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Abstract. We show that a minimal clone has a nontrivial abelian
representation if and only if it is isomorphic to a minimal subclone
of a finite cyclic group. As an application, we show that a minimal
clone contains a Mal’cev operation if and only if it is isomorphic
to the clone of idempotent operations of a group of prime order.

1. Introduction

A clone is trivial if every operation is projection onto a variable. A
clone is minimal if it is not trivial, but its only subclone is trivial.
Any minimal clone is generated by a single operation. If C is a clone
generated by the operation f , then an f–representation of C is a pair
A = 〈A; fA〉 where A is a set, fA is an operation on A, and the as-
signment f 7→ fA extends to a clone homomorphism from C to the
concrete clone of operations on A generated by fA. Such a representa-
tion will be called trivial if the clone of 〈A; fA〉 is a trivial clone; i.e., if
fA is projection onto a variable. A representation is faithful if the as-
signment f 7→ fA extends to a clone isomorphism from C to the clone
of operations on A generated by fA. The size of the representation
〈A; fA〉 is |A|.

Let C be a minimal clone and let f be an operation generating C. The
class of f–representations of C is a variety of algebras which we denote
by V. The clone of V is C, which is a minimal clone by assumption,
and the clone of each A ∈ V is either trivial or it is a minimal clone. If
we change from f to a different operation generating C, then we get a
term equivalent variety. In this paper we shall often drop the reference
to f when we speak of representations and consequently we shall only
consider algebras and varieties up to term equivalence.

The term condition for an algebra A (cf. Chapter 3 of [3]) is the
assertion that for all operations t(x, ȳ) in Clo(A) and all a, b ∈ A,
ū, v̄ ∈ An the following implication holds:

t(a, ū) = t(a, v̄)⇒ t(b, ū) = t(b, v̄).
1
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An abelian algebra is one which satisfies the term condition. When
using the term condition in this paper we shall underline the positions
where the arguments change in order to make the application more
transparent.

Our project is to describe the minimal clones which have nontrivial
abelian representations. We approach minimal clones by looking at
their nontrivial abelian representations because of an interesting fact
about (nonunary) minimal clones. It may be stated as follows: nontriv-
ial abelian representations must be faithful. The classification problem
for minimal clones with a nontrivial abelian representation reduces to
the classification problem for minimal clones of abelian algebras and
this is a problem easily solved.

The description of the minimal subclones of a module follows imme-
diately from our main theorem (which is Theorem 3.11). However, our
result is more than this. In the first place, in our arguments we must
allow the possibility that some abelian representations are unrelated to
modules. But even in the case where a clone C has a nontrivial repre-
sentation as a reduct of a module, we must worry about what happens
if this representation is not faithful. This paper is entirely concerned
with handling these two difficulties. Surprisingly, we find out in Corol-
lary 3.12 that neither difficulty can occur: any minimal clone which has
a nontrivial abelian representation must have a faithful representation
as a reduct of a finite cyclic group.

Our results enable us to answer a question asked by P. P. Pálfy:
Which Mal’cev operations generate minimal clones? Using modular
commutator theory, we show that a minimal clone generated by a
Mal’cev operation has a nontrivial abelian representation. The answer
to Pálfy’s question follows immediately from the classification theorem.
(In fact, one could arrange a shorter proof of the answer to Pálfy’s ques-
tion by just combining Theorem 3.13 and Lemma 3.9 together with a
few arguments from the end of the proof of Lemma 3.4 to make the
connection.) Previously, in [8], Á. Szendrei answered Pálfy’s question
for minimal clones assumed to have a finite faithful representation. Our
solution does not require a finiteness assumption.

2. Minimal Clones

Since a minimal clone is generated by any of its operations which is
different from a projection, any minimal clone is unary or idempotent.
The idempotent minimal clones may be grouped together according to
the least arity of an operation which is not a projection. If one skips
over the binary idempotent operations which generate minimal clones,



MINIMAL CLONES WITH ABELIAN REPRESENTATIONS 3

one finds that only very special idempotent operations of high arity can
generate minimal clones (since every specialization to fewer variables
results in a projection). We introduce the following terminology for
(some) idempotent operations of arity > 2.

A Mal’cev operation is a ternary operation p(x, y, z) such that the
equations

p(x, y, y) = p(y, y, x) = x

hold. A majority operation is a ternary operation M(x, y, z) such that
the equations

M(x, x, y) = M(x, y, x) = M(y, x, x) = x

hold. A minority operation is a ternary operation m(x, y, z) such that
the equations

m(x, y, y) = m(y, x, y) = m(y, y, x) = x

hold. A Pixley operation (sometimes called a 2/3–minority operation)
is a ternary operation P (x, y, z) such that the equations

P (x, y, y) = P (x, y, x) = P (y, y, x) = x

hold. An (i–th variable) semiprojection is an operation s(x1, . . . , xk) of
arity ≥ 3 which is not a projection, but whenever two arguments are
equal then the value of s(x1, . . . , xk) is xi.

The following theorem describes the five classes of minimal clones.
A proof can be found in Chapter 1 of [7].

THEOREM 2.1. A minimal clone is generated by one of the following
types of operations:

(I) a unary operation not equal to a projection;
(II) an idempotent binary operation not equal to a projection;

(III) a majority operation;
(IV) a minority operation; or
(V) a semiprojection. 2

The following is an easy exercise.

THEOREM 2.2. A clone of class (I) is minimal iff it is generated by
a unary operation f which is different from the unary projection and
for which either f(f(x)) = f(x) holds or else f p(x) = x for some prime
p. 2

Note that if P (x, y, z) is a Pixley operation, then

m(x, y, z) := P (P (x, z, y), y, P (y, x, z))

is a minority operation. Moreover, this minority operation generates
a proper subclone of the clone generated by P . To see this, let C
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be the clone generated by m(x, y, z). If P (x, y, z) ∈ C, then every
representation of C would have a Pixley operation: the interpretation
of P (x, y, z). Because of the equations that define minority operations
and Pixley operations, there is (up to isomorphism) exactly one two–
element representation for either type of operation. To prove that
P (x, y, z) 6∈ C it will suffice to show that a clone on {0, 1} generated by
a minority operation does not include a Pixley operation. On {0, 1}, a
minority operation m(x, y, z) must interpret as x + y + z(mod 2), and
so m(x, y, z) generates the clone of the two–element affine vector space.
Such a representation of C is abelian. Since

P (0, 0, 1) = 1 = P (1, 0, 1)

and

P (0, 0, 0) = 0 6= 1 = P (1, 0, 0),

it follows that P (x, y, z) 6∈ C. Hence, no Pixley operation generates a
minimal clone.

A two–element representation of a minority operation is a nontrivial
abelian representation. From the main results of this paper, such a
representation is faithful. Hence, the only clone in class (IV), up to
isomorphism, is the clone of the two–element affine vector space. This
description of the clones in class (IV) was first obtained by I. G. Rosen-
berg, [6]. We remark that classes (I) and (IV) are the only classes of
minimal clones that have been completely described.

3. Abelian Representations

We want to know which classes of minimal clones have nontrivial
abelian representations. Every unary algebra is abelian, so all mini-
mal clones of class (I) have nontrivial abelian representations. Some,
but not all, of the minimal clones in class (II) have nontrivial abelian
representations. The minority equations imply that any clone in class
(IV) has a two–element nontrivial abelian representation.

THEOREM 3.1. No clone in class (III) or (V) has a nontrivial abelian
representation.

Proof. We show that any abelian representation of a clone which has a
majority operation or semiprojection must be trivial. For the majority
we have

M(x, x, z) = x = M(x, x, x).

Changing the underlined occurrence of x to y we get

M(x, y, z)
?
= x = M(x, y, x).
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Therefore, if the term condition held, we would have M(x, y, z) = x
for all x, y and z. The same argument applied to different variables
forces M(x, y, z) = y and M(x, y, z) = z for all x, y and z. But this
could only happen in a representation of size one which, according to
definitions, is trivial.

If s(x1, x2, x3, . . . , xk) is a (first variable) semiprojection, then

s(x1, x1, x3, . . . , xk) = x1 = s(x1, x1, x2, . . . , xk).

Changing the underlined x1 to x2 we get

s(x1, x2, x3, . . . , xk)
?
= x1 = s(x1, x2, x2, . . . , xk).

If the term condition held, then s(x1, x2, x3, . . . , xk) = x1 would hold
for all choices of (x1, . . . , xk) and then s would be first projection.
This could not happen in a nontrivial representation. This finishes the
proof. �

The only minimal clones with nontrivial abelian representations which
we have not yet described are those of class (II). We shall first proceed
to describe nontrivial abelian representations of minimal clones gen-
erated by an idempotent binary operation, and afterwards we shall
describe the clones themselves.

LEMMA 3.2. If A = 〈A; xy〉 is an abelian representation of a clone
of class (II), then A |= (xy)(zu) = (xz)(yu).

Proof. By idempotence we have

(yy)(zz) = yz = (yz)(yz).

Changing the underlined y to x and the underlined z to u gives the
result. �

When we refer to clones of class (II), we assume a specifically chosen
idempotent binary operation which generates the clone. If A = 〈A; xy〉
is a representation of such a clone we will say that the representation
A is left cancellative if A |= (xy = xz) ⇒ y = z. Right cancella-
tive is defined in the obvious way and A is cancellative if it has both
properties.

LEMMA 3.3. Let C be a minimal clone of class (II) and assume that
C has a nontrivial abelian representation which is neither left nor right
cancellative. Then C has a nontrivial abelian representation which is a
rectangular band.
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Proof. Let A be an abelian representation which is neither left nor right
cancellative. Since A is not left cancellative there exist u, v, w ∈ A such
that

uv = uw.

Applying the term condition we get that xv = xw for all x ∈ A.
In particular, we have wv = ww = w and v = vv = vw. Thus,
L = {v, w} is a subuniverse of A which supports a subalgebra that is
a left zero semigroup. Similarly, the failure of right cancellativity in A
implies that A has a subalgebra R which is a two–element right zero
semigroup. The algebra L×R is in the variety generated by A, so it is
a representation of C. L ×R is a rectangular band, thus it is abelian.
L×R has a nontrivial clone, so it is a nontrivial abelian representation
of C. �

Assume that C is a minimal clone of class (II) which has a (possibly
trivial) abelian representation A = 〈A; xy〉 of size > 1 which is not
left cancellative. Assume that C also has a (possibly trivial) abelian
representation B = 〈B; xy〉 of size > 1 which is not right cancellative.
Then A×B is a nontrivial abelian representation that is neither left nor
right cancellative. Lemma 3.3 already describes this case in as much
detail as we shall require, so we no longer need to consider minimal
clones which have an abelian representation of size > 1 which is not
left cancellative and also an abelian representation of size > 1 which
is not right cancellative. We may assume that C is a minimal clone of
class (II) for which every abelian representation is right cancellative.

LEMMA 3.4. Let C be a minimal clone of class (II) and assume that
xy is right cancellative in every abelian representation of C. Assume
that C has no nontrivial abelian representation satisfying the equation
x(xy) = x. Then C has a nontrivial abelian representation as a vector
space over a prime field.

Proof. We shall use the following notation: for a representation A and
for a ∈ A we write λa(x) for the polynomial x 7→ ax. We write ρa(x)
for the polynomial x 7→ xa. When A is abelian, Lemma 3.2 implies
that

λa(x)λa(y) = (ax)(ay) = (aa)(xy) = a(xy) = λa(xy),

so each λa (and each ρa) is an endomorphism. The term condition
implies that the kernel of λa is independent of a (au = av ⇔ bu = bv),
and a similarly for ρa. The same argument shows that λa ◦ λb(x) has
kernel which is independent of both a and b, etc. Our hypothesis that
every abelian representation of C is right cancellative implies that each
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ρa has trivial kernel. Assuming that the equation x(xy) = x fails is
the statement that λx ◦ λx is not constant when 〈A; xy〉 is a nontrivial
abelian representation.

Let A be a nontrivial abelian representation of C. Since A is a
right cancellative, idempotent, abelian groupoid; Theorem 2.11 of [4]
proves that the relation ker(λx) = θ = {(a, b) ∈ A2 | aa = ab} is a
congruence on A and that A/θ is a subalgebra of a reduct of a (unital)
module. In particular, A/θ is another abelian representation of C.
If A/θ is trivial as a representation of C; then, since every abelian
representation of C is right cancellative, it must be that A/θ is a left
zero semigroup. Therefore, if A/θ is a trivial abelian representation of
C, we have A/θ |= xy = x and so A |= xy θ x. From the definition
of θ we get that A |= x(xy) = xx = x. But we have assumed that no
nontrivial abelian representation of A satisfies the equation x(xy) = x,
so we conclude that A/θ is a nontrivial representation of C which is a
subalgebra of a reduct of a module.

Changing notation, we assume that our original choice of A was a
subalgebra of a reduct of a module. In fact, as argued in Section 3 of
[4], the variety generated by A contains an algebra A′ which extends A,
generates the same variety as A, and is actually a reduct of a module.
Therefore, we may (and do) assume that A is a reduct of a module

RM . One can represent the basic operation of A as an idempotent
module operation: xy = (1− r)x + ry with r ∈ R. Now, for R′ equal
to the subring of the additive endomorphism ring of RM generated by
the function x 7→ r · x, A is a subalgebra of a reduct of the R′–module
structure on RM . Hence we may assume that R is a subring of additive
endomorphisms of RM and that R is generated as a ring by the single
element r. In particular, this implies that R is a commutative ring
which acts faithfully on RM .

Claim. 〈R; (1− r)x+ ry〉 is a nontrivial abelian representation of C.
Proof of Claim. If RN is a submodule of RM

κ and θ is a congruence
on RN , then the reduct RN

′ of RN to the operation (1− r)x + ry is
a subalgebra of Aκ which has θ as a congruence. The algebra RN

′/θ
is the reduct of the module RN/θ to the operation (1 − r)x + ry.
Therefore, the variety generated by A contains all reducts to (1 −
r)x + ry of modules in HSP(RM). Since RM is a faithful R–module,
this implies that RR ∈ HSP(RM). Therefore, 〈R; (1 − r)x + ry〉 is a
representation of C. If it is a trivial representation, then (1− r)x+ ry
is a projection operation which forces r = 0 or 1. But this would force
〈M ; (1 − r)x + ry〉 to be a trivial representation also, and it is not.
Hence, the claim is proved.
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Now we may assume that A = 〈R; (1− r)x+ ry〉 where r 6= 0, 1. We
consider representations of C constructed from ideals of R as follows:
if I is a proper ideal of R, then

θ := {(a, b) ∈ R2 | a− b ∈ I}
is a congruence on the module RR, hence on the reduct A = 〈R; (1−
r)x+ry〉. The quotient A/θ has more than one element and is a reduct
of RR/I. Thus, A/θ is an abelian representation of C which has more
than one element. It is easy to check that the following statements are
true:

(i) Right cancellativity of A/θ is equivalent to the implication

(1− r)u ∈ I ⇒ u ∈ I.
(ii) Left cancellativity of A/θ is equivalent to the implication

ru ∈ I ⇒ u ∈ I.
(iii) The element 1 − r is a unit. (This follows from the right can-

cellativity of A/θ. If 1− r was not a unit, then item (i) would
fail for I = (1− r)R and u = 1.)

(iv) A/θ is a trivial representation iff r ∈ I.
(v) A/θ satisfies x(xy) = x iff r2 ∈ I.

If r is in the Jacobson radical of R and rR = r2R, then rR = 0
by Nakayama’s Lemma (Proposition 2.6 of [1].) But this would imply
A |= xy = x, which is false since A is a nontrivial representation.
Hence, r 6∈ r2R if r is in the Jacobson radical. Taking I = r2R in
this case, items (iv) and (v) prove that A/θ is a nontrivial abelian
representation of C which satisfies x(xy) = x. None exists, by the
hypotheses of this lemma, so we conclude that r does not belong to the
Jacobson radical.

Since r is not in the Jacobson radical, R has a maximal ideal K
which does not contain r. Choosing I = K in the construction of A/θ,
we get (by item (iv)) that A/θ is a nontrivial abelian representation of
C. The algebra A/θ must be both right and left cancellative. (Right
cancellativity follows from items (i) and (iii). For left cancellativity
we apply item (ii): if ru ∈ K, then L = {s ∈ R | su ∈ K} is an ideal
containing K ∪ {r}. Since K is maximal and r 6∈ K, we get L = R.
Hence, 1 ∈ L which means u = 1u ∈ K.)

The ring F = R/K is a one–generated field, and therefore a fi-
nite field. A/θ is a reduct of the F–space, FF . From the previ-
ous paragraph, the operation xy interprets in A/θ as (1 − s)x + sy
for some s ∈ F − {0, 1}. The algebra A/θ satisfies the equations
λky(x) = x = ρky(x) for k = |F | − 1, so the operation xy is invertible in
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both variables. This implies that A/θ has division quasigroup polyno-
mials and therefore a Mal’cev operation. This Mal’cev operation must
be x− y+ z, which is the unique Mal’cev operation of the vector space

FF . The idempotent binary operations of A/θ are represented by

{(1− t)x+ ty | t ∈ F ′}
where F′ is a subfield of F. But this subfield must be all of F, since F is
a homomorphic image of R, R is generated by r, and r+K ∈ F ′. This
implies that A/θ is an affine F–space. Now it is clear that F must be a
prime field, since if F had a proper subfield L < F, then the subclone of
A/θ generated by x− y+ z, which equals all of Clo(A) by minimality,
would contain no operation (1− u)x + uy with u ∈ F − L. �

The remaining case to consider is when every abelian representation
of C is right cancellative and there is at least one nontrivial abelian
representation which satisfies x(xy) = x.

LEMMA 3.5. Let C be a minimal clone of class (II) where every
abelian representation is right cancellative. Assume that C has at
least one nontrivial abelian representation which satisfies x(xy) = x.
Then for some prime p the algebra

P = 〈{0, . . . , p2 − 1} ; ((1− p)x + py) (mod p2)〉
is a nontrivial abelian representation of C. (Furthermore, for all primes
p the clone of P is a minimal clone.)

Proof. Let A be a nontrivial abelian representation of C which satisfies
x(xy) = x. Since A is a nontrivial representation, there exist u, v ∈ A
such that uv 6= u. The subalgebra generated by {u, v} is abelian and
still affords a nontrivial representation of C, since otherwise we must
have uv = v = vv and this contradicts the right cancellativity of abelian
representations. Therefore, we assume that {u, v} generates A.

The term condition applied to

x(xy) = x = x(xx)

yields

z(xy) = zx = z(xx).

Since A |= x(xy) = x, we get A |= z(xy) = zx. It follows from
this that any operation of A agrees with a left–associated product of
variables. Furthermore, Lemma 3.2 shows that (xy)(zu) = (xz)(yu)
holds. Applying the equation z(xy) = zx to this we get

(xy)z = (xy)(zu) = (xz)(yu) = (xz)y.
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The equation (xy)z = (xz)y implies that any two variables different
from the left–most variable may be interchanged without affecting the
product. Thus any term operation tA(x1, . . . , xk) agrees on A with one
of the form

xix
n1
1 · · ·xni−1

i−1 x
ni+1

i+1 · · ·xnkk
where this product is left–associated and variables are distinct. (Mul-
tiple occurrences of xi could be moved to the right of the left–most xi
and then absorbed with the idempotent law.)

Claim. There is a prime p such that uvp = u.

Proof of Claim. Assume that the claim is false. Since A is right
cancellative, the function ρv(x) is a 1-1 function. Either the sequence
Σ = (u, uv, uv2, . . . ) is infinite and nonrepeating or else the sequence
is repeating with period n where n is not prime. We proceed the same
way in both cases: let x ∗ y = xyq where q is a prime number chosen
according to the following rules.

• q = 2 if Σ is nonrepeating.
• q is the least prime divisor of n if Σ is repeating of period n.

Because q is prime, our first assumption (that the claim is false) implies
that we do not have u = u ∗ v = uvq. We cannot have v = u ∗ v either,
since then

uvq = u ∗ v = v = vvq

contradicts either the right cancellativity of xy or else the fact that
u 6= v. Thus, x ∗ y is nontrivial and must generate the full clone of A.
In particular, since uv ∈ SgA({u, v}), there must be a term b(x, y) in
the clone generated by x ∗ y such that b(u, v) = uv. However, we shall
see that there is no such term.

The operation x ∗ y also satisfies x ∗ (x ∗ y) = x, as well as all other
properties ascribed to xy. Hence terms generated by x ∗ y have the
same form as those generated by xy: a binary term may be written as
a left–associated product of the form x ∗ y∗k for some k. Thus, if there
is a ∗–term b(x, y) such that b(u, v) = uv, then b(x, y) = x ∗ y∗k or else
b(x, y) = y ∗ x∗k. Translating back via the definition x ∗ y = xyq, we
get that b(x, y) = xyqk or yxqk for some k. However,

uv = b(u, v) = uvqk

is impossible when Σ is nonrepeating. If Σ is repeating, then the dis-
played equation implies that the period of Σ divides qk − 1. But q
divides the period of Σ, so q must divide qk − 1 which is an impossi-
bility. The case

uv = b(u, v) = vuqk
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is likewise impossible because it leads to

u = u(uv) = u(vuqk) = uv

and we began with the assumption that u 6= uv. Thus, we get a
contradiction unless Σ has prime period. If that prime is p, then uvp =
u. This finishes the proof of the claim.

Note that the term condition applied to

uvk = u = uuk ⇔ vvk = v = vuk

yields the conclusion that the length of the period of the sequence
Σ = (u, uv, uv2, . . . ) is the same as the length of the period of Σ′ =
(v, vu, vu2, . . . ). Thus vup = v for the same prime p as in the claim.
Using this it is not hard to completely describe the operation table for
〈A; xy〉 and, in particular, to see that A |= xyp = x.

The operation xy on A satisfies the equations

xx = x, x(yz) = xy, (xy)z = (xz)y, and xyp = x.

The variety axiomatized by a binary operation satisfying these equa-
tions has a minimal clone since, modulo these equations, any term may
be written as a left–associated expression xyk1

1 · · · ykrr with 0 ≤ ki < p.
If such a term is not projection onto x, then some ki > 0 and we can
specialize to x ∗ yi := xykii by setting yj = x for all j 6= i. But then
xy = x ∗ y∗` for any ` such that ki · ` ≡ 1(mod p). Thus, any term
different from a projection generates xy.

Any member of the variety axiomatized by the previously listed equa-
tions which is not a left zero semigroup generates the entire variety. To
show this, use the normal form for terms to show that any additional
equation implies x = xy. In particular, A generates this variety. We
get that every generator of the variety is a nontrivial representation of
C, since A is. The algebra P described in the statement of the lemma
satisfies the above equations, is abelian and is not a left zero semigroup.
It follows that P is a nontrivial abelian representation of C. �

In [5], one finds a description of the idempotent subclones of a cyclic
group of prime power order. Instead of giving a direct argument, as
we did, we could have established the minimality of the clone of P by
just consulting this description.

Now we know at least one nontrivial abelian representation for each
minimal clone of class (II) that has such a representation. We use
this information to describe all minimal clones that have a nontrivial
abelian representation. So far, we know that such clones are unary,
of class (II), or isomorphic to the clone of an affine vector space on a
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two–element set. Our main tool is the following lemma which we have
abstracted from the proof of Lemma 3.4 of [8].

LEMMA 3.6. Let A be a nontrivial representation of a minimal clone
C and assume that t(x̄) is a term in the language of A. If A satisfies the
equation t(x̄) = xi for some i, then every representation of C satisfies
this equation.

Proof. Assume otherwise that B is a representation which does not
satisfy the equation t(x̄) = xi. Then A × B is a representation of C
where the operation tA×B(x̄) is not a projection. Hence the clone of
A×B is generated by tA×B(x̄). By factoring we get that the clone of
A is generated by tA(x̄) = xi. But this is impossible since the clone of
A is nontrivial. �

The previous lemma shows that if we know one nontrivial represen-
tation of a minimal clone, then we can deduce a lot about the equations
that hold in other representations. An equation of the form t(x̄) = xi,
which asserts that an operation t(x̄) interprets as projection onto a
variable, will be called an absorption equation.

COROLLARY 3.7. Let A be a nontrivial representation of a minimal
clone C. If A is axiomatizable by absorption equations, then A is a
faithful representation of C.
Proof. If V is the variety of representations of C, then the hypotheses
imply that A ∈ V and (from Lemma 3.6) V ⊆ HSP(A). Therefore
V = HSP(A), which implies that the representation A is faithful. �

Suppose that f and g both generate the minimal clone C. If some
f–representation A = 〈A; f〉 is axiomatizable by absorption equations,
then is it true that the corresponding g–representation 〈A; g〉 is also
axiomatizable by absorption equations? We don’t know. Since f and
g both generate C, there is an expression for either of f or g in terms
of the other: say f = ϕ(g) and g = φ(f) where ϕ and φ are terms
in the language of clones. Now suppose that F is a set of absorption
equations, written only in terms of f , which axiomatizes 〈A; f〉. One
can use f = ϕ(g) to transform F into a set G of absorption equations
written only in terms of g. The question becomes, does G axiomatize
〈A; g〉?

The statement that F axiomatizes 〈A; f〉 implies that

F |= f(x̄) = ϕφ(f)(x̄).

The set G ∪ {g(x̄) = φϕ(g)(x̄)} axiomatizes 〈A; g〉. If we could show
that

(F |= f(x̄) = ϕφ(f)(x̄))⇒ (G |= g(x̄) = φϕ(g)(x̄)),
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then 〈A; g〉 would be axiomatizable by the absorption equations in G.
We don’t know if this implication holds. (Nevertheless, we know of
no example where a minimal clone generated by either f or g has
a nontrivial f–representation axiomatizable by absorption equations
which is not so axiomatizable as a g–representation.) The impact of
this observation is that we shall specify the generating operation for
the clone when we claim that a representation has an axiomatization
by absorption equations.

LEMMA 3.8. Assume that a minimal clone has a rectangular band
as a nontrivial abelian representation. The representation is faithful.

Proof. Assume that C is a clone satisfying the hypotheses and that A
is a nontrivial representation of C which is a rectangular band. We con-
sider C to be a clone of class (II) such that A = 〈A; xy〉 is a rectangular
band with a nontrivial clone. The defining equations for rectangular
bands are:

x = xx,
(xy)z = x(yz),

xz = xyz.

This is not an axiomatization by absorption equations for the variety
of rectangular bands, but such an axiomatization exists. Here is one:

x = xx,
x = x(y(zx)),
x = ((xy)z)x.

To prove that these absorption equations axiomatize the variety of
rectangular bands, let U be the variety of groupoids axiomatized by
these equations. All rectangular bands satisfy these equations, so U
contains the variety of rectangular bands. We shall argue that U |=
xz = x(yz). By symmetry, we will get U |= xz = (xy)z and therefore
that

U |= x(yz) = xz = (xy)z.

This will prove that U satisfies all the usual defining axioms for the
variety of rectangular bands.
Claim. U |= (XY = XZ) & (Y U = ZU) ⇒ Y = Z.

Proof of Claim. Choose B ∈ U and a, b, c, d ∈ B such that ac = ad and
cb = db. U is assumed to satisfy the equations x = x(y(xx)) = x(yx)
and x = x(y(zx)). They can be applied as follows:

cd = c[d(ad)︸ ︷︷ ︸] = c[d(ac)]︸ ︷︷ ︸ = c.
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Now working in the other direction we can use the equations x =
((xx)z)x = (xz)x and x = ((xy)z)x to obtain that

cd = ((cb)c︸ ︷︷ ︸)d = ((db)c)d︸ ︷︷ ︸ = d.

Hence c = d and the claim is proven.

Now we show that the equation x(yz) = xz holds throughout U . For
X := z, Y := x(yz), Z := xz and U := x we have XY = z(x(yz)) =
z = z(x(zz)) = z(xz) = XZ. The equation ((xy)z)x = x has the
consequence (xz)x = ((xx)z)x = x. This gives the second and third
equalities in Y U = (x(yz))x = x = (xz)x = ZU . By the previous
claim we must have

x(yz) = Y = Z = xz.

This holds for arbitrary x, y and z. A similar argument shows that the
equation (xy)z = xz holds throughout U . Hence x(yz) = xz = (xy)z
and x = xx are equations of U , while at the same time U contains
all groupoids satisfying these equations. It follows that the absorption
equations listed in this proof are an axiomatization of the variety of
rectangular bands. Now this lemma is a consequence of Corollary 3.7.

�

LEMMA 3.9. Assume that a minimal clone has an affine vector space
over a prime field as a nontrivial abelian representation. The represen-
tation is faithful.

Proof. Let A be a nontrivial representation of C as an affine vector
space over a field with q elements where q is the appropriate prime. We
choose our generator for C to be any ternary operation p(x, y, z) which
interprets as a Mal’cev operation in A. The Mal’cev operation of an
affine vector space is unique: it is pA(x, y, z) = x−y+ z. Clearly, with
respect to this operation, A satisfies the following absorption equations:

x = p(x, y, y),
x = p(y, y, x),
x = p(p(z, y, x), z, y),
x = p(p(p(x, y, z), z, u), u, y),
x = p(p(· · · (p︸ ︷︷ ︸

q times

(x, y, z), y, z), · · · ), y, z).

However, these equations axiomatize A. (A proof can be found on
page 266 of [8].) Corollary 3.7 can now be invoked to prove that A is
a faithful representation of C. �
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LEMMA 3.10. Assume that, for some prime p, a minimal clone has
the algebra P from Lemma 3.5 as a nontrivial abelian representation.
The representation is faithful.

Proof. The variety generated by P is axiomatizable by the following
list of absorption equations:

x = xx,
x = xyp,
x = (xyp−1)(yz),
x = (((xz)y)zp−1)yp−1.

(Where we omit necessary parentheses, as in xyp, we mean a left–
associated product.)

It is easy to check that the listed absorption equations hold in P.
To show that they axiomatize P, recall from Lemma 3.5 that P is
axiomatized by

xx = x, x(yz) = xy, (xy)z = (xz)y, and xyp = x.

We only need to show how to deduce x(yz) = xy and (xy)z = (xz)y
from our list of absorption equations. For the first of these, let u = xy.
Then uyp−1 = (xy)yp−1 = xyp = x. Therefore we have

x(yz) = (uyp−1)(yz) = u = xy.

For the second equation, multiply both sides of

x = (((xz)y)zp−1)yp−1

on the right by y first and then by z. The result obtained after simpli-
fying is that (xy)z = (xz)y. This finishes the proof. �

THEOREM 3.11. The minimal clones which have a nontrivial abelian
representation are the following:

(i) the unary clone generated by an operation f satisfying f(x) =
f(y), but not satisfying f(x) = x;

(ii) the unary clone generated by an operation f satisfying f 2(x) =
f(x), but not satisfying f(x) = f(y) or f(x) = x;

(iii) the unary clone generated by an operation f satisfying f p(x) =
x for some prime p, but not satisfying f(x) = x;

(iv) the clone of any rectangular band not equal to a left or right
zero semigroup;

(v) the clone of an affine vector space over a prime field;
(vi) the clone of the algebra P for some prime p (defined in Lemma 3.5).

2
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COROLLARY 3.12. A minimal clone has a nontrivial abelian repre-
sentation iff it has a faithful representation as a reduct of a finite cyclic
group.

Proof. Referring to the cases enumerated in Theorem 3.11:

(i) Take the reduct of Z2 to f(x) = 0.
(ii) Take the reduct of Z6 to f(x) = 3x.

(iii) Take the reduct of Z2p−1 to f(x) = 2x.
(iv) Take the reduct of Z6 to xy = 3x+ 4y.
(v) Take the reduct of Zp to p(x, y, z) = x− y + z.

(vi) Take the reduct of Zp2 to xy = (1− p)x + py.

We remark that in case (v) the choice p = 2 yields the unique minimal
clone in class (IV), while for p > 2 we get clones in class (II) with xy =
p(x, y, x) = 2x− y as (one choice for) the generator of the clone. �

As an application of Theorem 3.11, we answer Pálfy’s question:
Which Mal’cev operations generate minimal clones?

THEOREM 3.13. Let C be a minimal clone generated by a Mal’cev
operation. Then C has a nontrivial abelian representation. Hence, C is
the clone of an affine vector space over a prime field.

Proof. Let V be the variety of p–representations, where p = p(x, y, z) is
the Mal’cev operation of C. V is an idempotent, congruence permutable
(CP) variety. If V were congruence distributive (CD), then (since V
is also CP) we would have that V is arithmetical. It is known that
any arithmetical variety has a Pixley term. But V has a minimal clone
and no minimal clone contains a Pixley term as we observed after
Theorem 2.2. This shows that V is not CD.

From basic commutator theory (see [2]), a CP variety which is not
CD contains a member with a nonzero abelian congruence. Since V
is idempotent, any congruence class of an algebra is a subuniverse.
Because of the way the commutator restricts to subalgebras, any class
of an abelian congruence on some member of V generates an abelian
subalgebra. Hence, the fact that V is not CD implies that V contains a
nontrivial abelian algebra, A. The clone C has an abelian representation
A which is nontrivial (since A has a Mal’cev operation in its clone).
This proves the first claim of the theorem.

The second claim follows from the fact that C has a Mal’cev operation
and is on the list of clones from Theorem 3.11. This forces C to be one
of the clones described in Theorem 3.11 (v). �
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