diffraction limits the resolution

Rayleigh criterion for resolution θ_{min} = 1.22 λ /D

Resolution by your eye

Depth of field

Depth of field decreases with cone angle (NA) Can be good (trying to exclude regions, sectioning0 Can be bad (very little is visible)

NA = 0.50

O = 30.0"

NA = 0.80

0 = 53.2"

NA = 0.30

0 = 17.5

Point spread function Defines resolution of entire system Response of a point light emitter

Three dimensional response of all the optics in the microscope.

On to Matlab...