
Let F be a field and let X = {x1, . . . , xn} be a set of variables. The polynomial
ring F[X] is graded by degree

F[X] = H0 ⊕H1 ⊕H2 ⊕ · · · .
The elements of Hk will be called “forms” (over F).

Let Q(x1, . . . , xn) be a quadratic form over F. Let

I = F ·Q(X)⊕H3 ⊕H4 ⊕ · · ·
be the ideal generated by Q(X) and the forms of degree at least 3. The quotient
SF,Q := F[X]/I may be viewed as a graded ring:

SF,Q = H0 ⊕H1 ⊕H2/(Q)⊕ 0⊕ 0 · · · .
In what follows, there will be instances where we have an element p ∈ SF,Q =

H0 ⊕H1 ⊕H2/(Q) whose H0 component (=constant term) is 0, and we will want to
know its H1 component (=linear term). We write [p] to denote the linear term of p
when p has no constant term.

Two quadratic forms Q1 and Q2 are equivalent if they differ by an invertible linear
change of variables.

Theorem 1. Let F be a finite field of odd characteristic p. Let Q1(x1, . . . , xn) and
Q2(x1, . . . , xn) be nonzero quadratic forms over F.

(1) SF,Q1 and SF,Q2 have isomorphic F-space structures.
(2) If n > 4 and Q1 and Q2 are nondegenerate, then SF,Q1 and SF,Q2 have iso-

morphic multiplicative monoids.
(3) SF,Q1 6∼= SF,Q2 as F-algebras, unless Q1 is equivalent to a nonzero scalar mul-

tiple of Q2.

Proof. [Item (1)] If Q 6= 0, then the F-space structure of SF,Q = H0 ⊕H1 ⊕H2/(Q)
is that of a quotient of the space H0 ⊕H1 ⊕H2 by a 1-dimensional subspace. This
structure is independent of the choice of Q.

[Item (2)] Let’s examine the multiplicative structure of SF,Q = H0 ⊕H1 ⊕H2/(Q)
where Q is any nondegenerate quadratic form over F in more than four variables. We
partition the elements of SF,Q into five cells:

(1) C0 consists of those elements whose H0-component is not zero.
(2) C1 consists of those elements whose H0 component is zero, but whose H1-

component is not zero.
(3) C2 consists of those elements whose H0- and H1-components are zero, and

which are products of elements from H1.
(4) C3 are the nonzero elements that remain.
(5) C4 = {0}.

Notice first that the cardinalities of H0, H1, H2, H2/(Q), C0, C1, and C2∪C3 depend
only on n, |F| and the fact that Q 6= 0, but do not otherwise depend on Q.
C0 is the set of units of the ring, which I will also denote G. The structure of the

(finite, abelian) group G is easy to determine: it has a subgroup of homogeneous units
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F× · 1 ⊆ G and a complementary subgroup of inhomogeneous units 1 + rad(SF,Q).
The homogeneous units form a cyclic group of size |F×| while the complementary
subgroup is an elementary abelian p-group of size |rad(SF,Q)| (since the p-th power
of 1 +m ∈ 1 + rad(SF,Q) is (1 +m)p = 1 +mp = 1). Hence

G ∼= F× × (1 + rad(SF,Q)) ∼= Z|F×| × Zdim(rad(SF,Q))
p .

The point here is that the structure of this group does not depend on the choice of
the quadratic form Q, only on the fact that Q 6= 0.

The group G acts by multiplication on SF,Q, and each cell Ci is a union of G-orbits.
Moreover, for a fixed i, the G-orbits in Ci are isomorphic to one another as G-sets.
To see this it is enough to show that two elements of the same cell have the same
stabilizer. Now, u ∈ G may be written as α+ β with α ∈ H0 and β ∈ H1 ⊕H2/(Q).
For α+ β to stabilize x we must have x = αx+ βx, which can only happen if α = 1
and β ∈ Ann(x). Thus two elements have the same stabilizer in G iff they have
the same annihilator in SF,Q. It is easy to see that the annihilator of any element
of C0 is 0, so C0 is partitioned in (one) G-orbit. The annihilator of any element of
C2 ∪ C3 is m = rad(SF,Q) = H1 ⊕ H2/(Q) = C1 ∪ C2 ∪ C3, so C2 and C3 are each
partitioned into isomorphic orbits. These orbits consist of a nonzero element and its
nonzero scalar multiples. It remains to explain why the annihilator of any element
of C1 is m2 = H2/(Q) = C2 ∪ C3. If this were not the case, then there would be
p1, p2 ∈ C1 such that p1p2 = 0. The same would be true is we replaced pi by its
homogeneous linear component, [pi] = `i, so assume `1, `2 ∈ H1 and `1`2 = 0 in
H2/(Q). Considering `1, `2 ∈ H1 as linear forms in F[X], we see that `1`2 is nonzero
in H2, but it is zero in H2/(Q). Thus the quadratic form `1`2 must be a nonzero
scalar multiple of Q. Scaling `1 if necessary we may assume that Q = `1`2. But this
is impossible: a nondegenerate quadratic form in more than four variables cannot
equal the product of two linear forms. This contradiction shows that all elements of
C1 have the same annihilator, namely m2.

Next, I want to choose unique representatives for the G-orbits of the ring. The
notation used will be: if r is in the ring, then r0 will denote the representative of the
orbit Gr. If u is a unit, then I choose the representative of its orbit to be the identity
element, so u0 = 1. I choose representative elements from the orbits in C1 arbitrarily.

For the orbits in C2 I do the following: if p, q ∈ C1 and pq ∈ C2, then (pq)0 := p0q0.
It is not immediately clear that this way of choosing representatives is well defined, so
let’s argue that it is. Suppose some orbit in C2 contains pq and rs where p, q, r, s ∈ C1.
We must argue that p0q0 = r0s0. Note that pq = [p][q] if p, q ∈ C1, where (recall) [p]
denotes the linear part of p. Thus, if pq, rs ∈ C2 lie in the same orbit, say pq = αrs
for some α ∈ F×, then the homogeneous quadratic form [p][q] − α[r][s] represents
the zero element in SF,Q. This can only happen if the form [p][q]− α[r][s] is a scalar
multiple of Q. This means that, either [p][q] − α[r][s] is zero as a form, or else
Q is a scalar multiple of [p][q] − α[r][s]. But this latter possibility cannot happen.
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For, if Q is a scalar multiple of [p][q]− α[r][s] and the linear forms [p], [q], [r], [s] are
linearly independent, then Q is equivalent to the quadratic form x1x2 − αx3x4. (If
the linear forms involved were not linearly independent, then Q would be equivalent
to something with even fewer variables.) But in this theorem we only consider forms
Q which are nondegenerate forms in n > 4 variables. Under such a hypothesis, Q
cannot be a scalar multiple of [p][q]−α[r][s]. Hence [p][q]−α[r][s] is the zero form. By
unique factorization in F[X] we get that {[p], [q]} = {βα[r], β−1[s]} = {[βαr], [β−1s]}
for some β ∈ F×. If, say [p] = [βαr], then [p0] = [r0], and similarly [q0] = [s0]. Thus
p0q0 = [p0][q0] = [r0][s0] = r0q0.

The elements of C3 lie in orbits in which any two elements differ by a nonzero scalar.
I choose representatives of these orbits arbitrarily. Of course, the representative for
C4 = {0} is 0.

Now that these generalities are out of the way, let Q1 and Q2 be nondegenerate
quadratic forms in more than four variables. Define a function ϕ : SF,Q1 → SF,Q2 as
follows.

(1) Defining ϕ to be a group isomorphism on the respective unit groups.
(2) Extend ϕ to an arbitrary bijection between the C1-orbit representatives.
(3) Further extend ϕ to a bijection between the C2-orbit representatives in the

following way: If p, q ∈ C1 (and so pq ∈ C2) and pq is in the orbit represented
by (pq)0 = p0q0, then define ϕ((pq)0) = ϕ(p0)ϕ(q0) (= ϕ(p0)0ϕ(q0)0).

(4) Extend further to a bijection between C3 orbit representatives, then extend
so that ϕ(0) = 0.

(5) Finally, extend ϕ to each orbit so that ϕ is a G-set isomorphism from SF,Q1

to SF,Q2 . (By this I mean that if p = αp0 in SF,Q1 , then ϕ(p) = ϕ(α)ϕ(p0) in
SF,Q2 .)

We have already said enough to see that it is possible to do this. (I.e., the unit
groups are isomorphic, the number and isomorphism types of orbits in each cell are
the same.)

To complete the proof of Item (2) of the theorem we must show that ϕ is a monoid
isomorphism. Since it is a G-set isomorphism, what remains to check is that if pq = r
with p, q ∈ rad(SF,Q1), then ϕ(p)ϕ(q) = ϕ(r). The only nontrivial case to check is
when p, q ∈ C1. Assume that α, β ∈ G are such that p = αp0 and q = βq0. Then since
ϕ is a G-set isomorphism and it preserves orbit representatives, ϕ(p) = ϕ(α)ϕ(p0) =
ϕ(α)ϕ(p0)0, ϕ(q) = ϕ(β)ϕ(q0) = ϕ(β)ϕ(q0)0, and ϕ(pq) = ϕ(αβ)ϕ((pq)0)0. Hence

ϕ(p)ϕ(q) = ϕ(α)ϕ(p0)0ϕ(β)ϕ(q0)0 = ϕ(αβ)ϕ((pq)0)0 = ϕ(pq).

[Item (3)] Suppose ϕ : SF,Q1 → SF,Q2 : xi 7→ pi is an F-algebra isomorphism. In the
domain F-algebra we have that

(1) x3i = 0 for each i,
(2) Q1(x1, . . . , xn) = 0, and
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(3) the set {x1, . . . , xn} is linearly independent.

The third of these items can be re-expressed as “no nonzero linear combination of
the elements {x1, . . . , xn} annihilates all of the radical of SF,Q1”. In the codomain
algebra we must therefore have

(1) p3i = 0 for each i,
(2) Q1(p1, . . . , pn) = 0, and
(3) no nonzero linear combination of the elements {p1, . . . , pn} annihilates all of

the radical of SF,Q1 .

Notice that the same three properties will hold if we replace each pi by its ho-
mogeneous linear part, [pi] = `i. But for the homogeneous quadratic polynomial
Q1(`1, . . . , `n) to agree with 0 in SF,Q2 it is necessary that the form Q1(`1, . . . , `n),
which is obtained from Q1 by an invertible linear change of variables, be a scalar
multiple of Q2(x1, . . . , xn). Thus if SF,Q1

∼= SF,Q2 as F-algebras, then Q1 is equivalent
to a nonzero scalar multiple of Q2. �


