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RESIDUALLY FINITE, CONGRUENCE
MEET-SEMIDISTRIBUTIVE VARIETIES OF FINITE TYPE

HAVE A FINITE RESIDUAL BOUND

KEITH A. KEARNES AND ROSS WILLARD

(Communicated by Lance W. Small)

Abstract. We show that a residually finite, congruence meet-semidistributive
variety of finite type is residually < N for some finite N . This solves Pixley’s
problem and a special case of the restricted Quackenbush problem.

1. Introduction

This paper concerns varieties of general algebras and their residual character. By
an algebra A we mean any nonempty set A together with a family of operations fi :
Ani → A (i ∈ I) of various arities ni < ω. A variety is any class of algebras definable
by a set of equational laws in a specified family of operation symbols. Examples
are the variety of commutative semigroups (one binary operation, commutative and
associative laws) and the variety of Boolean algebras (two binary operations, one
unary operation, two nullary operations, a well-known list of laws).

Of central importance when studying a variety are the subdirectly irreducible
members (the SI’s). These are the algebras A in the variety which are residually
irreducible in the following sense: there exist a, b ∈ A with a 6= b such that any
homomorphism h with domain A and satisfying h(a) 6= h(b) must be an embedding.
For example, the 2-element Boolean algebra is the unique subdirectly irreducible
Boolean algebra. By contrast, in the variety of commutative semigroups there are
2κ SI’s of every infinite cardinality κ, and they are unclassifiable in the sense that
they interpret all posets (and hence all first-order structures in any finite language
– see [5, Theorem 5.5.2]).

A variety is:

1. residually small if there is a cardinal greater than the cardinality of every SI
in the variety;

2. residually finite if every SI in the variety is finite;
3. residually < N if every SI in the variety has cardinality less than N .
V(A) denotes the smallest variety containing the algebra A. In 1971, R. Quack-

enbush posed the following problem [10].
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The Quackenbush Problem. If A is a finite algebra and V(A) is
residually finite, must V(A) be residually < N for some N < ω?

This question was finally answered negatively in the Fall of 1993 by R. McKen-
zie [9] using an ingenious construction involving infinitely many operations on a
4-element set. The question remains open, and plausible, when restricted to fi-
nite algebras having only finitely many operations. We shall call this version the
Restricted Quackenbush Problem.

A variety V is congruence distributive if, for every member A ∈ V , the lattice
of congruence relations of A ( = equivalence relations on A which are compatible
with the operations of A) satisfies the distributive law. Congruence distributive
varieties are relatively well-understood; for example, the Quackenbush Problem is
settled affirmatively when V(A) is congruence distributive, by an old observation
of A. Foster and A. Pixley [3, Theorem 2.5]. In 1984, Pixley asked the following
question (see also [6, Problem 4.4]).

Pixley’s Problem. If V is a residually finite, congruence distributive
variety of finite type (that is, having only finitely many operations),
must V be residually < N for some N < ω?

At the time this problem was posed, it pinpointed the only gap in our knowledge
about the residual character of congruence distributive varieties. In the meantime it
has been solved for affine complete congruence distributive varieties (K. Kaarli and
A. Pixley [6]), for varieties of lattices (R. Freese and J. B. Nation, unpublished),
and for varieties of lattice-based algebras (R. McKenzie, unpublished).

Let us call a variety a Pixley variety if it has finite type and is residually finite but
not residually < N for any N < ω.1 In this paper we prove that there is no Pixley
variety whose congruence lattices satisfy the meet-semidistributive implication

x∧ y = x∧ z −→ x∧ y = x∧(y ∨ z).

As meet-semidistributivity follows from distributivity, this settles Pixley’s Problem.
It also yields a positive answer to the Restricted Quackenbush Problem whenever
the variety V(A) is congruence meet-semidistributive; this is the case, e.g., when-
ever the operations of A include a semilattice operation (more generally, see [4,
Theorem 9.10]). Our arguments are based on an analysis of the combinatorial
properties of principal congruence generation in congruence meet-semidistributive
varieties. Virtually the same combinatorial properties were discovered and used by
K. Baker in [1] to prove a finite basis theorem.

2. Arrows

Suppose A is an algebra. Following [1], by a basic translation of A we mean
any unary polynomial of the form F (a1, . . . , ai−1, x, ai+1, . . . , an) where F is an
n-ary fundamental operation of A, 1 ≤ i ≤ n, and the aj ’s are any elements of A.
A k-translation of A is a unary polynomial of A which can be expressed as the
composition of k or fewer basic translations. In particular, the identity map idA is
the unique 0-translation of A.

A(2) denotes the set of all 2-element subsets of A. If {a, b}, {c, d} ∈ A(2) and k <
ω, then we write {a, b} →k {c, d} to mean that there exists a k-translation f such

1An example of a Pixley variety is the variety with two unary operations f, g defined by the
laws fg(x) = x and gf(x) = x.
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that {f(a), f(b)} = {c, d}. If X ⊆ A(2), then X →k {c, d} means {a, b} →k {c, d}
for all {a, b} ∈ X .

Similarly, if k, n < ω, then we define {a, b} ⇒k,n {c, d} to mean that there
exists a sequence c = c0, c1, . . . , cn = d such that for each i < n, either ci = ci+1

or {a, b} →k {ci, ci+1}. The notation {a, b} ⇒k {c, d} means {a, b} ⇒k,n {c, d}
for some n < ω. If X ⊆ A(2), then X ⇒k,n {c, d} and X ⇒k {c, d} mean the
obvious things, namely, that {a, b} ⇒k,n {c, d} (respectively, {a, b} ⇒k {c, d}) for
all {a, b} ∈ X . Note that by Mal’cev’s description of principal congruences, if
{a, b}, {c, d} ∈ A(2), then (c, d) ∈ CgA(a, b) if and only if {a, b} ⇒k {c, d} for some
k < ω. Moreover, if the language of A is finite, then for all k, n < ω there is a
first-order formula π(x, y, z, w) (a principal congruence formula in the sense of [11])
which defines the relation {x, y} ⇒k,n {z, w} in all algebras of the same type as A.

The relations →k and ⇒k,n have the following properties.
1. →k and ⇒k,1 mean the same thing.
2. If {a, b} ⇒k,m {c, d} ⇒`,n {r, s}, then {a, b} ⇒k+`,mn {r, s}. In other words,

compositions of ⇒x,y are additive in x and multiplicative in y.
3. If {a, b} →k+` {c, d}, then there exist u, v such that {a, b} →k {u, v} →`

{c, d}.

3. Sequence lemmas

Congruence meet-semidistributivity was shown to be a weak Mal’cev property by
G. Czédli [2]. That is, he found an infinite sequence C2, C3, . . . of Mal’cev properties
such that a variety is congruence meet-semidistributive if and only if it satisfies Cm

for all m ≥ 2. Later, it was shown by Kearnes and Á. Szendrei [7] and P. Lipparini
[8] that C2 already characterizes congruence meet-semidistributivity. More recently,
using the Mal’cev condition directly derivable from C2, Willard proved the following.

Theorem 3.1 ([12]). For a variety V, the following are equivalent:
(1) V is congruence meet-semidistributive.
(2) There exists a finite family {〈si(x, y, z), ti(x, y, z)〉 : 0 ≤ i ≤ p} of pairs of

ternary terms such that

V |= si(x, y, x) ≈ ti(x, y, x), (0 ≤ i ≤ p),

V |= ∀xy

(
x = y ↔

p∧
i=0

[si(x, x, y) = ti(x, x, y) ↔ si(x, y, y) = ti(x, y, y)]

)
.

For example, if V is a congruence distributive variety with Jónsson terms
d0(x, y, z), . . . , dk(x, y, z), then an appropriate family of pairs is {〈di(x, y, z),
di+1(x, y, z)〉 : i < k}. If V has a semilattice term operation xy, then an ap-
propriate family of pairs is {〈xyz, xy〉, 〈xyz, yz〉}.

The next two lemmas are taken from [12]; their counterparts in the congruence
distributive case are [1, Lemmas 5.5 and 5.3].

Lemma 3.2 (Single-sequence lemma). Suppose the variety V is congruence meet-
semidistributive with terms si(x, y, z), ti(x, y, z) witnessing Theorem 3.1 (2). Sup-
pose moreover that each si, ti is a fundamental operation symbol in the language
of V. Then the following is true: if A ∈ V and a = a0, a1, . . . , an = b is a
sequence in A with a 6= b, then there exist {c, d} ∈ A(2) and i < n such that
{ai, ai+1} ⇒1,2 {c, d} and {a, b} ⇒1,2 {c, d}.
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Lemma 3.3 (Multi-sequence lemma). With the same assumptions as before, the
following is true: if A ∈ V, {a, b} ∈ A(2), and S1, . . . , SN are sequences from a to
b, where Si = (ai

0, a
i
1, . . . , ai

λ(i)) with ai
0 = a and ai

λ(i) = b for each i = 1, . . . , N ,
then there exist {u, v} ∈ A(2) and, for each i, a ‘key link’ {ai

σ(i), a
i
σ(i)+1} of distinct

adjacent elements of Si, which we shall rename {ai, bi}, such that {ai, bi} ⇒N,2N

{u, v} for each i and {a, b} ⇒N,2N {u, v}.
Proof of Lemma 3.2. As a 6= b, Theorem 3.1 gives the existence of j ≤ p such
that ¬[sj(a, a, b) = tj(a, a, b) ↔ sj(a, b, b) = tj(a, b, b)]. Suppose for concreteness
that sj(a, a, b) = tj(a, a, b) while sj(a, b, b) 6= tj(a, b, b). As a = a0 while b = an,
there must exist i < n such that sj(a, ai, b) = tj(a, ai, b) while sj(a, ai+1, b) 6=
tj(a, ai+1, b). Let c = sj(a, ai+1, b), d = tj(a, ai+1, b), u = sj(a, ai, b), and v =
sj(a, ai+1, a). Define f1(x) = sj(a, x, b), f2(x) = tj(a, x, b), g1(x) = sj(a, ai+1, x),
and g2(x) = tj(a, ai+1, x). f1, f2, g1, g2 are basic translations of A which satisfy

{f1(ai), f1(ai+1)} = {c, u},
{f2(ai), f2(ai+1)} = {u, d} by assumption,

{g1(a), g1(b)} = {c, v},
{g2(a), g2(b)} = {v, d} using the identity sj(x, y, x) ≈ tj(x, y, x).

Thus {ai, ai+1} ⇒1,2 {c, d} and {a, b} ⇒1,2 {c, d}.

Proof of Lemma 3.3. The proof is virtually the same as Baker’s proof of his original
multisequence lemma [1, Lemma 5.3]. Argue by induction on N . If N = 1, then
the claim is Lemma 3.2. If N > 1, apply the claim to the sequences S1, . . . , SN−1

to get {c, d} ∈ A(2) and key links {a1, b1}, . . . , {aN−1, bN−1} such that

{ai, bi} ⇒N−1,2N−1 {c, d}, i = 1, . . . , N − 1,

{a, b} ⇒N−1,2N−1 {c, d}.
Choose distinct c = c0, c1, . . . , cm = d so that {a, b} →N−1 {cj, cj+1} for all j < m.
Choose (N − 1)-translations f0, . . . , fm−1 so that {cj, cj+1} = {fj(a), fj(b)} for all
j < m. For each j < m define a sequence Tj from cj to cj+1 by applying fj to SN

or its reverse; that is,

Tj =

{
(fj(aN

0 ), fj(aN
1 ), . . . , fj(aN

λ(N))) if (fj(a), fj(b)) = (cj , cj+1),

(fj(aN
λ(N)), . . . , fj(aN

1 ), fj(aN
0 )) if (fj(a), fj(b)) = (cj+1, cj).

Let T be the sequence from c to d formed by concatenating T0, . . . , Tm−1. By
Lemma 3.2 there must exist {u, v} ∈ A(2) and a link {r, s} in T such that r 6= s,
{r, s} ⇒1,2 {u, v} and {c, d} ⇒1,2 {u, v}. By construction, the link {r, s} must be
of the form {fj(aN

k ), fj(aN
k+1)} for some j < m and k < λ(N). Rename {aN

k , aN
k+1}

as {aN , bN}, our chosen key link of SN . Then

{ai, bi} ⇒N−1,2N−1 {c, d} ⇒1,2 {u, v}, i = 1, . . . , N − 1,

{a, b} ⇒N−1,2N−1 {c, d} ⇒1,2 {u, v},
{aN , bN} →N−1 {r, s} ⇒1,2 {u, v}.

Thus {ai, bi} (1 ≤ i ≤ N) and {u, v} have the desired properties.
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Corollary 3.4. With the same hypotheses as in Lemma 3.2, suppose A ∈ V,
{a1, b1}, . . . , {aN , bN}, {u, v} ∈ A(2) and n > 0 are such that {ai, bi} ⇒n {u, v} for
all i = 1, . . . , N . Then there exist {ri, si} ∈ A(2) (1 ≤ i ≤ N) and {u′, v′} ∈ A(2)

such that {ai, bi} →n {ri, si} ⇒N,2N {u′, v′} for all i = 1, . . . , N , and {u, v} ⇒N,2N

{u′, v′}. In particular, {ai, bi} ⇒n+N,2N {u′, v′} for all i.

Proof. For each i = 1, . . . , N choose a sequence Si = (ui
0, u

i
1, . . . , ui

λ(i)) from u to
v so that {ai, bi} →n {ui

j, u
i
j+1} for all i = 1, . . . , N and all j < λ(i). Apply the

previous lemma to the sequences S1, . . . , SN .

4. The main theorem

Theorem 4.1. Suppose V is a congruence meet-semidistributive variety in a finite
language. If V contains arbitrarily large finite SI’s, then V contains an infinite SI.

The main step in the proof is to show the following:

Lemma 4.2. Suppose V is a variety satisfying the hypotheses of Lemma 3.2. There
is a function g : (ω \{0, 1}) → ω such that the following is true: if A ∈ V is SI with
monolith µ, if (c, d) ∈ µ\0A, and if 2 ≤ m < ω with |A| ≥ m, then there exist S ⊆ A
and {u, v} ∈ A(2) such that |S| = m and S(2) ⇒g(m) {u, v} and {c, d} ⇒g(m) {u, v}.

Note that if N(m) = m(m− 1)/2+ 1, f(m) = g(m)+ N(m) and h(m) = 2N(m),
then a consequence of Lemma 4.2 and Corollary 3.4 is:

Corollary 4.3. Suppose V is a variety satisfying the hypotheses of Lemma 3.2. If
A ∈ V is SI with monolith µ, if (c, d) ∈ µ\0A, and if 2 ≤ m < ω with |A| ≥ m, then
there exist S ⊆ A and {u, v} ∈ A(2) such that |S| = m and S(2) ⇒f(m),h(m) {u, v}
and {c, d} ⇒f(m),h(m) {u, v}.
Proof of Theorem 4.1. V is term-equivalent to a variety in a finite language which
satisfies the hypotheses of Lemma 3.2, so we may as well assume that V already
satisfies these hypotheses. Fix m ≥ 2 and choose an SI A ∈ V satisfying |A| ≥ m.
Let µ be the monolith of A and choose (cm, dm) ∈ µ \ 0A. By Corollary 4.3 there
exist a set Sm ⊆ A and a pair {u, v} ∈ A(2) such that |Sm| = m and S

(2)
m ⇒f(m),h(m)

{u, v} and {cm, dm} ⇒f(m),h(m) {u, v}. Since (u, v) ∈ CgA(cm, dm) = µ and u 6= v
we have (u, v) ∈ µ \ 0A. Define (cm−1, dm−1) = (u, v), and repeat the above
argument with m− 1 in place of m. Continuing in this way we will eventually get
sets S2, . . . , Sm ⊆ A and pairs (c1, d1), . . . , (cm, dm) ∈ µ \ 0A satisfying

(1) {cm, dm} ⇒f(m),h(m) {cm−1, dm−1} ⇒f(m−1),h(m−1) · · · {c2, d2} ⇒f(2),h(2)

{c1, d1},
(2) |Sk| = k and S

(2)
k ⇒f(k),h(k) {ck−1, dk−1} for k = 2, . . . , m.

It follows that S
(2)
k ⇒F (k),H(k) {c1, d1} where F (k) =

∑k
i=2 f(i) and H(k) =∏k

i=2 h(i).
Since V is of finite type, for each k ≥ 2 there is a first-order formula πk(x, y, z, w)

defining the relation {x, y} ⇒F (k),H(k) {z, w} in V . Let c, d, ak
i be new constant

symbols (for k ≥ 2 and 1 ≤ i ≤ k). Let T be the first-order theory consisting of the
theory of V plus the sentences c 6= d and πk(ak

i , ak
j , c, d) for all 1 ≤ i < j ≤ k. A

model of T consists of a member B of V plus named subsets Sk = {ak
1 , . . . , ak

k} (k ≥
2) and distinct elements c, d such that {ak

i , ak
j } ⇒F (k),H(k) {c, d} for 1 ≤ i < j ≤ k.

T is finitely satisfiable by the previous discussion, so has a model 〈B, c, d, (ak
i )〉 by
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the compactness theorem of first-order logic. Let θ be a congruence of B which is
maximal with respect to satisfying (c, d) 6∈ θ. Then B/θ is an SI in V . Moreover,
(c/θ, d/θ) ∈ CgB/θ(ak

i /θ, ak
j /θ), and hence ak

i /θ 6= ak
j /θ for all 1 ≤ i < j ≤ k, since

the formulas πk(ak
i , ak

j , c, d) are preserved in passing to the quotient algebra. This
proves that |B/θ| ≥ |Sk/θ| = k for every k, and hence B/θ is infinite.

It remains to prove Lemma 4.2. This will be done in the next section.

5. Proof of Lemma 4.2

Throughout this section we assume that V is a variety satisfying the hypotheses
of Lemma 3.2, that 2 ≤ m < ω, that A ∈ V is SI with monolith µ and with |A| ≥ m,
and that (c, d) ∈ µ \ 0A. We have claimed that there is a positive integer g(m),
depending on m but not on A or (c, d), for which we are guaranteed sets S ⊆ A
and {u, v} ∈ A(2) such that |S| = m and S ⇒g(m) {u, v} and {c, d} ⇒g(m) {u, v}.
In fact, we provide estimates showing that g(m) = 26m−6 is sufficiently large.

For n, k ≥ 0 let C(n, k) denote the binomial coefficient, and define the following
parameters:

M = C(2m−2, m−1)− 1,

N = C(M+1, 2),
d = 3N + 4,

` = dM,

g = `(dlog2 C(m, 2)e+ 1),
p = `− 2N − 2,

q = N + 1.

As in [1, p. 228], the following inequalities

C(2m−2, m−1) ≤ 12
11

(
22m−2

(π(m−1))1/2

)
,

d ≤ 2(M + 1)2,
1 + dlog2 C(m, 2)e ≤ 2 log2 m ≤ 2(m− 1),

4
π3/2

(
12
11

)3

≤ 1,

imply g ≤ 26m−6. We shall prove Lemma 4.2 with g(m) = g. It suffices to consider
only m ≥ 3.

Definition 5.1. Suppose X ⊆ A(2) and k, n ≥ 0. We say that the members of X
are (k, n)-bounded over {c, d} if there exists {u, v} ∈ A(2) such that X ⇒k {u, v}
and {c, d} ⇒n {u, v}.

Using this terminology, our goal is to prove the existence of S ⊆ A with |S| = m
and such that the members of S(2) are (g, g)-bounded over {c, d}. Note also that if
{r, s} ∈ A(2), then {r, s} is (0, n)-bounded over {c, d} if and only if {c, d} ⇒n {r, s}.
Our proof of Lemma 4.2 breaks into three cases:

Case 1. Any two {a, b}, {a′, b′} ∈ A(2) are (`, p)-bounded over {c, d}.
Case 2. There exists {r, s} ∈ A(2) which is (0, `)-bounded over {c, d} but not
(q, p)-bounded over {c, d}.
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Case 3. For all {r, s} ∈ A(2), if {r, s} is (0, `)-bounded over {c, d}, then {r, s}
is (q, p)-bounded over {c, d}; and there exist {a, b}, {a′, b′} ∈ A(2) which are not
(`, p)-bounded over {c, d}.

Proof of Lemma 4.2 in Case 1. We argue that for every set S ⊆ A with |S| = m,
the members of S(2) are (g, g)-bounded over {c, d}. To see this, choose an S and
partition X0 = S(2) into the minimum number possible of ≤ 2-element subsets
T = {{a, b}, {a′, b′}}, and then for each such subset find some {uT , vT } such that
T ⇒` {uT , vT }. Let X1 be the set of all such {uT , vT }. Note that |X1| ≤ d 1

2 |X0|e.
Repeat this process with X1 to get X2, X3, . . . until at some k ≤ dlog2 |X0|e we
have |Xk| = 1. Now find {u, v} ∈ A(2) such that Xk ⇒` {u, v} and {c, d} ⇒p

{u, v}. Then working our way back through the construction, and noting that
g ≥ `(k + 1) ≥ p, we see that S(2) ⇒g {u, v} and {c, d} ⇒g {u, v}.

Proof of Lemma 4.2 in Case 2. Choose {r, s} ∈ A(2) which is (0, `)-bounded over
{c, d} but not (q, p)-bounded over {c, d}. Thus {c, d} ⇒` {r, s}. By Corollary 3.4
there exist {r1, s1}, {u, v} ∈ A(2) such that {c, d} →` {r1, s1} ⇒1 {u, v} and
{r, s} ⇒1 {u, v}. Since l = dM , we can choose {ai, bi} ∈ A(2) (0 ≤ i ≤ M) such that
{c, d} = {a0, b0} →d {a1, b1} →d · · · →d {aM−1, bM−1} →d {aM , bM} = {r1, s1}.
What is important is that for each j,

{c, d} →dj {aj , bj} →d(M−j) {r1, s1}.
For each j 6= 0 choose a d(M−j)-translation fj which witnesses {aj , bj} →d(M−j)

{r1, s1}. We assume that the elements have been named so that fj(aj) = r1 and
fj(bj) = s1.

Recall that {r1, s1} ⇒1 {u, v}. Choose t < ω, elements u0, . . . , ut ∈ A and
basic translations g0, . . . , gt−1 such that u0 = u, ut = v, and {gk(r1), gk(s1)} =
{uk, uk+1} for k < t.

For 0 ≤ i < j ≤ M and 0 ≤ k < t let Rij be the sequence from r1 to s1

obtained by applying fj to (aj , ai, bi, bj), and let Sijk be the sequence from uk to
uk+1 obtained by applying gk to Rij or its reverse. Let Sij be the sequence obtained
by concatenating the sequences Sij0, . . . , Sijt−1. Thus Sij is a sequence from u to
v such that for each adjacent pair {x, y} with x 6= y, one of the following holds:

(a) {ai, aj} →d(M−j)+1 {x, y},
(m) {ai, bi} →d(M−j)+1 {x, y}, “the middle case”, or
(b) {bi, bj} →d(M−j)+1 {x, y}.
In all we get C(M+1, 2) = N such sequences from u to v. By Lemma 3.3 there

exist {u1, v1} ∈ A(2) and ‘key links’ {xij , yij} for Sij , 0 ≤ i < j ≤ M , such that
{xij , yij} ⇒N {u1, v1}, and {u, v} ⇒N {u1, v1}. Let {u1, v1} and the key links be
chosen and fixed.

We claim that for no i and j with 0 ≤ i < j ≤ M can the key link {x, y} =
{xij , yij} in Sij be as described in “the middle case”. The reason for this is that if
{ai, bi} →d(M−j)+1 {xij , yij}, then {c, d} →`−d+1 {xij , yij} (as {c, d} →di {ai, bi}
and di + d(M − j) ≤ d(M − 1) = `− d), and so

{c, d} →`−d+1 {xij , yij} ⇒N {u1, v1}
and {r, s} ⇒1 {u, v} ⇒N {u1, v1}.
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Thus {c, d} ⇒p {u1, v1} and {r, s} ⇒q {u1, v1}, since ` − d + 1 + N ≤ p and
1 + N = q. But then {r, s} would be (q, p)-bounded over {c, d}, contradicting the
assumption of Case 2.

Color the complete graph on the vertices {0, 1, . . . , M} according to the rule:
edge {i, j} gets color a if the key link in Sij is as in item (a); otherwise this edge gets
color b. Since M + 1 = C(2m−2, m−1) is at least as large as the Ramsey number
for a complete monochromatic subgraph of m vertices in 2-colored complete graphs,
there is an m-element subset J ⊆ {0, 1, . . . , M} such that we are in item (a) for
all i, j ∈ J with i < j, or in item (b) for all i, j ∈ J with i < j. In the former
case take S = {aj : j ∈ J}; in the latter take S = {bj : j ∈ J}. Assuming that
S = {aj : j ∈ J}, then for all i < j in J we have

{ai, aj} →d(M−j)+1 {xij , yij} ⇒N {u1, v1}
and {c, d} ⇒` {r, s} ⇒1 {u, v} ⇒N {u1, v1}.

Since this holds for all i < j in J , and since d(M − j) + 1 + N ≤ ` + 1 + N ≤ g (as
m ≥ 3), we get S(2) ⇒g {u1, v1} and {c, d} ⇒g {u1, v1}.
Proof of Lemma 4.2 in Case 3. Choose {a, b}, {a′, b′} ∈ A(2) which are not (`, p)-
bounded over {c, d}. Because A is subdirectly irreducible and (c, d) ∈ µ \ 0A, there
exists n < ω such that {a, b} ⇒n {c, d} and {a′, b′} ⇒n {c, d}. That is, {a, b} and
{a′, b′} are (n, 0)-bounded over {c, d} for some n, and therefore are (n, p)-bounded
over {c, d} for some n. Pick n minimum such that {a, b} and {a′, b′} are (n, p)-
bounded over {c, d}; by assumption, n > `. Also pick {u0, v0} ∈ A(2) such that
{a, b} ⇒n {u0, v0}, {a′, b′} ⇒n {u0, v0}, and {c, d} ⇒p {u0, v0}.

Corollary 3.4 applied to the two instances of ⇒n yields {r1, s1}, {r′1, s′1}, {u, v} ∈
A(2) such that

{a, b} →n {r1, s1} ⇒2 {u, v},
{a′, b′} →n {r′1, s′1} ⇒2 {u, v},
{u0, v0} ⇒2 {u, v}.

Since n > `, we can choose {a0, b0}, {a′0, b′0} ∈ A(2) such that

{a, b} →n−` {a0, b0} →` {r1, s1},
{a′, b′} →n−` {a′0, b′0} →` {r′1, s′1}.

Choose {ai, bi}, {a′i, b′i} ∈ A(2) (1 ≤ i ≤ M) such that

{a0, b0} →d {a1, b1} →d · · · →d {aM−1, bM−1} →d {aM , bM} = {r1, s1}
and similarly for the primed pairs. As in Case 2, for 0 ≤ i < j ≤ M we can produce
a sequence Sij from u to v with the property that for each adjacent pair {x, y} in
the sequence with x 6= y, either

(a) {ai, aj} →d(M−j)+2 {x, y},
(m) {ai, bi} →d(M−j)+2 {x, y}, or
(b) {bi, bj} →d(M−j)+2 {x, y}.
Similarly, for 0 ≤ i < j ≤ M we can obtain a sequence S′

ij from u to v such that
for each adjacent pair {x′, y′} with x′ 6= y′, one of the following holds:
(a′) {a′i, a′j} →d(M−j)+2 {x′, y′},
(m′) {a′i, b′i} →d(M−j)+2 {x′, y′}, or
(b′) {b′i, b′j} →d(M−j)+2 {x′, y′}.
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In all we get 2·C(M+1, 2) = 2N sequences from u to v. By Lemma 3.3 there exist
{u1, v1} ∈ A(2) and ‘key links’ {xij , yij} for Sij and {x′ij , y′ij} for S′

ij , 0 ≤ i < j ≤
M , such that {xij , yij} ⇒2N {u1, v1} and similarly for the primed key links, and
{u, v} ⇒2N {u1, v1}. Let {u1, v1} and the key links be chosen and fixed. Note that

{c, d} ⇒p {u0, v0} ⇒2 {u, v} ⇒2N {u1, v1}.
Since p + 2 + 2N = `, we get {c, d} ⇒` {u1, v1}, i.e., {u1, v1} is (0, `)-bounded
over {c, d}. By the assumption of Case 3, {u1, v1} must be (q, p)-bounded over
{c, d}; that is, there exists {u2, v2} ∈ A(2) such that {u1, v1} ⇒q {u2, v2} and
{c, d} ⇒p {u2, v2}.

Now suppose for some Sij that the key link {x, y} = {xij , yij} is as described in
item (m). Then {a0, b0} →`−d+2 {xij , yij}, and hence

{a, b} →n−` {a0, b0} →`−d+2 {xij , yij} ⇒2N {u1, v1} ⇒q {u2, v2}.
Since n−d+2+2N + q = n−1, we get {a, b} ⇒n−1 {u2, v2}. Likewise, if for some
S′

i′j′ the chosen key link is as described in item (m′), then {a′, b′} ⇒n−1 {u2, v2}.
Recall that {c, d} ⇒p {u2, v2} and that {a, b}, {a′, b′} are not (n−1, p)-bounded
over {c, d}. Thus either item (m) never occurs or item (m′) never occurs. By
symmetry we can assume that item (m) never occurs, and henceforth ignore the
primed elements. Thus for all 0 ≤ i < j ≤ M , the chosen key link of Sij is as
described in items (a) or (b). As in Case 2, Ramsey’s theorem yields an m-element
subset J ⊆ {0, 1, . . . , M} such that either all sequences Sij with i, j ∈ J and i < j
have their key links as in item (a), or all have their key links as in item (b). Again
for concreteness let us assume that all have their key links as in item (a). Let
S = {aj : j ∈ J}. Then for all i, j ∈ J with i < j,

{ai, aj} →d(M−j)+2 {xij , yij} ⇒2N {u1, v1}.
Since d(M − j)+2+2N ≤ `+2+2N ≤ g (as m ≥ 3), and since it was shown above
that {c, d} ⇒` {u1, v1}, it follows that the members of S(2) are (g, g)-bounded over
{c, d}, as required.

References

[1] K. Baker, Finite equational bases for finite algebras in a congruence-distributive equational
class, Adv. in Math. 24 (1977), 207–243. MR 56:5389

[2] G. Czédli, A characterization of congruence semi-distributivity, in Universal Algebra and
Lattice Theory (Proc. Conf. Puebla, 1982), Springer Lecture Notes No. 1004, 1983. MR
85g:08006

[3] A. Foster and A. Pixley, Semi-categorical algebras. II, Math. Zeit. 85 (1964), 169–184. MR
29:5771

[4] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics
76, American Math. Soc. (Providence, RI), 1988. MR 89m:08001

[5] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications 42, Cambridge
University Press, 1993. MR 94e:03002

[6] K. Kaarli and A. Pixley, Affine complete varieties, Algebra Universalis 24 (1987), 74–90. MR
88k:08002
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