
Likelihood a finite lattice has an intransitive G-Set
representation

Speaker: Steve Seif

Abstract: Results on the number of finite lattices
that can be represented by an intransitive G-Set are
presented.



Definitions

I Let M act on a set X . X = 〈X ,M〉 is said to be an
M-Set. X is transitive if M acts transitively on X .

I If M is a group, 〈X ,M〉 is said to be a G-Set.

I A lattice L is represented by an M-Set X = 〈X ,M〉 if
L ∼= Con(X).

I The lattice L is intranstive G-Set representable if it is
represented by an intransitive G-Set; otherwise, L is
G-Set-transitivity-forcing .
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Familiar questions

I Is every finite lattice represented by a finite M-Set?
(Known as FLRP).

I Is every finite lattice represented by a finite, transitive
G-Set? (Has same answer as FLRP.)

I If answer to FLRP is “no”, is there a finite lattice that is
finitely representable but is not representable by a
(transitive) G-Set? In other words, do finite groups have
“dominion” over finite lattice representations?

I Related to the last question, but independent of FLRP:
(How) can the finite lattices that are intransitively-G-Set
representable be described?
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Intransitive G-Set (with k orbits) will be presented as follows:

Y = 〈ti∈[k]Xi ,G 〉

where for i ∈ [k] = {1, . . . , k}, Xi is an orbit of Y.

G k acts on ti∈[k]Xi : (g1, . . . , gk)(xi) = gi(xi), where the
outcome of gi(xi) is determined by 〈Xi ,G 〉. Let

Y∗ = 〈ti∈[k]Xi ,G
k〉

. Note that if xi ∈ Xi , xj ∈ Xj , i 6= j , that G acts transitively
on orbits Xi and Xj implies that Cg(xi , xj) in Y∗ has one
non-singleton class, Xi ∪ Xj .

Thus every congruence ρ of Y∗

can be described by a tuple:

(α1, . . . , αk , β)

where αi ∈ Con(Xi) and β ∈ Π(k) whose influence is: If
(i , j) ∈ β, then both α1, α2 are universal congruences.
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Π-product lattices

From the last slide: Congruences of Y∗= 〈ti∈[k]Xi ,G
k〉 can be

described by {(α1, . . . , αk , β) tuples, where (i , j) ∈ β implies αi , αj

are universal on Xi ,Xj resp.

Def’n. Let L1, . . . , Lk be a multiset of lattices, and
Π(L1, . . . , Lk), a Π-product lattice, is:

{(a1, . . . , ak , β) : ai ∈ Li , β ∈ Π(k), and (i , j) ∈
β implies that ai = 1i and aj = 1j}.

The multiset L1, . . . , Lk is the factors of Π(L1, . . . , Lk).

Lastly, the trivial lattice is defined to be a Π-product lattice.

Note that Con(Y∗) (which turns out to be a 0,1
cover-preserving sublattice of Con(Y)) is the Π-product lattice
Π(Con(X1), . . . ,Con(Xk)).
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Elementary properties of Π-product lattices

Lemma A: 1. Every lattice having a single co-atom is
isomorphic to a Π-product, with factors that are not uniquely
determined.

2. Suppose k > 2 and Π(L1, . . . , Lk) ∼= Π(M1, . . . ,Mr ). Then
the multisets L1, . . . , Lk and M1, . . . ,Mr are the same.

Lemma B: Every Π-product lattice Π(L1, . . . , Lk) with
algebraic factors has a representation as an intransitive G-Set
having k orbits, orbits with congruence lattices isom. to
L1, . . . , Lk .
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Y satisfies Property K iff Con(Y) isom. to Π-prod. lattice

Y∗ satisfies the following property, Property K:

If xi ∈ Xi and xj ∈ Xj are in different orbits, then
Xi × Xj ⊂ Cg(xi , xj).

(which further implies Cg(xi , xj) has one non-singleton orbit,
Xi ∪ Xj .)

Y itself may or may not satisfy Property K.

The forward direction of Proposition 1 below is implicit from
the discussion on last slide; the other direction is more
interesting.

Proposition 1. An intransitive G-Set Y satisfies Property K
iff Con(Y) is isomorphic to a Π-product lattice.
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A subclass whose intransitive G-Set representable lattices
can be completely described

Defn. 1. For n ∈ N, A(n) is the lattice that looks like this:
A(4) is below, having 4 co-atoms that are also atoms).

2. The set of finite lattices that has no subinterval isomorphic
to A(1) or to A(p), where p is prime, is called N .

Theorem 2. L ∈ N has a representation by an intransitive
G-Set (finite or otherwise) if and only if L is isomorphic to a
Π-product lattice.

Corollary A finite lattice L in N is either a Π-product lattice,
in which it has an intransitive G-Set representation, or L is
G-Set-transitivity-forcing.
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Arbitrary algebraic lattices: Π(L)

Theorem 2. Let L be any algebraic lattice. There exists a
sublattice of L, Π(L), a certain 0,1 cover-preserving sublattice
isomorphic to a Π-product lattice Π({Li : i ∈ I}) such that

1. If Π(L) is trivial, L has no representation as the
congruence lattice of an intransitive G-Set.

2. There’s a bijection φ from the factors of Π(L) to the
orbits of any representation of L by an intrans. G-Set.

3. Moreover, if |I | > 2, Li ∼= Con(Xφ(i)), all i ∈ I .

Comment: So an algebraic lattice L’s intransitive G-Set
representations all share certain important properties,
determined by Π(L).
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Back to finite-orbit intrans G-Sets

Let l(n) be the number of isomorphism classes of n-lattices.
Fact: log(l(n)) ∈ Ω(n3/2). (Attribute)
An analysis of the congruence lattices of two-orbit G-Sets
yields the following useful proposition.

Proposition Given two non-trivial finite lattice L1, L2, and a
pos. int. n, there exist no more than nn lattices L having a
two-orbit G-Set Z = 〈X1 t X2,G 〉 satisfying Con(Z) ∼= L,
|Con(Z)| = n, and Con(X1) ∼= L1,Con(X2) ∼= L2.
Corollary There are no more than nn+2l(dn/2e) n-lattices that
are intran. G-Set representable.

Since finite lattices are closed under ordinal sum, and thus
l(2n + 1) ≥ l(n)l(n + 1), l(dn/2e)

l(n)
is in the vicinity of l(dn/2e),

a very large number that dominates nn+2.



Asympotic dichotomy for finite lattices

From last frame: Corollary “There are no more than
(nn+2)l(dn/2e) n-lattices that are intran. G-Set representable.”

Using the corollary above, it is easy to show the following.

Theorem 3. A randomly chosen n-lattice L has high
likelihood of being one of the following: A Π-product lattice,
in which L is intransitive G-Set representable, or
G-Set-transitivity-forcing.

In fact, there exists k > 0 such that for all n high enough, a
lattice chosen randomly from among the non-Π-product

n-lattices has less than 1

2kn3/2
likelihood of having an intrans

G-Set representation.
Outside of Π-product lattices, there really aren’t any
intransitive G-Set representable lattices....
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Specializing to subclasses of finite lattices

Any class C of finite lattices

1. that is closed under ordinal sums,

2. contains 2× 2, and

3. for which there exists k > 1 such that for n high enough,
log(lC (n)) ≥ nk

satisfies the same “asymptotic dichotomy” as described in the
last theorem, Theorem 3 above.

Theorem 4. For a class C satisfying 1.-3. above, there exists
k > 0 such that for all n high enough, a randomly chosen C
lattice from among non-Π-product n-lattices has a
representation as an intransitive G-Set with likelihood less

1
lC (kn)

, where lC (n) is the number of isomorphism classes of

n-lattices in C .

Question (Maybe this is known): Do all varieties properly
containing the distributive lattices satisfy 3. above?



Questions
The same asymptotic dichotomy also seems to hold if one is
restricted to the subclass of finite lattices that are finitely
represented, but one has to change from “G-Sets” to so-called
”flat M-Sets” those M-Sets that are a “sum” of transitive M-Sets.
That is, among only lattices that are finitely representable, with
high likelihood, a finite lattice is either a Π-product lattice or is
flat-transitivity-forcing.

Defn. 1. A finite lattice L is (finitely)-transitivity-forcing if all of
its (finite) representations are transitive.

2. Let t(n) be the number of isom. classes of
finitely-transitivity-forcing lattices.
Question: Is limsupn→∞

t(n)
l(n) positive? 1?

Other questions:
Question: Does there exist c > 0 such that l(n)

l(n−1) > 2cn
1/2

, for all
n high enough?
Question: Averaged over isomorphism classes, is the average
number of atoms of an n-lattice Θ(n1/2)?
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